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Mitochondria interaction networks show altered topological

patterns in Parkinson’s disease
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Mitochondrial dysfunction is linked to pathogenesis of Parkinson’s disease (PD). However, individual mitochondria-based analyses
do not show a uniform feature in PD patients. Since mitochondria interact with each other, we hypothesize that PD-related features
might exist in topological patterns of mitochondria interaction networks (MINs). Here we show that MINs formed nonclassical scale-
free supernetworks in colonic ganglia both from healthy controls and PD patients; however, altered network topological patterns
were observed in PD patients. These patterns were highly correlated with PD clinical scores and a machine-learning approach
based on the MIN features alone accurately distinguished between patients and controls with an area-under-curve value of 0.989.
The MINs of midbrain dopaminergic neurons (mDANs) derived from several genetic PD patients also displayed specific changes.
CRISPR/CAS9-based genome correction of alpha-synuclein point mutations reversed the changes in MINs of mDANs. Our organelle-
interaction network analysis opens another critical dimension for a deeper characterization of various complex diseases with

mitochondrial dysregulation.
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INTRODUCTION

Network-biology approaches are successfully employed for a
better understanding of complex diseases that are caused
through interactions between genetic and/or environmental
factors'~®. Small- and macromolecules such as genes, proteins,
and/or metabolites interact with each other and form networks
with certain common underlying organization principles, in
sharp contrast to random networks. All these molecular net-
works seem to obey to a general scale-free power-law
distribution principle’, although the definition of power-law
distribution might require fine adjustment®. Mitochondria, the
key organelles regulating cellular metabolism and generating
cellular energy, constantly interact with each other, i.e., via the
fusion and fission processes. Therefore, they form perpetually
changing networks. Nevertheless, it remains unclear whether
such organelle interactions form random networks, or in contrast
well-organized structures obeying universal principles. Answer-
ing this question could open basic new research avenues in
neurodegeneration as mitochondrial dysfunction is connected
to several neurodegenerative diseases, such as Huntington’s
disease, Alzheimer's disease, and Parkinson’s disease (PD)°™'2.
Therefore, we here took advantage of the availability of various
PD-derived tissues and analyzed in all of them whether a
functional impairment of mitochondria is associated with any
specific topological patterns or features of large-scale mitochon-
dria interaction networks (MINs).

RESULTS

To obtain more precise information on mitochondria interactions,
we used high-resolution 3D mitochondrial immunofluorescence
images in the ganglia from the ascending (left) and descending
(right) colon collected from idiopathic PD patients and healthy
controls'3. We extracted network adjacency matrices of mitochon-
dria interactions from all ganglia neurons in such a way that
mitochondria branch points were represented as nodes, with an
undirected link being present if an interaction is observed
between a pair of nodes at the imaging moment. We performed
various types of network analyses (up to 19 different network
structure metrics, refer to “Methods”) in this work. In the second
step, the same network analysis was applied to midbrain
dopaminergic neurons (mDANs) differentiated from induced
pluripotent stem cells (iPSCs) derived from skin fibroblasts of
genetic PD patients and the corresponding healthy controls. We
analyzed the MINs in the samples from patients with heterozygous
point mutations, namely in the SNCA gene (PARK1) encoding
alpha-synuclein'®, in the PD-associated gene RHOTT encoding a
mitochondrial outer membrane GTPase'>'® (MIRO1), and in the
VPS35 gene (PARK17) encoding the vacuolar protein sorting-
associated protein 35 (VPS35)'77'°. We compared the samples of
patients with those from age- and gender-matched healthy
controls, in addition to the mutation-corrected isogenic controls
from the patient harboring the heterozygous SNCA mutation®®
(for patient information, refer to “Methods” and Supplementary
Table 1). Furthermore, considering the existence of genetic
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Fig. 1 Topological properties of mitochondria interaction networks (MINs) from enteric ganglia of PD. a Probability distribution of the
normalized degree of nodes within MINs of PD or healthy controls or indicated subgroups of samples. The displayed degree was normalized
by the number of nodes in the given network component. b Summary of the network components of various sets of patients’ materials.
A dashed line in the element indicates no entry. ¢, d Cumulative distribution of the component/subnetwork size of the MINs among all
samples of healthy controls and PD patients (c), and among subsets of samples taken from the left or right side (d). e, f P value of the test (see
“Methods”) evaluating the null hypothesis that the exponential fits of the degree distribution for the given two groups share the same power-
law slope k (e), or evaluating through a two-sided K-S (Kolmogorov-Smirnov) test the null hypothesis that the distribution of each topological
metric of the global MINs is identical for the given two groups (f). In e, only the lower triangular matrix of all the pairwise comparisons is
displayed for simplification. Asterisk indicates a significant P value < =0.05 after Sidak correction (the displayed P values are before correction).
PD patients with Parkinson’s disease, Control healthy controls, Assort. assortativity, Transit. transitivity, Inf.Cont. information content, ASPL

average shortest pathway length, S-W small worldness.

background heterogeneity between often-used groups of cases
and controls, we also compared one early-onset PD patient with
another form of SNCA genetic modification, i.e., SNCA triplication®’
and the first-degree consanguineous healthy control. For the
mMDANs derived from VPS35-mutated samples, we also analyzed
under different physiologically and/or pathologically relevant
culture conditions (i.e, with or without antioxidants). In total,
here we analyzed MINs from 15 PD patients versus (vs.) 10 healthy
controls (Supplementary Table 1).

