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Abstract: Serious games are a promising approach to improve gait rehabilitation for people with gait
disorders. Combined with wearable augmented reality headset, serious games for gait rehabilitation
in a clinical setting can be envisaged, allowing to evolve in a real environment and provide fun and
feedback to enhance patient’s motivation. This requires a method to obtain accurate information
on the spatiotemporal gait parameters of the playing patient. To this end, we propose a new algorithm
called HoloStep that computes spatiotemporal gait parameters using only the head pose provided by
an augmented reality headset (Hololens). It is based on the detection of peaks associated to initial
contact event, and uses a combination of locking distance, locking time, peak amplitude detection
with custom thresholds for children with CP. The performance of HoloStep was compared during
a walking session at comfortable speed to Zeni’s reference algorithm, which is based on kinematics
and a full 3D motion capture system. Our study included 62 children with cerebral palsy (CP),
classified according to Gross Motor Function Classification System (GMFCS) between levels I and
III, and 13 healthy participants (HP). Metrics such as sensitivity, specificity, accuracy and precision
for step detection with HoloStep were above 96%. The Intra-Class Coefficient between steps length
calculated with HoloStep and the reference was 0.92 (GMFCS I), 0.86 (GMFCS II/III) and 0.78 (HP).
HoloStep demonstrated good performance when applied to a wide range of gait patterns, including
children with CP using walking aids. Findings provide important insights for future gait intervention
using augmented reality games for children with CP.

Keywords: spatiotemporal gait parameters; augmented reality; wearable device; cerebral palsy;
concurrent validity

1. Introduction

Cerebral Palsy (CP) is the most common cause of childhood disability, affecting
17 million people worldwide [1,2]. CP describes a group of permanent disorders of the de-
velopment of movement and posture, causing activity limitation, which are attributed
to non-progressive disturbances that occurred in the developing fetal or infant brain [3].
Children with CP have different functional abilities, classified from Gross Motor Function
Classification System (GMFCS) Level I (can walk and climb stairs without using hands
for support) to Level V (impaired in all areas of motor function). In addition, gait in chil-
dren with CP is characterized by a slower speed, a shorter-step length, a lower cadence,
and more time spent in double support [4–6]. The natural history in children with CP is
a gradual decline in ambulatory function as children grow and age, in particular during
adolescence [7,8].

To reverse this trend, physiotherapists propose overground or treadmill-based gait
training, with varying body weight support [9]. Functional gait training includes many
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different interventions and level of intensity to improve walking capacity. Grecco et al.
highlighted the fact that rigorous gait training protocol, performed at the aerobic threshold
with increasing intensity, was the key point to improve endurance, walking speed and daily
functional performance [10]. But both for adults and children, with multiple repetition of
the same task, the loss of motivation can decrease treatment adherence.

The application of technology in the field of rehabilitation is becoming increas-
ingly popular. Within the range of choices available to therapists and patients, vir-
tual/augmented reality (VR/AR) systems are feasible, effective and have positive effect
on compliance with therapy and motivation of the patient [11,12]. These systems promote
multi-sensory stimulation and user interaction, and can deliver feedback in real-time that
could enhance motor learning and skill acquisition [13,14]. A meta-analysis by Chen et al.
based on the ICF (International classification of functioning, disability and health [15])
concluded that VR/AR had a large effect size for the activity component (including am-
bulation function) for children with CP [16]. For example, after VR treadmill training,
the distance travelled in the 2-Minutes Walk Test increased significantly, from 54.83 to
116.07 m in the VR group in children with CP [17].

Thanks to the miniaturization of the devices and the commercial development of
affordable products, wearable technology-assisted devices appear to be an interesting tool
for gait rehabilitation in overground condition (i.e., gait training without treadmill) [18–21].
Among existing tools, AR technology does not fully immerse the user in a simulated
environment but superimpose virtual elements over the real-world. For example, Microsoft
Hololens is an AR Head Mounted Display (HMD) which includes optical and inertial
sensors for position and orientation tracking. It allows patients to walk with their walking
aids and augments real environment with visual and auditory feedback. These features
offer the possibility to develop a serious game based on motor learning theories to improve
walking rehabilitation with gait pattern recognition.

