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Abstract

Motivation: Even within well-studied organisms, many genes lack useful functional annotations. One way to gener-
ate such functional information is to infer biological relationships between genes/proteins, using a network of gene
coexpression data that includes functional annotations. However, the lack of trustworthy functional annotations can
impede the validation of such networks. Hence, there is a need for a principled method to construct gene coexpres-
sion networks that capture biological information and are structurally stable even in the absence of functional
information.

Results: We introduce the concept of signed distance correlation as a measure of dependency between two varia-
bles, and apply it to generate gene coexpression networks. Distance correlation offers a more intuitive approach to
network construction than commonly used methods, such as Pearson correlation and mutual information. We pro-
pose a framework to generate self-consistent networks using signed distance correlation purely from gene expres-
sion data, with no additional information. We analyse data from three different organisms to illustrate how networks
generated with our method are more stable and capture more biological information compared to networks
obtained from Pearson correlation or mutual information.

Contact: jdiaz@stats.ox.ac.uk or reinert@stats.ox.ac.uk

Availability and implementation: Code is available online (https://github.com/javier-pardodiaz/sdcorGCN).

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Gene expression data, while noisy, contains key information about
biological processes (Kothapalli et al., 2002). Such data are often
represented as gene coexpression networks, where nodes are genes
and edges represent correlations in their expression across multiple
samples (Lee et al., 2004). Representing gene coexpression as net-
works eases the study and visualization of the expression data
(Magwene and Kim, 2004; Weirauch, 2011). One motivation be-
hind creating these networks is that genes which are coexpressed
across multiple samples are likely to have related functions (Hughes
et al., 2000; Makrodimitris et al., 2020; Stuart et al., 2003; van
Noort et al., 2003), allowing inference of gene function using guilt
by association approaches (Wolfe et al., 2005). This procedure is es-
pecially useful if the studied organism is poorly annotated. For ex-
ample, Rhizobium leguminosarum, a soil bacteria important in
agriculture that can infect plants of the legume family and provide
them organic nitrogenous compound, has no functional information

available for �25% of its predicted genes. Most methods to generate
and validate gene coexpression networks use exogenous biological
information (such as gene ontologies and metabolic information) to
select which edges need to or do not have to be present (e.g. Bar-
Joseph et al., 2003; Ihmels et al., 2002; Ucar et al., 2007).
Therefore, the lack of reliable genomic functional information may
hinder the construction of gene coexpression networks and the val-
idation of their accuracy.

The most widely used methods to generate gene coexpression
networks in the absence of exogenous information are based on the
absolute value of the Pearson correlation of the expression of gene
pairs across samples (Weirauch, 2011). After computing the correl-
ation, there are two alternatives: (i) construct a fully connected
weighted network, or (ii) impose a threshold to construct
unweighted networks with edges connecting genes whose expression
correlation is high enough. The former approach is widely used
thanks to the R package WGCNA (Langfelder and Horvath, 2008),
but results in noisy networks where gene relationships may not be
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easy to identify. The latter approach (e.g. George et al., 2019) keeps
the strongest relationships; however, it is not obvious which thresh-
old value strikes the right balance. A threshold too low, results in
overly dense networks that are difficult to analyse; a threshold that
is too high risks discarding valuable information.

A natural way of studying gene expression data is to compare
the expression of a gene in different samples to assess how it
changes. For any two genes, the most intuitive approach should fol-
low the same straightforward procedure: evaluate how the expres-
sion of each gene changes across the different samples and then
compare the patterns of changes between the two genes. This same
idea underpins the concept of distance correlation (Székely et al.,
2007). While Pearson correlation measures linear relationships, dis-
tance correlation measures the dependence, both linear and nonlin-
ear, between two vectors, and provides a non-negative score that is
zero if and only if the vectors are statistically independent (Székely
et al., 2007). Thus, distance correlations allow us to identify rela-
tionships between the expression of genes beyond linearity; this type
of correlation has been successfully used in bioinformatics settings
to predict miRNA-disease associations (Zhao et al., 2018) and to
generate gene regulatory networks from expression data (Ghanbari
et al., 2019; Guo et al., 2014). Gene regulatory networks are differ-
ent from gene coexpression networks because they are directed,
much sparser and aim to identify regulatory pathways rather than
functional associations. We give a detailed definition of distance cor-
relation in Section 2 below.