MINs in enteric ganglia neurons form nonclassical scale-free
supernetworks and are composed of larger subnetworks in PD
As we hypothesized that the universal scale-free principle®> would
also apply to mitochondria MIN, we first analyzed whether
mitochondria form such a network within ganglia. We found that
in the MINs, the probability p(k) that a node interacts with k other
nodes did not follow a power law’ (i.e., p(k)~k®) (Fig. 1a). This result
indicates that MINs did not self-organize into standard scale-free
networks. The inability of MINs to form scale-free networks was
independent from the subject groups (PD patients or healthy
controls) and from the sample origins (left- or right-side biopsies)
(Fig. 1a). Within the ganglia, the mitochondria formed various sizes
of connected subnetworks/components (>16 thousands of sub-
networks per group) with different numbers of mitochondria
branch points (nodes) and interaction structures (Fig. 1b). We
therefore checked whether the size of these subnetworks, which
are completely disconnected from one another and thus represent
independent mitochondrial network structures, is organized
according to a scale-free principle. Interestingly, the overall
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mitochondria interactions formed a nonclassic modular scale-
free network, where the probability P(s) that one subnetwork with
at least s nodes exists indeed decays as a power law, following P(s)
~k* (Fig. 1¢, d). Unexpectedly, however, the MINs from PD patients
were more frequently composed of larger subnetworks than the
MINs from healthy controls (P value=10""7, see “Methods,”
Fig. 1c—e). This difference between healthy controls and PD
patients was more evident in the MINs from ganglia derived from
the right/ascending colon biopsies than that from the left/
descending colon (P value =10"%, Fig. 1d, e), possibly due to
the assumed rostrocaudal disease progression within the gastro-
intestinal tract.

Alteration in network topological features of MINs from enteric
ganglia neurons of PD

To systematically explore the topological properties of the MINs,
we calculated various other topological/graphic metrics®*, such as
network max degree, diameter, efficiency, average shortest path
length (ASPL), modularity, assortativity, transitivity, information
content, and small worldness (for the definition of different
network property metrics, refer to “Methods”)?>. We first focused
on three network metrics with obvious biological meaning and
implications. Those parameters, i.e., network diameter, efficiency,
and ASPL represent one group of closely related metrics, which all
essentially signify how efficiently the energy and information can
be transferred and distributed among different nodes/mitochon-
dria within enteric ganglia neurons. The larger the ASPL within a
given MIN subnetwork, the less efficiently the MIN subnetwork
transfers the energy from one node to another one. Among
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Fig.2 PD MINs show significantly altered motifs and network features and can be used for accurate sample classification. a Distribution
of Z scores of different network metrics. Left, histograms representing the probability distribution of the corresponding Z- score from the
global MINs. The right graphs depicting the Z scores for the given size of the MIN components/subnetworks. The green dashed line and the
green arrow above the plots highlight the large components. b, ¢ Example of partially- (b) or fully (c) connected 3-node MIN motifs. Left,
representative mitochondrial immunofluorescence images; middle, the diagram of the undirected network motif; right, the corresponding
adjacency matrix (the pixel values in the link were simplified to 1 if there is a link and otherwise 0). Red circles in the left panel indicate where
the nodes are positioned. d, e Distribution of the two types of 3-node (d) or 4-node (e) motifs from PD patients and healthy controls. Left, the
diagram of the corresponding motif; Middle, the histograms representing the probability distribution of the corresponding Z- scores from
healthy controls (black bar) or PD patients (red bar); the right graphs depicting the Z scores for various sizes of the network components. Since
the component with 29 nodes only appeared once in the healthy controls, we did not include very large components (size > =29) in the
analysis. Furthermore, for all the control subjects and PD patients, only 9 and 46 components with the size > =29 existed in the MINs,
representing only 0.0471% and 0.115% of the total number of components, respectively. f Correlation analysis between individual patient
UPDRS clinical score and network efficiency, diameter, average shortest path length (ASPL), and paw-like 4-node motif (the first one in e)
within the network components with the size of 28. The parameter r is the Pearson correlation coefficient. P value is the probability that the
correlation coefficient is in fact zero. Of note, not all the patients have the corresponding component (size of 28). g Accurate classification of
PD patients from healthy controls using the MIN topological features alone. Each graph depicts multiple ROC curves and the corresponding
area under ROC curve (AUQ). Left, central, and right panels respectively present classification results using samples from left- or right-side or
both-side ganglia, from components with different sizes, and from various indicated features.

various analyzed metrics, we only observed marginal differences
for transitivity (demonstrating density of triangles), information
content (assessing the presence of regular mesoscale structures)?S,
and small worldness (S-W) between the global MINs from PD
patients compared to healthy controls (Fig. 1f and Supplementary
Fig. 1). As no topological difference was substantial in the
mesoscale properties, we searched for network feature differences
at a microscale level. Interestingly, for the components with the
number of nodes equal to or larger than (=) 24, we noticed that
the average Z scores of the efficiency were much lower in PD than
in healthy controls, whereas those of ASPL were much larger in PD
(Fig. 2a, right panel). In line with this notion, the normalized
network diameter for the larger components was much larger in
PD than in healthy controls (Fig. 2a, right panel). It is worthy
noting that the distribution peak of network diameter, efficiency,
and ASPL as shown in the histograms, no matter within the MINs
of controls or PD patients, was very narrow (Fig. 2a, left panel),
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indicating the homogeneity of those features among different
subjects. To partially circumvent the issue of the imbalanced
numbers between the controls and the PD patients, we iteratively
removed one subject in each group. Interestingly, the resultant
variation of those metrics in PD and controls was very low, and the
difference in those topological indexes between PD and controls
was clearly maintained (Supplementary Fig. 2a). Furthermore, we
randomly selected four out of the eleven PD patients and
repeated this process 100 times, which made the size of the PD
patient and the control group comparable. Notably, the resulting
variation in those tested network features was still very small,
further indicating the homogeneity of those indexes in the MINs.
Therefore, the imbalanced number of subjects recruited in the
comparison groups did not affect our conclusion in this study
(Supplementary Fig. 2b). These results may explain why PD
patients have dysfunctional ganglia neurons?. The observed
lower network efficiency and accordingly increased ASPL in MINs
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might have important implications, i.e., energy and information
within enteric ganglia neurons are possibly produced, shared, and
distributed less competently in the ganglia neurons of PD patients
relative to healthy controls. On the other hand, similar to that of
the power grid?®, these network topological features of the MINs
may also serve as a protective compensatory mechanism in PD
patients. More investigation is required to distinguish between
primary pathogenic and secondary compensatory mechanisms.