Today, there is no AR system or serious game designed for overground gait training,
including a rigorous protocol based on the patient’s walking performance and abilities.
One of the essential components of such a system is the real-time tracking of the spatio-
temporal gait parameters in people with gait disorders. Several methods exist that use full
kinematic captures [22–24] or lighter inertial sensors [25–30]. Two recent works exploit
an AR HMD but do not involve children with CP [31,32]. In this paper, we present a new
algorithm, called HoloStep, to compute spatiotemporal gait parameters of children with CP
using only the head pose recorded with a Hololens AR HMD. It is based on the detection
of peaks associated to initial contact event, and uses a combination of locking distance,
locking time, peak amplitude detection with custom thresholds for children with CP. We
have evaluated its concurrent validity (i.e., between-systems agreement) in healthy adults
and in children with CP using different walking aids (GMFCS I-II-III). Gait parameters
(speed, step length, cadence, step detection) were compared to a reference algorithm from
Zeni [22] which uses pelvic and feet kinematics data extracted from a motion capture
system. The objective of this study was therefore to develop and validate an AR HMD
based algorithm providing gait spatiotemporal parameters, in a real environment, both
in healthy and children with gait disorders. We assume that HoloStep is accurate enough to
be used in clinical practice to provide feedback on gait performance to the patient through
the AR HMD.

2. Related Work

Multiple methods exist for calculating spatiotemporal gait parameters, whether based
on force plates or reflective marker systems [22–24]. However, these techniques require
expensive equipment and are only applicable in a gait laboratory.

Wearable sensors based on inertial measurement units (IMUs) or accelerometers have
been validated in both normal and pathologic gait to detect gait events both in controlled
laboratory conditions [25–28] and in real-life behaviour [29,30]. Using tri-axial accelerome-
ter, Zijlstra et al. developed an algorithm predicting spatiotemporal gait parameters with
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trunk acceleration data for healthy participants, but step length and speed were underesti-
mated both in overground and treadmill condition [25]. Trojaniello et al. have tested five
methods for the estimation of gait events and temporal parameters from the acceleration
signals of a single IMU. Data were acquired from healthy participants. Some methods
estimate step time (i.e., the time between two consecutive initial contacts) and stride time
(i.e., one complete gait cycle) to determine spatial parameters such as the step length.
Some methods require the determination of both initial contacts (IC) and foot contacts
(FC), and two methods associate acceleration signals and physical characteristics of gait to
identify gait events [27]. They concluded that all methods are acceptable for clinical use
(mean error in estimating stride time and step time are non-significant, maximal percentage
of error is 2 to 4% for stride time and 2 to 8% for step time). McCamley at al. used vertical
acceleration from IMU and means of continuous wavelet transform to detect foot contacts
(initial and final). They reported an average error of 0.02 s and 0.03 s representing 2% and
3% of mean stride duration [28]. Storm et al. have compared two algorithms to determine
temporal gait parameters based on two shank-worn IMUs or a single waist-worn IMU
in free-living condition. IC and FC were detected inside predefined search windows. Then,
the IC is identified as the instant of minimum angular velocity in the sagittal plane between
the beginning of the IC search window and the instant of maximum anterior-posterior
acceleration. The FC is identified as the instant of minimum anterior-posterior acceleration
in the FC search window. For the second method using single waist-worn IMU, a first
Gaussian continuous wavelet transformation is applied to the vertical acceleration sig-
nal, and the minima are identified as the IC timings. Results showed that the stride and
step time absolute errors recorded using these methods were higher during outdoor free
walking but generated only a small increase in percentage error (6 to 9 ms for stride time,
and 9 to 14 ms for step time). Step length calculation was not assessed [29]. These previous
studies concerned only healthy participants.