Distance correlation is always non-negative; that is, it does not
capture whether an association between the expression of two genes
is positive or negative. Naturally, this information may be biologic-
ally relevant; to overcome this shortcoming, we introduce a signed
distance correlation. After calculating the distance correlation be-
tween each pair of genes, we impose a sign, which corresponds to
the sign of the Pearson correlation between the expression of the
genes.

Here, we propose a method to construct gene coexpression net-
works using signed distance correlation as an intuitive alternative to
networks from Pearson correlation, Spearman correlations and mu-
tual information. To highlight the strengths of our approach, we
construct and compare networks using the four methods. This work
is to our knowledge the first work using distance correlation to con-
struct gene coexpression networks.

We construct networks by including only edges between genes for
which the signed distance correlation of their expression exceeds a
threshold. We select the threshold based on the internal consistency of
the networks using the R package COGENT (Bozhilova et al., 2020)
instead of using exogenous biological information known (or imposed)
a priori. We evaluate our method in data from three different organ-
isms. First, we generate an unweighted gene coexpression network for
the bacteria R.leguminosarum from microarray data. We then analyse
RNA-Seq data from the yeast Saccharomyces cerevisiae, and single-cell
RNA-Seq data from human liver cells. The results of our analysis of
yeast and human data can be found in the Supplementary Material.

We evaluate the biological information in our networks using
the STRING database (Szklarczyk et al., 2019), which is a protein–
protein interaction database with scores for pairs of proteins. The
higher the STRING score, the more likely they are to have a bio-
logically meaningful functional interaction. Using STRING, we
show that networks from signed distance correlation capture more
biological information and are structurally more stable than net-
works based on Pearson or Spearman correlation or mutual
information.

While we apply our method to gene expression data, our method to
construct networks from signed distance correlations (in combination
with COGENT) can be used in applications beyond bioinformatics.

Data and source code are available from https://github.com/jav
ier-pardodiaz/sdcorGCN.

2 Materials and methods

The method we propose generates an unweighted coexpression net-
work from gene expression data that may come from different

sources, such as microarrays, RNA-Seq and single-cell RNA-Seq
assays. Figure 1 illustrates the main steps of the method, which
includes data pre-processing, computing correlations, and threshold-
ing to create networks.

The input to the method is a m�n gene expression matrix M,
where each of the m rows correspond to a gene, each of the n col-
umns is a different sample, and the entries are the expression values
of each gene in each sample.

2.1 Data
We analyse gene expression data from three different organisms:
R.leguminosarum, Yeast (S.cerevisiae), and Human (Homo sapiens),
obtained using different experimental techniques (microarrays,
RNA-Seq and single-cell RNA-Seq). Below, we present our results
on the R.leguminosarum dataset. The description and analysis of
yeast and human datasets can be found in Supplementary Sections 3
and 4.

The R.leguminosarum bv. viciae 3841 data contains gene expres-
sion information observed under 18 different growth conditions.
These data come from n¼54 microarray channels with 3 independ-
ent samples per condition (Karunakaran et al., 2009; Pini et al.,
2017; Ramachandran et al., 2011). The complete list of the condi-
tions is in Supplementary Section 1. From the total 7263 genes in
the current genome annotation (Young et al., 2006), we remove
genes that do not appear in all the microarrays or appear as pseudo-
genes, leaving m¼7, 077 genes for which we calculate the mean ex-
pression within each microarray. These data are encoded in the
7; 077� 54 matrix M.

The data for all three organisms in the form of expression matri-
ces (genes in rows and samples in columns) are available at https://
github.com/javier-pardodiaz/sdcorGCN and http://opig.stats.ox.ac.
uk/resources.

2.2 Pre-processing
Gene expression data is noisy and the raw values are only compar-
able within the same experiment due to their arbitrary scales.
Therefore, gene expression data requires some pre-processing before
we can use it to generate networks (Libralon et al., 2009). We apply
quantile normalization (Bolstad et al., 2003) to the gene expression
matrix M. This normalization step renders the distribution of the ex-
pression values in different samples (i.e. the columns of M) identical
in their statistical properties, such as maximum value and quantiles.
This normalization enables us to compare data from different
experiments.