Network motifs are recurrent conserved building blocks
composed of a small number of nodes that are often associated
with certain functions®®. Without consideration of the network
component size, there was no clear difference in the Z scores of
various types of analyzed motifs between PD patients and healthy
controls (for Z score, see “Methods,” Fig. 2b-e, Supplementary Fig.
3). Notably, for the components with the number of nodes >24,
we noticed that the partially connected V-shape 3-node motifs
existed less frequently in PD patients than in healthy controls
(Fig. 2d). This observation seemed to be generally applicable, as it
also held true for the partially connected paw-like 4-node motifs
(Fig. 2e). We also checked other types of MIN motifs and found
that the fully connected triangle 3-node motifs possessed a much
higher Z score in PD than in healthy controls for large components
(size > =24, Fig. 2d). This observation was not evident for more-
connected 4-node motifs possibly because of the decreased
overall frequency of such complex motifs in MINs and randomized
networks (Supplementary Fig. 3). In the mitochondria-interacting
“social” networks, “dysfunctional” mitochondria of PD patients
relative to “normal” mitochondria of controls might need to fully
interact with each other in order to guarantee the necessary
cellular energy supply. Higher frequency of this type of motifs may
also partially compensate for the substantial right-side ganglionic
shrinking in PD patients'>. It is noteworthy that the fully
connected triangle 3-node motifs, as those analyzed in the index
of transitivity, are the most recurring motifs in many different
types of biological and social networks*®?', reflecting the
relevance and importance of such types of motifs in establishing
network efficiency and maintaining network functions.

Network topological features are correlated with PD clinical scores

With these promising results in terms of difference in topological
patterns of the MINs from macro- to meso- to microscale levels in
mind, we explored whether some of these network features are
correlated with the most-used clinical scores, i.e., Unified
Parkinson’s Disease Rating Scale (UPDRS)*2. If correlated, those
features could be used as potential state markers of the early PD
phase, with the potential for application in trials with PD disease-
modifying treatments. Notably, network efficiency is significantly
negatively correlated with the UPDRS scores (r = —0.857, P value
=0.014) for a large size of network components (size of 28; this
size exists among different individuals), indicating that a lower
network efficiency reflects more severe PD motor symptoms in
individual patients (Fig. 2f). Concordantly, as the related but
approximately inverse parameters of network efficiency, ASPL and
diameter are positively correlated with the UPDRS scores for the
corresponding components (size of 28) (Fig. 2f). The Z scores of
the paw-like 4-node network motifs were also negatively
correlated with the UPDRS scores, although to a lesser extent
(Fig. 2f).

Network topological features of MINs alone can accurately
discriminate PD patients from controls

Having found such a high correlation between network features
and well-accepted PD clinical scores, we applied machine-learning
approaches to assess whether we can use a combinatory panel of
those network features as more powerful biomarkers. After testing
and comparing several algorithms in both our real and randomized
datasets with reshuffled sample labels (Supplementary Fig. 4), we
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selected a high-performance machine-learning approach (i.e.,
multilayer perception (MLP)) with leave-one-out cross-validation
to discriminate the samples of PD patients from healthy controls
(Fig. 2g). When only choosing features from right- or left-side
ganglia, we found that the area under the ROC curve (AUC), the
essential performance index of biomarkers, was as high as 98.6%
and 98.4%, respectively (Fig. 2g, left panel). When we mixed the
features from both right- and left-side samples, the AUC was still
maintained at 87.7% (Fig. 2g, left panel). The classification results
using various sizes of components of MINs showed that PD-specific
features were mainly encoded in large subnetworks (AUC = 98.9%
for size > = 20, Fig. 2g, middle). Integration of different types of key
topological features is necessary to reach accurate classification
(Fig. 2g). Together, these results demonstrate that the features in
the MINs represent very valuable information and can be used as
potent novel biomarkers for the PD diagnosis.

MINs within dopaminergic neurons derived from genetic PD
patients also show altered network features

To further check whether our observation in enteric neurons of
idiopathic PD patients holds true in mDANs derived from genetic
PD patients, we generated human iPSC-differentiated mDANs and
analyzed their MINs (Fig. 3a). Again, the MINs in iPSC-differentiated
mDANSs, no matter being derived from which genetic PD patients
or age- and gender-matched healthy controls, did not self-
organize into standard scale-free networks similar as observed in
enteric ganglia neurons (Fig. 3b). In line with the observation in
enteric ganglia, the MINs of iPSC-differentiated mDANs derived
from a PD patient with a point mutation in the SNCA gene that
leads to an A30P amino acid exchange in the encoded protein
also formed a nonclassic scale-free supernetwork (Fig. 3c).
Consistent with the effect on subnetwork sizes of the MINs from
the idiopathic PD patients, the SNCA-mutated patient showed
much larger subnetworks than those from the healthy controls (50
or 60 different measurements or clones per group, P value =
3.81x 107 '3, Fig. 3¢). This also holds true for that from one RHOT1-
mutated patient relative to the age- and gender-matched healthy
control (P value =7.06 x 10~ *%). However, the correction of the
point mutation in SNCA using CRISPR/CAS9-based genome editing
did not dramatically, although still significantly (P value = 1.65 x
1073), enhance the size of the subnetworks (Fig. 3c). In contrast to
the observations of other mutations, the VPS35-mutated patient
showed substantially smaller subnetworks than the matched
healthy controls (P value =2.15 x 103, Fig. 3c), which is in line
with the reported observation that VPS35 mutations cause the
fragmentation of individual mitochondria'®. To further test
whether the effect of the VPS35 mutations is regulated by
oxidative stress, we exposed the cells to oxidative stress during
the iPSC-differentiation process. Following oxidative stress, the
difference disappeared in subnetwork size of MINs within mDANs
derived from the VPS35-mutated patient vs. the matched control,
indicative of the direct involvement of oxidative stress in VPS35-
mediated feature changes of the MINs. Alike to what was seen in
the MINs of VPS35-mutated samples cultured with antioxidants, a
decrease was observed in subnetwork size of the MINs of mDANs
derived from the patient with SNCA triplication vs. the gender-
matched unaffected immediate family member (Fig. 3c). The
distinction observed between the VPS35-mutated samples and the
other tested samples with point mutations might be simply
attributable to the fact that the D620N mutation in VPS35 disrupts
both the distribution of endosomes®* and mitochondrial func-
tions'®, while the other PD genetic point mutations mainly affect
the latter. Although both forms of SNCA genetic variants, e.g., the
point mutations in SNCA and SNCA triplication, show bioenergetic
dysfunction in derived mDANs>*, their effects on MIN subnetwork
size were opposite (Fig. 3c). Therefore, the effect on subnetwork
size of MINs of mDANs might be dependent on several aspects,
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such as which familial PD gene is mutated, how the genetic
variants are modified, and whether the given mutation directly
contributes to mitochondrial dysfunction and is regulated by
oxidative stress.