In a study including people with gait disorders, two magneto-inertial units including
a tri-axial accelerometer, a tri-axial gyroscope and a tri-axial magnetometer (MIMUs) were
fixed to the malleoli for the determination of both temporal and spatial parameters [26].
The gait events were detected using a specific period within which no gait events were
expected and additional conditions also had to be satisfied. This complex algorithm
was adapted to pathologic gait patterns to limit the risk of extra and missed gait events
detection. Neither missed nor extra gait events were observed. Percentage of absolute error
in estimating stride length was excellent both for hemiparetic people (3%), Parkinson’s
disease people (2%) and choreic people (2%), both at comfortable speed and higher speed.

In children with CP-GMFCS I-II (i.e., less affected), some previous studies have
demonstrated acceptable validity of accelerometry to detect mobility-related metrics, such
as the total number of steps per day, walking distance [33–35], and cadence [36]. Sala et al.
evaluated the accuracy of the wrist-based Fitbit Flex and the hip-based Fitbit One in quan-
titatively measuring the ambulation of children with CP, classified in GMFCS levels I
to III, in a clinical setting. Participants were children with CP using different walking
aids: any assistive device (n = 28), a posterior rollator (n = 7), one forearm crutch (n = 3),
and two forearm crutches (n = 3). They demonstrated that wrist-based was not accurate
for counting steps (range of errors between −484 to 35 steps). They reported better re-
sults for hip-based device (range of errors between −52 to 6). They concluded that for
people having reduced mobility (walked slowly, took small steps, and used a rollator),
the step counts for a hip-based and a wrist-based Fitbit must be considered with pru-
dence [33]. These devices did not provide step length and gait speed. Other study assessed
the accuracy in distance walked and step count of two commercial devices: the Mini-
mod combining three accelerometers and the AMP (inertial sensors). Participants were
diplegic CP and typically developing children. When the walked distance increased,
both devices became less accurate and showed greater underestimation of actual distance
walked and step count, steps differences were as high as 40 [34]. Both studies showed that
commercial devices using a standard algorithm for detecting temporal gait parameters
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were not suitable for patients with gait disorders. Recently, Paraschiv-Ionescu et al. have
developed a custom-made algorithm based on detection of peaks associated to heel-strike
events, and included several processing stages such as peak enhancement and selection
of the steps-related peaks using heuristic decision rules. They used the norm of trunk
acceleration signals from Physilog4® (device including 3D accelerometer, 3D gyroscope,
3D magnetometer and barometer) worn on the trunk. They showed a very good sensitivity,
specificity and precision for detection of locomotion period: between 86% to 97%. But,
they highlighted that for short period of locomotion and/or if the gait pattern is unsteady
with high variability, the error can be important [36]. Moreover, IMU has been successfully
used as a tool for diagnosing pathological gait providing estimation about joint kinemat-
ics parameters. Glowinski et al. developed a new algorithm combining discrete Fourier
transform (DFT) and continuous wavelet transform (CWT). Based on IMU, they identified
significant differences in knee flexion during gait in patient with lumbar discopathy [37].

Globally, results indicate that adaptive and custom algorithm is suitable for calculating
spatio-temporal gait parameters in people with gait disorders. But these techniques, despite
their great robustness, have potential drawbacks for coupling them with AR/VR systems
in clinical context. The need for multiple devices to maximize accuracy, the difficulty
in synchronizing with AR/VR systems and the complexity of the user’s equipment mean
that the system is not “plug and play”. A simpler configuration, with a single device, could
allow for wider clinical application.

To our knowledge, there are very few studies using an AR HMD (Hololens) for
calculating spatio-temporal gait parameters. As a preliminary study, Guinet et al. showed
that the accuracy of the Hololens was sufficiently high to evaluate the position of the user’s
head, without spatial drift, in comparison to MOCAP system. They found an absolute
errors between 55 to 250 mm in all 3 planes [38]. Using the same device, Geerse et al.
tested a method using head vertical maximal position to estimate foot step location [32].
This algorithm has shown a good test-retest reliability and a good concurrent validity
at different walking speeds for healthy participants and for people with Parkinson’s disease
(PD). Still, they observed significant differences between their method and the reference
for walking speed, step length and cadence. They also had measurement biases increasing
with faster instructed walking speeds. Finally, Ju et al. have proposed a machine learning
approach for detecting whether a healthy subject was touching the ground with the left
or right foot while walking [31]. This method required the sound recording of footsteps
in real-time, that is impossible in clinical use because of the ambient noise. Moreover, this
algorithm was not validated for people with gait disorders.