To avoid interference from low expression values in the quantile
normalization, we ignore the 20% least expressed genes from each
sample before the normalization step. After the quantile normaliza-
tion, we set the ignored values to the lowest expression value in M
to decrease the level of noise. In practice, we have observed that
20% offers a good balance between preserving as much information
as possible, and weeding out noisy measurements. We denote the
pre-processed expression data by M�, and its i-th row by M�i;�.

2.3 Computing correlations between the expression of

the genes
Distance correlation is as a measure of association between random
vectors that addresses some of the limitations of linear measures
such as Pearson’s (Székely et al., 2007). To compute the distance
correlation between the expression of two genes i and j, let the vec-
tors M�i;� ¼ ðM�i;1; . . . M�

i;nÞ and M�j;� ¼ ðM�j;1; . . . ;M�j;nÞ contain their
expression values across the n samples. For each gene
i 2 f1; . . . ;mg, we calculate the n�n expression distance matrix
~Y
ðiÞ

whose entries are the absolute differences between the expres-
sion values across samples:

~Y
ðiÞ
h;k ¼ jM�

i;h �M�
i;kj; (1)

where h;k 2 f1; . . . ; ng are all the samples in the data. Then, we
compute the double-centred expression distance matrix YðiÞ:
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where a; b 2 f1; . . . ;ng. The distance covariance of the expression of
genes i and j is:

dcovði; jÞ ¼ 1

n

�X
h;k

Y
ðiÞ
h;kY

ðjÞ
h;k

�1=2

; (3)

where h;k 2 f1; . . . ; ng. Finally, the distance correlation between
the expression of the genes is

dcorði; jÞ ¼ dcovði; jÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dcovði; iÞdcovðj; jÞ

p : (4)

This expression is the non-negative square root of the Pearson
correlation between YðiÞ and YðjÞ. We store the pairwise distance
correlation between the expression of all genes in the m�m sym-
metric matrix D with entries Di;j ¼ dcorði; jÞ.

The distance correlation in Equation (4) is always non-negative;
however, the association between the expression of two genes can
be either positive (i.e. both genes are expressed at the same time) or
negative (i.e. one gene is expressed when the other is not). Thus, the
sign of the association may contain crucial biological information
that is lost if we only use distance correlation. We introduce sign
into distance correlation by using the correlation matrix P that

contains the Pearson correlation coefficients between the expression
of each pair of genes:

Pi;j ¼
covðM�

i;�;M
�
j;�Þ

rM�
i;�
rM�

j;�

: (5)

The matrix P also has size m�m but, unlike D, it may have
negative values: values close to 1 mean strong positive correlation,
values close to �1 mean strong negative correlation, and values
around 0 mean no correlation. We generate a signed distance correl-
ation matrix S whose values are the entries in D multiplied by the
sign of the corresponding entries in P:

Si;j ¼ signðPi;jÞDi;j: (6)

For comparison purposes, we create the matrix I which contains
the mutual information values for each pair of gene expression vec-
tors from the preprocessed dataset M�. To compute I, we use the R
package minet (Meyer et al., 2008). We select the empirical prob-
ability distribution as the entropy estimator, and use

ffiffiffi
n
p

bins with
equal frequencies for the discretization.

2.4 Thresholding correlation matrices
Once we have a signed distance correlation S, we generate an
unweighted network with adjacency matrix ASðhÞ by applying a
threshold h to S:

Fig. 1. Pipeline to construct networks from gene expression data using signed distance correlation. (A) We pre-process the input matrix M with raw gene expression data using

quantile normalization and setting the lowest 20% values from each sample to the minimum value in M to obtain M�. (B) We compute the expression distance matrices ~Y
ðiÞ

and ~Y
ðjÞ

for each gene i; j 2 f1; . . . ;mg, and we double center them to obtain YðiÞ and YðjÞ. (C) We compute the distance correlation matrix D, whose entries Di;j are the positive

root of the Pearson correlation between YðiÞ and YðjÞ, for every pair of genes. (D) We compute the Pearson correlation between each pair of rows in the M� to obtain the