To obtain a more comprehensive understanding of the network
features of MINs, we investigated and compared other network
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topological indexes of the MINs from mDANs derived from genetic
PD patients. Keeping in mind the observations in colonic ganglia,
we particularly checked the topological metrics related to network
efficiency. Notably, the MINs from the three rare genetic PD
patients all presented smaller diameters for the subnetworks that
are composed of nodes larger than a certain number (>34, 16, 27,
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Fig. 3 MINs within iPSC-differentiated dopaminergic neurons of certain genetic PD patients show similar alterations as those in ganglia
of sporadic PD patients. a Schematic on how to perform network analysis from dopaminergic neurons differentiated and derived from skin
fibroblasts of human subjects. Details are provided in “Methods” Here, we only described briefly. iPSCs were first reprogrammed from skin
fibroblasts. Using small molecules, we then differentiated iPSCs to small-molecule neural precursor cells (smNPCs). Finally, using trophic
factors, smNPCs were differentiated to midbrain dopaminergic neurons (mDANs). We then performed cellular staining to identify
mitochondria within each mDAN and identified mitochondria-mitochondria interactions using confocal 3D mitochondrial immunofluores-
cence images. After extracting network adjacency matrices, we then performed large-scale network analysis on the MINs. b, Probability
distribution of the normalized degree of nodes within MINs of iPSC-differentiated mDANs derived from skin fibroblasts of different genetic PD
patients or the corresponding age- and gender-matched healthy controls (refer to “Methods”) or SNCA-mutation-corrected lines using the
CRISPR/CAS9 approach. Of note, mDANSs from the VPS35-mutated patient and the matched controls were differentiated with or without (w/o)
antioxidants (as indicated), while the others were all differentiated in the presence of antioxidants. ¢ Cumulative distribution of the
component/subnetwork size of the MINs among all the samples of different patients or controls or patients’ isogenic controls. Displayed
P value of the test (see “Methods”) evaluating the null hypothesis that the exponential fits of the degree distribution for the indicated two

groups of the given plot share the same power-law slope k.

34, and 14 for SNCA mutation, SNCA triplication, RHOTT mutation,
and VPS35 mutation with or without oxidative stress, respectively,
Fig. 4a), whereas the efficiency was always higher than that of age-
and gender-matched healthy controls (Fig. 4b). Interestingly,
although SNCA triplication also causes bioenergetic dysfunction in
mDNAs3*, compared with influence of the SNCA A30P-point
mutation on network diameter and efficiency, SNCA triplication
showed still similar, but less profound effects on those network
metrics (Fig. 4a, b). Correction in the SNCA mutation reversed both
changes in network diameters and efficiency caused by the SNCA-
point mutation (Fig. 4a, b). As determined by the definition of
ASPL, the change of the ASPL in genetic PD patients is correlated
with that of network diameter (Supplementary Fig. 5a). Of note,
again the effect of the VPS35 mutation on these MIN indexes,
when the differentiation was performed with antioxidants, was
smaller compared with that of the other analyzed genetic factors
in this work. As oxidative stress worsens the iPSC-derived mDAN
phenotypes of several genetic factors that contribute to the
pathogenesis of PD**7%, the influence of the VPS35 mutation
under oxidative stress on particular network indexes became more
evident (Fig. 4a, b and Supplementary Fig. 5a). In short, closely
associated network indexes analyzed here, such as diameter,
efficiency, and ASPL, showed consistent alteration in all the
selected genetic PD patients. The results of the three network
parameters demonstrated that the MINs within mDANs derived
from several genetic PD patients all have enhanced efficiency in
terms of energy transfer among different mitochondria within
those larger subnetworks. Most likely, these consistent alterations
in particular network features represent a conservative compen-
satory mechanism that tends to protect mDANs of tested genetic
PD patients from death.

We further analyzed other network topological indexes of MINs
in mDANs that were also calculated in enteric ganglia neurons of
idiopathic PD patients. Interestingly, correction in the SNCA
mutation significantly affected network transitivity and small
worldness (Fig. 4c, for transitivity and small worldness, refer to
“Methods” for the definition). The MINs of mDANs derived from
both VPS35-mutated materials under oxidative stress and RHOT1-
mutated patient samples showed significantly changed assorta-
tivity, a network metric representing to which extent highly
connected nodes in a network tend to link with each other®’
(Fig. 4c, refer to “Methods”). Furthermore, the MINs of mDANs
derived from VPS35-mutated materials under oxidative stress,
SNCA-point-mutated, and triplication materials all showed a
significant change in the MIN network efficiency even on a global
scale (Fig. 4c) in addition to those visible only in larger
subnetworks (Fig. 4b). For the mDANs derived from the VPS35-
mutated patient materials cultured with antioxidants, only
modularity of the global MINs that measures how much the
network is organized into communities showed a significant
difference (Fig. 4c). Thus, alike to the effect on MIN subnetwork
size, the influence on particular network properties is also
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dependent on specific genetic mutations and is affected by
exogenous oxidative stress.