Pearson correlation matrix P. (E) To construct the signed distance correlation matrix S, we multiply every distance correlation between the expression of two genes Di;j by the

sign of their Pearson correlation signðPi;jÞ. (F) Using COGENT (Bozhilova et al., 2020), we find the optimal threshold h� that produces the most self-consistent network ASðh�Þ
from S. (F0) Analogously, we find the optimal threshold h? to generate the network APðh?Þ from P; this step is not part of the pipeline and only necessary to be able to compare

Pearson and signed distance correlation networks.
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ASðhÞi;j ¼
1 if Si;j � h;
0 otherwise:

(
(7)

The matrix ASðhÞ encodes an unweighted undirected network in
which pairs of genes are connected if there is a strong and positive
signed distance correlation in their expression. Naturally, different
values of h result in networks with different properties. We want to
find the h that minimizes the number of edges between genes that
are not coexpressed, and maximizes the number of edges between
genes that are coexpressed. For this purpose, we use the R package
COGENT (Consistency of Gene Expression NeTworks) (Bozhilova
et al., 2020).

The main COGENT functions evaluate the internal consistency
of a method to generate networks from a specific dataset. First,
COGENT splits the gene expression data in two possibly overlap-
ping groups of samples, and then constructs a network with the
same node set from each group, G1 and G2. Then, COGENT meas-
ures the similarity between G1 and G2; the more similar the net-
works, the higher the internal consistency of the method. COGENT
helps to find a threshold h� that results in the most internally consist-
ent networks. The COGENT function getEdgeSimilarityCorrected
provides a score of edge similarity between G1 and G2 and adjusts it
so that results obtained for different values of h are comparable. We
use the semi-random density adjustment implemented in COGENT
and select the function parameter that allows to keep the isolated
nodes during the analysis.

The edge similarity between G1 and G2 is the Jaccard index of
the set of edges. This index is adjusted using the randomized net-
works G�1 and G�2 from a a configuration-type model from the de-
gree sequences d�1 and d�2. The degree sequences d�1 and d�2 are
random permutations of the degree sequences of G1 and G2. More
precisely, the similarity between G1 and G2 is:

simðG1;G2Þ ¼
jE1 \ E2j � b
jE1 [ E2j þ b

; (8)

where

b ¼
jE1j

P
ðu;vÞ2E1

d�2ðuÞd�2ðvÞP
u2V2

P
v6¼u
v2V2 d�2ðuÞd�2ðvÞ

þ
jE2j

P
ðu;vÞ2E2

d�1ðuÞd�1ðvÞP
u2V1

P
v6¼u
v2V1 d�1ðuÞd�1ðvÞ

;

and Ei, Vi are the set of edges and vertices for network Gi; i ¼ 1;2.
The value of b is the expected edge overlap between G1 and G2

if they were random networks. In general, b is higher for denser net-
works. The similarity simðG1;G2Þ in Eq. 8 is a value between �1/3
and 1; this value is high if G1 is more similar to G2 than to a ran-
domization of G2 and vice versa (Bozhilova et al., 2020).

In our analysis, we create two random subsets of columns from
M to obtain two m� b3n

4 c matrices M1 and M2, such that half of the
total number of samples n (i.e. the columns of M) are shared be-
tween both subsets, and 1/3 of their columns are different. Here,
b3n

4 c denotes the greatest integer less or equal to 3n
4 . We choose this

amount of overlap to evaluate how the relatively small change of
about 1/3 of the data affects the final result. The choice of amount
of overlap is user defined and may also depend on the research ques-
tion. When the interest lies in clustering of genes, then one may like
to choose an amount of overlap which leads to a moderately sparse
network. Our previous in silico experiments show that if the propor-
tion of samples from M shared between M1 and M2 is much smaller
than 50%, the similarity between the obtained networks is low, and
proportions much larger than 50% produce almost identical net-
works. We pre-process M1 and M2 and compute the signed distance
correlation matrices S1 and S2 as outlined in Section 2.3. We test dif-
ferent values of h, and for each of them, we obtain two unweighted
networks and their similarity with COGENT. We repeat this whole
process 25 times, every time with different subsets of columns of M.
Finally, we compute the similarity score sðhÞ, which is the average of
the similarity of the networks (in Eq. 8) over the 25 samples.