We further examined the 3- and 4-node motifs of MINs from
those genetic PD patients. Interestingly, the triangle motifs, the
most abundant network motifs in different types of networks®*?",
within the mDANs differentiated with antioxidants, also displayed
similar changes for larger MIN subnetworks of all patients carrying
SNCA- or RHOTI- or VPS35-point mutations or SNCA triplication
(Fig. 4d). Since both cellular MINs and power/electricity grid
networks®' might share similar functions in terms of “energy
transferring,” we reasoned that the frequency reduction in the
triangle motifs of the larger MIN subnetworks from those genetic
PD patients might enhance the risk of energy-supply failure and
eventually harm the functions and survival of those neurons. The
correction in the SNCA-point mutation again reversed the
frequency change of triangle motifs caused by the SNCA mutation
(Fig. 4d). It is noteworthy that under oxidative stress the MINs
derived from the VPS35-mutated patient showed an inverted
change as that of MDANs derived from the PD patients with point
mutations or copy number variants in any of the three analyzed
key PD genes, when being differentiated in the presence of
antioxidants. This oxidative-stress induced effect of the VPS35
mutation on the frequency of triangle motifs of iPSC-differentiated
mDANs was in fact similar to that observed in the ex vivo analysis
of colonic ganglia neurons of idiopathic PD patients (Fig. 2d).
These results are very much in line with the current well-
established paradigm that oxidative stress plays a critical role in
dopaminergic neurotoxicity®® (Fig. 4d). The frequency change of
the V-shape 3-node motifs was similar, although to a lesser
degree, as that of triangle motifs (Supplementary Fig. 5b). The
frequency change of both paw-like and U-shape 4-node motifs in
those genetic PD patients was still similar to that of the triangle 3-
node motifs in larger MIN subnetworks (Supplementary Fig. 5¢, d).
Nevertheless, the altered degree between the genetic PD patients
and the controls in the frequency of the analyzed 4-node motifs
was smaller compared with that of the triangle motifs. In
summary, the analyzed network motifs also showed consistent
changes for five out of the six comparison groups/conditions
among genetic PD (Fig. 5). The only exception existed in the MIN
network motif features caused by the VPS35 mutations that were
imposed by oxidative stress (Fig. 5). Taken together, although not
always identical in changes for a wide range of examined indexes,
the image datasets from both idiopathic and genetic PD patients
revealed novel critical changes in the network topological
structure of MINs that are associated with PD.

DISCUSSION

Early attention has already been paid to changes in mitochondria
clusters within cells following oxidative stress®®. Recently, the
identification and analysis of protein—protein interaction networks
within mitochondria in human immortalized cell lines has been
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Fig. 4 MINs of iPSC-differentiated mDANs of different genetic PD patients show consistent alteration in network features.
a, b Distribution of Z scores of different network structure features, for instance network diameter (a) and efficiency (b). Left, histograms
representing the probability distribution of the corresponding Z score from the global MINs of mDANs derived from different patients or

matched controls; the right graphs depicting the Z scores for the given size of the MIN components/subnetworks. The green dashed line and

the green arrow above the plots highlight the large components that show a clear difference. Since the component with 37 nodes only

appeared once in the corresponding healthy controls matching the SNCA-triplication patient, we did not show very large components (size >

=37) in the analysis. ¢ P values of the two-sample two-sided K-S (Kolmogorov-Smirnov) test evaluating the null hypothesis that the
distribution of each indicated topological metric of the global MINs is identical for the given two groups. Asterisk indicates a significant
P value < = 0.05 after Sidak correction (the displayed P values are before correction). d Distribution of the fully connected 3-node MIN motifs
(known as “triangle”) of mDANs derived from different patients or matched controls; Left, the histograms representing the probability

distribution of the corresponding Z scores of global MINs from different genetic PD patients or matched controls; the right graphs depicting

the Z scores for various sizes of the network components.

performed. Although these studies have already put mitochon-
dria under the “network” umbrella, their analysis has still been
focused on individual mitochondria levels, either on mitochondria
organelle as a whole or on clusters of mitochondria. Since
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mitochondria constantly interact with each other and most likely

do not work alone, it is rational to analyze the mitochondria

interaction networks (MINs). However, such an analysis has never

been performed even in general populations, not to mention
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Fig.5 Summary of different network metrics of MINs analyzed in different types of PD samples. Red upward arrow indicates an enhanced
feature, while the green downward arrow designates a reduction in the given network feature. Horizontal line indicates no clear change
between the compared groups. iPD idiopathic PD, ASPL average shortest path length.

among the patients with neurodegenerative diseases with direct
mitochondrial involvement. As many molecular networks share
certain underlying organizing principles, we aimed to investigate
whether the organelle interaction networks, e.g., MINs follow
similar principles, and whether and how the network topological
properties are affected in relevant pathological conditions that
are related to mitochondrial deficiency. To this end, we here
comprehensively analyzed a variety of network topological
indexes of MINs, contrary to a conventional analysis focusing on
individual mitochondria-based phenotypes such as mitochondrial
number, volume, size, shape, and even simplified network-like
analysis still only on connection degree'®*'. Beyond the intended
proof-of-principle analysis, we found remarkable pattern differ-
ences in the MINs of enteric ganglia of sporadic PD patients vs.
healthy controls. Furthermore, particular network metrics were
highly correlated with PD clinical scores, indicating a potential of
using particular network features for early diagnosis and basic
research purposes of PD. Excitingly, with network topological
features alone, we can already accurately distinguish the PD
patients from healthy controls. This discovery opens a door to a
new type of biomarkers from the perspective of network structure
features of MINs in patient-based materials. However, further
validation in a large-scale cohort or even multicenter cohorts is
required. In PD patients, these differences in MINs might be
directly related to well-known mitochondrial complex | defi-
ciency®?, mitochondrial fragmentation, and/or deficient mitochon-
drial dynamics***4. In this work, we demonstrated the association
between altered network topological indexes of MINs with known
mitochondrial deficiency of sporadic PD patients.

Network analysis of MINs of mMDANs derived from all the tested
genetic PD patients vs. age- and gender-matched healthy controls
revealed consistent changes for several related network metrics,
such as diameter, efficiency, and ASPL. Remarkably, the change of
direction seen in genetic PD patients vs. controls is in sharp
contrast to that seen in sporadic PD patients. The difference in
change direction of particular network features might be caused
by several factors: (1) genetic PD vs. idiopathic PD, (2) tissue
difference (enteric neurons vs. mDANs), (3) ex vivo imaging in
ganglia vs. imaging on in vitro-derived cells, and (4) also possibly
direct disease involvement vs. secondary compensation mechan-
ism. Therefore, the inverted direction of change is plausible due to
these fundamental differences. Importantly, despite a huge
difference in the roles of the tested genetic factors, the
consistency in pattern changes of particular network indexes
(e.g., network efficiency-related indexes and triangle motifs)
among different genetic PD patients underscores the value of
using this type of MIN network analysis to assist diagnosis and
classification of genetic PD patients. Such a consistency in
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pathology among different genetic PD patients has so far not
been reported in other studies without the application of such a
fundamental network analysis in MINs. Machine-learning-based
computational analysis of MINs provides another layer of new
information and enables automatized classification of a large
number of subjects.

We also noticed a general negative correlation between the
changed directions (increase or decrease) in network efficiency
and triangle motif frequency of PD patients, independent of
samples from sporadic or genetic PD patients (Fig. 5). These two
important network metrics might well compensate each other to
fine-tune the overall functions of mitochondria networks in PD
patients, no matter in which tissues we analyzed. Interestingly, the
only exception existed in the MINs of the mDANs derived from the
VPS35-mutated patient materials under oxidative stress. In that
case, both network efficiency and triangle motif frequency in the
MINs were simultaneously heightened, possibly to fight against or
compensate the strong cytotoxic effects induced by oxidative
stress.

Due to the limited access to colonic ganglia samples from
healthy controls, we were unable to analyze more healthy controls
at the current stage of the project. To generate a reliable resource
as the reference patterns of different network topological metrics
within MINs, a large-scale study is further required at different
tissue levels and cell types, by enrolling healthy volunteers with
different ethnicities, gender, and age groups. We also could not
access the ganglia materials from patients with other types of
diseases, in particular from other (e.g., inflammatory) colon
diseases. Due to this lack of comparison with samples from non-
PD patients, we cannot conclude whether our observed changes
in the structural features of the MINs are PD-specific or not.
However, we are confident that such MIN-related network
analyses provide insight into the pathogenesis and/or compensa-
tory mechanisms in various chronic complex diseases. The MIN
signature per se could be qualified as a key health index,
providing information on the energy supply (deficits) in various
diseases. Such analyses open innovative avenues of biomedical
research for dissecting complex diseases, with primary or
secondary bioenergetic deficiencies. Finally, this approach may
well be applicable to the network analysis of other cellular
organelles, such as endoplasmic reticula or lysosomes.

METHODS
Reprogramming of human fibroblasts into iPSCs

We complied with all the relevant ethic regulations and Luxembourg CNER
(Comité National d’Ethique de Recherche) has approved the usage of
the iPSCs derived from PD patients and the related controls (201411/05).
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All the participants have provided written informed consent to take part in
this study. Both the SNCA-mutated patient (p.A30P)?° and the unaffected
control (Control 1) were 67-year-old male (as a control already used in
another study®) when the biopsies were collected (Supplementary Table
1). The SNCA-triplication patient and the unaffected first-degree relative
control (Control 5) were 54- and 34-year-old female, respectively, when the
sampling was executed. The RHOT1-mutated patient was from the existing
German PD cohort (average age of onset of 59.4 + 13.2 years, average age
of sample collection of 65.7 £ 10.2 years). Informed consent was obtained
from these patients and controls and approved by the Ethics Committee of
the Medical faculty and the University Hospital Tubingen, Germany. The
RHOT1-mutated late-onset female PD patient (with a heterozygous point
mutation ¢.815G > A in RHOT1 [NM_001033568]) had a tremor-dominant
clinical phenotype and her father also had tremor in family history. The
selected control (Control 2) was age- and gender-matched. More
information about the RHOT1-mutated patient can be found elsewhere'®.

Patient dermal fibroblasts carrying the heterozygous p.D620N mutation
in VPS35 were a kind gift from George Mellick from the Griffith Institute
(Queensland, Australia). More information on the VPS35 patient is provide
elsewhere*®. Control fibroblasts from age- and gender-matched healthy
individuals 16_33 and 16_1 are from Tubingen’s Biobank. Skin biopsies
were performed at the ages of 73, 72, and 77 for VPS35-mutated patient,
the control 16_33, and the control 16_1, respectively.

Skin fibroblasts of patients or healthy controls were cultured at low-
passage number and maintained with Dulbecco’s modified eagle medium
(41965-062, Thermo Fisher Scientific) supplemented with 15% fetal bovine
serum (10270106, Thermo Fisher Scientific) and 1% penicillin-streptomycin
(15140-122, Thermo Fisher Scientific). When confluence was reached, wild-
type skin fibroblasts were reprogrammed into induced pluripotent stem
cells (iPSCs) via lentivirus infection®” using the CytoTune-iPS 2.0 Sendai
Reprogramming Kit (A16517, Thermo Fisher Scientific) and patient-derived
fibroblasts were reprogrammed into iPSCs via synthetic modified
mRNA®*8 For the samples derived from control 16_1, the fibroblasts
were reprogrammed using the three plasmids (pCXLE-hOct3/4 [Addgene
#27076], pCXLE-hSK [Addgene #27078], and pCXLE-hUL [Addgene
#27080]) with 10ug of each plasmid through the Amaxa Nucleofector
(Lonza). The fibroblasts from other donors were reprogrammed using
Sendai virus.

iPSC clones were expanded in culture and maintained with Essential 8
medium (A1517001, Thermo Fisher Scientific) supplemented with 1%
penicillin-streptomycin. Cell culture conditions for the maintenance and
passaging of the iPSCs have been described elsewhere®. Chosen iPSC
clones for neuronal differentiation were selected via karyotype analysis
and iPSC-characterization procedures®.

Midbrain dopaminergic neuronal differentiation

Following the procedures above, human iPSCs derived from patients or
age- and gender-matched healthy controls were obtained and submitted
to neuronal differentiation (for details see below). We included human
iPSCs from a monogenic, heterozygous dominant familial case of PD, with
a point mutation in the alpha-synuclein (SNCA) gene (Patient 1), from a
healthy control (Control 1 that has already been used in another work®),
and from a patient isogenic control (Patient 1 + mutation correction)?’. A
PD patient with SNCA triplication and the corresponding unaffected
matched family control (Control 5) were also included in our analysis. The
patient isogenic control was obtained by the CRISPR/CAS9-based genome
editing to correct the p.A30P-point mutation of SNCA found in the Patient
1 case. The detailed method was described elsewhere?®. We also
generated human iPSCs from a genetic PD patient with a point mutation
in RHOT1 (Patient 2)°°, from a matched healthy control (Control 2), from a
familial genetic PD patient with a point mutation in VPS35, and from two
matched healthy controls (Control 16_33 and 16_1)*°.