To favour signal over noise, we create a score that balances the
similarity of the networks in sðhÞ with the density of ASðhÞ:

ScoreðhÞ ¼ sðhÞ � densityðASðhÞÞ: (9)

We select the threshold h� that retrieves the highest ScoreðhÞ and
use this value to generate the unweighted gene coexpression network
ASðh�Þ from the signed distance correlation matrix S. We also calcu-
late in the same manner the optimal thresholds h? and h� to con-
struct the unweighted networks APðh?Þ and AIðh�Þ from the Pearson
correlation matrix P and the mutual information matrix I.

2.5 Network comparison
We compare gene coexpression networks obtained from threshold-
ing the signed distance correlation matrix S, the Pearson correlation
matrix P, and the MI matrix I. The density of a network may influ-
ence the amount of biological information it captures and hence we
cannot compare networks with different densities. Instead, we gen-
erate additional networks from each matrix which match the differ-
ent optimal edge densities. Letting the edge density of
ASðh�Þ; APðh?Þ, and AIðh�Þ be dS, dP, and dI, we compare the fol-
lowing nine networks:

• NSðdSÞ: Network from S with edge density dS (i.e. ASðh�Þ).
• NPðdPÞ: Network from P with edge density dP (i.e. APðh?Þ).
• NIðdIÞ: Network from I with edge density dI (i.e. AIðh�Þ).
• NPðdSÞ: Network from P with edge density dS.
• NIðdSÞ: Network from I with edge density dS.
• NSðdPÞ: Network from S with edge density dP.
• NIðdPÞ: Network from I with edge density dP.
• NSðdIÞ: Network from S with edge density dI.
• NPðdIÞ: Network from P with edge density dI.

To construct the last six networks, we simply find a threshold
manually that produces networks with density dS, dP, and dI. Since
for the R.leguminosarum dataset dP is roughly the same as dI (see
Section 3), we use the network NSðdPÞ as a proxy for the network
NSðdIÞ and omit networks NPðdIÞ and NIðdPÞ.

We first evaluate the internal consistency of each network with
COGENT. We also evaluate the biological information contained in
the networks using STRING, a database of known and predicted
protein–protein interactions (Szklarczyk et al., 2019). STRING col-
lects information from numerous sources, including experimental
data, computational predictions and textmining. The association
evidence in STRING is categorized into independent channels,
weighted, and integrated to produce a confidence score C for all
recorded protein interactions. Interactions with high C score are
more likely to be true than those with a low score.

We work with three different sets of confidence scores:

• C: Total scores provided by STRING.
• C

†
: Scores that only consider coexpression information (coex-

pression channel combined with coexpression transferred

channel).
• C‡: Scores that exclude coexpression information.

We provide details of how to retrieve C
†

and C‡ in
Supplementary Section 5.

For each network, we add the confidence score associated with
each pair of connected genes and divide by the number of edges. We
perform this operation independently for the three sets of confidence
scores to obtain three aggregate confidence scores per network.
These scores represent the amount of biological information that the
networks capture. Then we compare these scores to the expected
amount of biological information captured by chance. To do so, we
generate three sets of 30 random networks with edge densities dS,
dP, dI, and evaluate their biological content following the approach
detailed above. We compare the distribution of the aggregate C, C

†

and C‡ scores from the random networks with density dS with the
scores from networks NSðdSÞ; NPðdSÞ, and NIðdSÞ, the scores from
the random networks with density dP with NSðdPÞ and NPðdPÞ, and
the scores from the random networks with density dP with NSðdIÞ

Signed distance correlation to construct gene coexpression networks 1985



and NIðdIÞ. For the R.leguminosarum dataset, we omit the random
networks with density dI and compare NIðdIÞ with the network
with density dP due to the similarity in their densities. In
Supplementary Section 2, we also perform the biological evaluation
of the networks NRðdSÞ and NRðdPÞ with edge density dS and dP, re-
spectively, obtained from a Spearman correlation matrix R.

3 Results

Here, we present our analysis of the R.leguminosarum dataset; the
results for the yeast and human data are in Supplementary Sections
3 and 4.

3.1 Correlation matrices
The correlation matrices P (Pearson), D (distance), and S (signed dis-
tance) are all symmetric with m¼7, 077 rows and columns. As we
show in Table 1 and Figure 2, the distribution of the absolute values
in P are different to those in D. In particular, the distribution of the
values of P and S are different. Supplementary Figures S2 and S5
and Tables S4 and S7 contain the same analysis for the yeast and
human data.

3.2 Gene coexpression networks
We first estimate, using COGENT (Bozhilova et al., 2020), the opti-
mal thresholds h�; h?, and h� to construct the networks
NSðdSÞ; NPðdPÞ, and NIðdIÞ from the matrices S, P, and I, respect-
ively. To analyse and compare the networks, it is perhaps more in-
tuitive to compare the networks using their edge density than with
the threshold used to produce them. For this, we construct networks
for a range of values of h. For each density (and the h that produced

it), we evaluate its consistency score ScoreðhÞ using Eq. 9. This score
is related to the self-consistency of the network. Figure 3 shows the
value of ScoreðhÞ as a function of the density of the networks.

The highest score from the signed distance correlation networks
NSðdSÞ is Scoreðh�Þ ¼ 0:456, where h� ¼ 0:62, and density
dS ¼ 1:25%. The highest score from the Pearson correlation net-
works NPðdPÞ is Scoreðh?Þ ¼ 0:426, where h? ¼ 0:58, and density
dP ¼ 1:63%. The highest score from the mutual information net-
works NIðdIÞ is Scoreðh�Þ ¼ 0:140, where h� ¼ 0:65, and density
dI ¼ 1:65%. We also create the networks NPðdSÞ from P and NIðdIÞ
from I to match the edge density of NSðdSÞ, and the network NSðdPÞ
from S to match the edge density of NPðdPÞ and NIðdIÞ. Table 2
contains a statistical summary of the networks. The discrepancy in
the number of edges in NSðdSÞ and NIðdSÞ is due to several pairs of
genes having the same mutual information value. For both edge den-
sities, the networks retrieved using our signed distance correlation
matrix S (NSðdSÞ and NSðdPÞ) have a smaller, denser, and with
higher global clustering coefficient largest connected component
(LCC) than the networks obtained using Pearson correlation
(NPðdSÞ and NPðdPÞ). The LCC of the networks obtained using mu-
tual information (NIðdSÞ and NIðdIÞ) are smaller and denser than
those from density-matching networks but they show the lowest glo-
bal clustering coefficient. See Supplementary Tables S5 and S8 for
the gene coexpression networks for the yeast and human data.

3.3 Network evaluation
We perform two evaluations of the networks from signed distance
correlation, Pearson correlation, and mutual information: self-
consistency and biological content. We are interested in the self-
consistency of the networks because it reflects their ability to cope
with changes in the data used to generate them. If our network is
more self-consistent, then we can have greater confidence in the bio-
logical conclusions we draw from it, even if the data is imperfect or
noisy. The Jaccard similarity in Eq. 8 measures the similarity be-
tween networks generated from overlapping, non-identical subsets
of a dataset using the same network construction method. The
higher the similarity, the higher the internal consistency of the
method and the more self-consistent the network obtained from
applying it is. We measure the self-consistency ScoreðhÞ, obtained
from computing the average Jaccard similarity of networks from dif-
ferent randomized subsets of data and subtracting the density of
ASðhÞ (APðhÞ and AIðhÞ for Pearson correlation and mutual informa-
tion, respectively). As we show in Figure 3, the self-consistency
scores of the networks from signed distance correlations are consist-
ently higher than in the Pearson and mutual information networks
over an interval of densities that includes the maxima for all three
methods. The scores obtained for the mutual information networks
are the lowest. From this analysis, we conclude that signed distance
correlation networks are more self-consistent than networks based
on Pearson correlation or mutual information. Even the optimal
threshold for the Pearson matrix P produces a less self-consistent
network NPðdPÞ than a signed distance correlation network with a
matching edge density (NSðdPÞ); the same applies for mutual infor-
mation. See Supplementary Figures S3 and S6 for the same analysis
on the yeast and human data, with similar results.