Chosen iPSC clones were differentiated into small-molecule neural
progenitor cells (smNPCs) via small molecules of human neural progeni-
tors>'. Successfully differentiated smNPCs were expanded in culture and
maintained with N2B27 medium consisting of 50:50 Neurobasal (21103-
049, Thermo Fisher Scientific)/DMEM-F12 (11320-033, Thermo Fisher
Scientific) supplemented with 1:200 N2 (17502-048, Thermo Fisher
Scientific), 1:100 B27 (17504-044, Thermo Fisher Scientific), 1% glutamax
(35050-061, Thermo Fisher Scientific), and 1% penicillin-streptomycin.
Dopaminergic neuronal differentiation of smNPCs was performed using
the methodology explained elsewhere®'. Of note, the cells derived from
the VPS35-mutated patient and the matched controls were differentiated
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in the medium with or without B27 supplements (as antioxidants), while all
the others were cultured with antioxidant supplements.

Live-cell imaging of iPSC-derived neurons

For the materials derived from the patient with a mutation in RHOT1 or the
related control, neurons at day 25 of maturation were seeded in chamber
slides (154534, Thermo Fisher Scientific). Five days were needed for the
cells to stabilize in the chamber slides and reach an appropriate level of
connectivity. For the materials derived from the patient with a mutation in
VPS35 or the related control, neurons at day 21 of maturation were seeded
in chamber slides (154534, Thermo Fisher Scientific). Nine days were
needed for the cells to stabilize in the chamber slides and reach an
appropriate level of connectivity. For the cells derived from both the
RHOTI- and the VPS35-mutated patient and their corresponding controls,
the staining and image analysis is identical. At day 30 of maturation,
mDANs were stained for live-cell imaging by using 1:10000 MitoTracker
Green FM (M-7514, Thermo Fisher Scientific) to label mitochondria and
1:5000 LysoTracker Deep Red (L-12492, Thermo Fisher Scientific) to label
lysosomes. Cellular nuclei were stained with 1:100 Hoechst 33342 (H1399,
Thermo Fisher Scientific) after mitochondria and lysosome staining was
performed. Neurons were washed once with prewarmed medium prior to
imaging. Live-cell imaging was performed using the Live Cell Microscope
Axiovert 2000 with spinning disk (Carl Zeiss Microimaging GmbH) in a
humidified atmosphere containing 5% CO, at 37 °C.

For the cells derived from the SNCA-mutated or -triplication patients or
the corresponding controls, the details were slightly different. Neurons at
day 35 of differentiation were seeded into coverslips (AB0577, Thermo
Fisher Scientific). Ten days were necessary for the cells to stabilize and
regenerate the complex network. At day 45 of differentiation, cells were
fixed using 4% PFA (J61899.AP, Thermo Fisher Scientific) for 15 min at
room-temperature agitating. Permeabilization/blocking was performed
using 0.4% Triton X-100 (T8787-100ML, Sigma-Aldrich) in PBS+/+
(SH30256.FS, formerly GE Healthcare Europe GmbH, now Cytiva) with
10% goat serum (S26-100ML, Merck Millipore) and 2% BSA (B9000S, New
England Biolabs) for 1h at room temperature. Primary and secondary
antibodies were prepared in a solution of 0.1% Triton X-100 (T8787-100ML,
Sigma-Aldrich) in PBS + / + (SH30256.FS, formerly GE Healthcare Europe
GmbH, now Cytiva) with 1% goat serum (526-100ML, Merck Millipore) and
0.2% BSA (B9000S, New England Biolabs). For mitochondria detection, we
used the Tom20 (sc-11415, Santa Cruz) antibody at 1:500 dilution
overnight at 4 °C with agitation. Tom20 was detected by the use of the
secondary ab Alexa Fluor™ 488 (A-11008, Thermo Fisher Scientific) at 1:1000
dilution, incubated for 3 h at room temperature with agitation. For nuclear
staining, we used 1:100 Hoechst 33342 (H1399, Thermo Fisher Scientific)
for 15 min at room temperature with agitation. Coverslips were mounted
on slides using Vectashield (H-1000, LABCONSULT SPRL/Vectorlab)
mounting solution and sealed. Imaging was performed using the Live
Cell Microscope Axiovert 2000 with spinning disk (Carl Zeiss Microimaging
GmbH) using a 63x objective. For each condition, it was observed that ten
nonempty fields were randomly selected, each of them as a Z stack, using a
0.2-pm Z-axis step and the total number of slices enough to cover the
entire depth of the sample. All files were saved for further analysis as .
czi files.

MIN matrix construction

Adjacency matrices of the mitochondria interaction networks (MINs) were
extracted from confocal three-dimensional (3D, with Z stack) mitochondrial
immunofluorescence images of colonic ganglia'®, according to a reported
method that has been optimized for image-based network analysis>%. In
classical adjacency matrices (A) of undirected graphs, the element A;; =1
indicates that there is a link between nodes (mitochondrial branch point) i
and j, A;; = 0 otherwise. In contrast to the classical matrix, in the adjacency
matrix variant defined by Kerschnitzki et al.>?, the matrix element Aij
represents the count of pixels in the link connecting the given nodes i and
j if there is a link and otherwise sets to zero. The key Matlab functions for
mask skeletonization and adjacency matrix extraction, namely “Skele-
ton3D"” and “Skel2Graph3D,” were kindly provided by the authors of the
previous work>2 For the parameter “THR” of the function “Skel2Graph3D,”
defining the minimum length of branches (edges that do not end at
another node), to filter out potential skeletonization artifacts, in our
analysis, we set as zero to avoid losing any information. Accordingly, in the
following network analysis, we considered the existence of a link between
the nodes i and j if A;; is larger than zero. The other criteria, masks and
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filters used for mitochondrial segmentation and pixel calculation were
described in our previous work'2,

Subnetwork/component extraction and network analysis
The MINs, reconstructed as aforementioned, are potentially disconnected,
i.e., they may not form a path between all pairs of nodes. In order to ensure
a meaningful calculation of all the analyzed topological metrics, we have
proceeded to dissect each MIN into a collection of connected subnet-
works/components, thus representing a set of locally interacting
mitochondria.

The following standard metrics have been evaluated on the obtained
subnetworks:

® Normalized degree (k*). Considering the varying sizes of distinct
network components and to make the degree comparable, we
normalized the connection degrees of the given nodes within each
component using the equation (eq.) k* = ﬁ Eq. (1), where k is the raw
connection degree and N is the number of nodes in the given
component/subnetwork.