To evaluate the biological content of a network, we add the
STRING scores of the edges using: all the information in STRING
(C), only coexpression information (C

†
), and everything except

coexpression information (C‡), and then divide by the number of
edges in the network, as described in Section 2.5. Table 3 and
Figure 4 (and Supplementary Fig. S1) show the results for all the net-
works, and the mean scores from random networks. In every case,
the signed distance correlation networks contain more biological in-
formation than networks from Pearson correlation, those obtained
using mutual information, and the randomized networks. See
Supplementary Tables S6 and S9 and Figures S4 and S7 for a similar
analysis on the human and yeast data, with similar results. The high-
est difference of the networks with the randomized networks occurs
when we only use coexpression information. The C

†
scores of

NSðdSÞ; NPðdSÞ, and NIðdSÞ are 10, 8.5, and 8.7 times higher than
the expected ones for random networks. This is not surprising

Table 1. Statistical summary of the correlation matrices from the

R.leguminosarum data

Correlation Min 1st q Median 3rd q Max Mean

D 0.02 0.22 0.28 0.36 0.99 0.30

jPj 0.00 0.08 0.17 0.29 1.00 0.20

P �0.86 �0.17 �0.01 0.17 1.00 0.00

S �0.92 �0.27 �0.14 0.28 0.99 0.00

A

B

Fig. 2. Distribution of the entries of the correlation matrices from the

R.leguminosarum dataset. (A) Distribution of distance correlations in D (blue), and

the absolute of the Pearson correlations jPj (red). (B) Distribution of signed distance

correlation S (blue), and Pearson correlation P (red).
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because we have built the networks using gene expression informa-
tion. However, the coexpression data used to construct these net-
works is different to the data in STRING. The scores excluding the
coexpression information C‡ are 3.7, 3.2, and 3.1 times higher than
in the random networks. This is remarkable because this assessment
is performed on data that is completely different than the data used
to construct the networks. Hence, by applying our pipeline to gene
expression data, we can identify new types of relationships between
proteins (and genes). These results demonstrate the power of gene

coexpression networks to predict functional interactions, especially
when constructed using signed distance correlation.

The analysis for networks with dP and dI tells a similar story; the
scores obtained by the signed distance correlation network NSðdPÞ are
higher than the scores from the Pearson correlation network NPðdPÞ
and the mutual information network NSðdIÞ, despite dP and dI being
the optimal edge density for Pearson correlation and mutual informa-
tion. We highlight the fact that in absolute terms (i.e. not dividing the
scores by the number of edges in the network) when we use only

Fig. 3. Self-consistency scores of R.leguminosarum networks with edge densities between 0 and 0.3. The blue line with circles shows the scores of networks obtained using

signed distance correlations; the red line with triangles shows the score of networks using Pearson correlations; the green line shows the scores of the networks obtained using

MI. The dashed vertical lines indicate the density of the most self-consistent network for each type of correlation.

Table 2. Statistical summary of R.leguminosarum coexpression networks. LCC denotes largest connected component

Network Number of edges Number of vertices in LCC Edge density LCC�100 Global clustering coeff. LCC

NSðdSÞ 313 348 6431 1.52 0.570

NSðdPÞ 406 977 6688 1.82 0.570

NPðdSÞ 313 348 6697 1.40 0.544

NPðdPÞ 406 977 6880 1.72 0.543

NIðdSÞ 317 014 5993 1.77 0.279

NIðdIÞ 414 140 6084 2.24 0.284

Table 3. Evaluation of the biological content of the networks with STRING

Network All of STRING information (C) Only coexpression information (C
†
) All information except coexpres-

sion (C‡)

NSðdSÞ 29.61 9.02 26.55

NPðdSÞ 25.23 7.63 22.72

NIðdSÞ 24.68 7.81 22.01

RE dS 7.49 6 0.08 0.90 6 0.02 7.09 6 0.08

NSðdPÞ 26.79 7.64 24.12

NPðdPÞ 23.32 6.61 21.08

NIðdIÞ 22.39 6.60 20.07

RE dP 7.54 6 0.08 0.91 6 0.03 7.13 6 0.08

Note: RE indicates the expected (mean) result based on random networks with the indicated edge density and its SD. The values in bold correspond to the high-

est scores for each set of networks and confidence scores.
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coexpression information (C
†
), the score of NSðdSÞ is higher than the

score of NPðdPÞ, even though the former has fewer edges than the lat-
ter, and therefore its score is the result of adding fewer terms.

For the three datasets we analyse, signed distance correlation
networks perform better than Pearson correlation and mutual infor-
mation networks with matching densities, according to both evalua-
tions and for all tested edge densities.

4 Discussion

In this work, we have introduced signed distance correlation, and
presented a method to construct networks in a self-consistent way
exclusively from gene expression data. This method has three main
steps: data pre-processing, computing correlations, and threshold-
ing. These steps combine well-established methods such as quantile
normalization, and the use of COGENT (Bozhilova et al., 2020) to
identify the optimal threshold.

Distance correlation is an intuitive approach to study gene ex-
pression because it relies on the differences in the expression be-
tween samples. By incorporating signs into distance correlation, we
can also differentiate between positive and negative relationships,
and maintain the advantages of distance correlation.

We apply our method to data from R.leguminosarum, yeast, and
human. In all cases, our method produces networks that are more
self-consistent than using Pearson correlation and mutual informa-
tion. The reason why self-consistency is so important is that it
ensures that our results are robust to changes or noise in the data.
Therefore, when we cannot assess the biological significance of a
network directly, we can use its self-consistency as an indication of
biological significance. Networks from signed distance correlation
also capture more biological information than networks from
Pearson correlation and mutual information, as shown by our evalu-
ation using STRING. In the case of R.leguminosarum, the signed
distance correlation network (using an optimal threshold h� found
with COGENT) captures almost four times more biological infor-
mation than random networks. The amount of captured biological
information is less if we use Pearson or Spearman correlations
(Supplementary Fig. S1) or mutual information to build the
networks.

These results give a weak indication that self-consistent networks
derived from biological data might capture more biological informa-
tion than those with less stability. Therefore, if we cannot assess the
biological significance of a network directly, measuring its self-
consistency may serve as a proxy. The use of COGENT to select the
threshold values requires a sufficiently strong signal in the associ-
ation between the expression values of different genes. For example,
using Euclidean distance, scaled by the square root of the sample
size, did not yield sufficient signal, so that networks created by the
subsampling method had no more overlap than expected at random.

These networks also did not capture much biological information

(data not shown).
We applied our method to construct, to our knowledge, the first

gene coexpression network for R.leguminosarum. This network

promises to reveal rich biological information that will illuminate
our understanding of plant–bacteria interactions and nitrogen fix-

ation, and it is therefore the starting point for further investigations
of the biological mechanisms of this organism. In particular, we
plan to identify groups of genes in R.leguminosarum which are high-

ly connected in the network and associate them with specific bio-
logical processes. To do so, we will make use of community

detection techniques and new experimental data. For the human
liver dataset one could explore predicting disease-related biological
information; see for example Song et al. (2019); Chen et al. (2018);

Li et al. (2019).
Finally, we have showcased our method on gene expression data-

sets from different organisms obtained using different techniques:
microarrays (R.leguminosarum), RNA-Seq (yeast), and single-cell

RNA-Seq (human). However, the methods that we have developed
are general, and can also be used to construct networks in a vast
range of domains, such as, for example, economics (Wang et al.,
2018), neuroscience (Bernhardt et al., 2011), climatology (Donges
et al., 2009), or any discipline where networks can be constructed
from correlation data.
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Fig. 4. Scores obtained for the R.leguminosarum gene coexpression networks using STRING. All panels show the score for the different networks in the y axis, and the network

density on the x axis. The scores are the result of adding up the confidence scores with all evidence (C), only coexpression evidence (C
†
) and everything excluding coexpression

(C‡) from STRING associated with the edges in the networks, each computed using different of information. The black box plots correspond to the scores obtained by 30 ran-

dom networks. Blue circles, red triangles, and green diamonds represent signed distance correlation, Pearson correlation, and mutual information respectively.
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