® Link density and max degree. Respectively defined as the number of
active links over the total number of possible links
(la = gy 2= @) EQ. (2), and the number of direct connections
of the most connected node’?* (my = maxik;) Eq. (3).

® ASPL. The average shortest path length (ASPL) is defined as the
average length of the shortest (or geodesic) paths connecting all
possible pairs of nodes**, i.e, ASPL = g7, 1, dij Eq. (4).

® Diameter. Defined as the greatest shortest path length between all
pairs of nodes in the networks®*.

® ffficiency. Metric assessing how efficiently information can be
transmitted among nodes; it is defined as the harmonic mean of the
geodesic distance between all pairs of nodes: £ = x> ;.7

J#i d;;

Eq. (5), N being the number of nodes composing the network, and d; ;
the distance (in terms of the number of links) between nodes i and j5 .

®  Modularity. Measuring how much the network is organized into
communities, i.e., groups of nodes strongly connected between them
but loosely connected with the other nodes of the network®*>°. The
community structure has been detected through the Louvain
algorithm®®.

® Assortativity. Pearson’s correlation coefficient between the degrees of
both nodes of a link. Positive values indicate that highly connected
nodes prefer to link with other hubs, while negative values designate
that highly connected nodes prefer to link with periphery nodes®’.

® Transitivity. Density of triangles (triplets of completely connected
nodes) in the network.

® Information content. The measure of assessing the presence of
mesoscale structures, e.g, communities, based on the identification
of regular patterns in the adjacency matrix of the network, and on the
calculation of the quantity of information lost when pairs of nodes are
iteratively merged?®.

®  Small worldness. Metric assessing the coexistence of a high clustering
coefficient and a low mean geodesic distance®>>”~>°,

®  Motifs. Specific connectivity patterns, created by a small number of
nodes, that exist more frequently in the given networks than in
randomized networks®®. Motifs with three or four nodes have been
considered here. We displayed the components with a size ranging
from 6 to 28 (Fig. 2d, e). The component with 29 nodes only appeared
once in the healthy controls. More precisely, only nine components
with size equal to or greater than 29 have been detected for control
subjects (representing 0.0471% of the components), and 46 counter-
parts for PD patients (representing 0.115%). Due to their low frequency
and thus low statistical power, when showing the average scores, we
did not include very large components (size > = 29) in Fig. 2d, e. This
restriction in sizes does not apply to the classification section of
ganglia samples. The same has been applied to the SNCA-triplication
analysis (only shown until size of 36) as the component with 37 nodes
only appeared once in the samples of the corresponding control.

®  Comparison of subnetwork size between groups. Distribution of network
components’ sizes, e.g., the curves in Fig. 1b, has further been
modeled through a power law P(s)~k’, where s is the component size.
The fit has been performed through the Levenberg-Marquardt
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algorithm, and by disregarding the lower and higher tails of the
curves, specifically, the 10% of the lower and higher sizes, to thus
focus on the central part of the distribution®. Pairs of distributions
have been compared for the null hypothesis of sharing the same
power-law slope k (Figs. 1e and 3c). For that, the two slopes have been
represented by two normally-distributed random variables, centered
on the estimated value of k and with a standard deviation equal to the
width of the 68% confidence interval of k. Finally, the probability of the
difference between the means of both distributions of being zero is
calculated and converted to a P value. Note that the other fits may be
compatible, e.g., a cutoff power law®’; these have not been considered
due to the limited availability of very large network components and
our interest in the central part of the distribution.

Normalization through random networks

In order to normalize the values obtained for the listed metrics, a set of 100
random networks were generated for each component, and used as a null
model. Each one of these randomized networks is composed of the same
number of nodes and links as the original network; additionally, to ensure
a biological plausibility, each generated random network was used only if
all the nodes and links form a single component. Afterward, each metric is
normalized through a Z score, calculated as Z — score = M;(“T(T)R) Eq. (6),
M being the value obtained in the real network, My the set of values
obtained for the random set, and u(-) and o(-), respectively the average and
standard deviation operators.

Probability of overall Z scores: For any of the analyzed metrics, the
probability of a given Z score is defined as follows: 12 Eq. (7), where m is
number of components/subnetworks with the given Z score and n is the
number of total components within the MINs.

Classification

The classification models’ performance has been corrected against
overfitting by using a modified Leave-One-Out Cross Validation (LOOCV)
approach. The standard LOOCV technique entails testing each instance of
the data set with a model trained with all other instances, followed by
calculating the average classification error. It is worth noting that a simple
LOOCV would here lead to an overfitting, as each person in the data set is
described by multiple instances (i.e., different neurons and mitochondrial
networks). False conclusions may be drawn when using a model trained
from the MINs of one neuron for testing another neuron of the same
participant. In order to avoid this pitfall, we here employed a modified
approach in which each model was trained using the data from all the
other people, except from those records belonging to the tested
participant. The overfitting issue was also minimized by the fact that we
had many more network components/subnetworks than the selected
features. Furthermore, we also randomly reshuffled the sample labels 50
times to test whether the high AUC values we achieved in the real datasets
can be also obtained even in the randomized datasets.

Quantification and statistical analysis

We employed the two-sample two-sided K-S (Kolmogorov-Smirnov) test
in general. However, for the comparison of the exponential fits (Figs. 1e
and 3c¢), we used a different test as a K-S test would not work well with a
distribution with such a long tail (for details see the description above).
Asterisk indicates a significant P value (<=0.05) after Sidak correction (the
displayed P values in the corresponding figures are before correction).
Whenever the corresponding test was used, it was directly indicated in the
corresponding figure legend. The number of analyzed samples was directly
indicated either in Fig. 1 or Fig. 3.

Reporting summary

Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY

All the raw 3D image datasets used in this work with a volume of ~700G are
deposited online in the R3 lab of the University of Luxembourg (https://webdav-
r3lab.uni.lu/public/MitoNetworks/).
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The computational script codes are accessible at Github (https://github.com/
FengHe001/Mitochondria-network-analysis; https://github.com/FengHe001/Network-
matrix-extraction). Network adjacency matrix was extracted using Matlab codes and
network analysis was performed using Python scripts.
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