3. Materials and Methods
3.1. Participants

Thirteen healthy adults and sixty-two children with CP were included. Healthy
adults had to be 18 years or older and normal or corrected vision. Subjects were recruited
at the Poidatz Rehabilitation Center adjacent to the gait lab. The inclusion criteria for
people with CP were an age between 10–18 years, a Gross Motor Function Classification
System (GMFCS) [39] I to III. Children for whom a gait analysis test was planned were
invited to participate in this study when they met the inclusion criteria. Written consent
was previously obtained from each child’s parent or guardian and assent from each child to
collect and use their clinical data. Children were divided in two groups: Group 1: Children
with CP walking without walking aids (N = 32) (i.e., GMFCS I), Group 2: Children with
CP walking with crutches or posterior walker (N = 30) (i.e., GMFCS II/III). Characteristics
of children included were summarized in Table 1. The study was conducted according
to the guidelines of the Declaration of Helsinki, and approved by the National Ethics
Committee (see Institutional Review Board and Informed consent statement below). Test
session was held in July 2020.
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Table 1. Characteristics of population included.

Characteristics Healthy Participant
(n = 13)

Children Group 1
(n = 32)

Children Group 2
(n = 30)

Age (mean) 35.9 12.6 12.3
Sex (F/M) 5/8 16/16 13/17

GMFCS NA I II–III
Walking aids No No Crutches (18)

Posterior walker (12)

3.2. Gait Analysis Systems
3.2.1. MOCAP System

The gait laboratory used a fifteen-camera VICON system (8 MX 20, 5 T 40, 2 T 160)
(PluginGait marker set, VICON, Oxford Metrics, UK). Data were collected from markers
placed on the headband (4), pelvic (4) and feet (6). Data were recorded at 100 Hz and
filtered using a real-time 2nd order low-pass Butterworth filter (with a cutoff frequency
of 6). VICON system was considered as a reference for gait analysis and spatiotemporal gait
parameters calculation. Hereafter in this article, VICON system has been called MOCAP.

3.2.2. Hololens AR HMD

The HoloStep algorithm has been written in C# language. It was a part of the AR
application developed with Unity 2019.2.8f1 (64-bit) using Mixed Reality Toolkit version 2
for Microsoft Hololens HMD. This version of AR application did not contain any hologram
in order to be comparable to MOCAP. Data were recorded at 100 Hz and filtered using a real-
time 2nd order low-pass Butterworth filter (with a cutoff frequency of 6). This application
has been deployed in Microsoft Hololens version 1 [40]. In the following, Microsoft
Hololens is called AR HMD.

3.3. The HoloStep Computational Method
3.3.1. Step Detection

When the application starts, the spatial coordinate systems of the HMD were right-
handed, which means that the positive X-axis points right, the positive Y-axis points up
(aligned to gravity) and the positive Z-axis points towards you (Figure 1) [40] .

Figure 1. Spatial coordinate system of the AR HMD is (0; ~x; ~y;~z).

The data acquisition rate was 100 Hz. At each frame, HoloStep calculates: Time (s),
Position (xH , yH , zH) (m), Filtered position (xF, yF, zF) (m), Step detected (Boolean), Step
length (m) and Walking distance from the beginning of the trial (m). These data are stored
in memory for direct use in the AR application, and logged in a .csv file for later analysis.

The initial position Pt0 of the AR HMD was:

Pt0 = (0, AR headset y level, 0)t0
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Then at any time t the AR HMD position Pt was given in this reference frame:

Pt = (xH , yH , zH)t

The position signal P was then filtered using a second-order zero-lag Butterworth low
pass filter with a 6 Hz cut-off frequency to get PF. Minimum peaks were detected using yF
the filtered AR HMD vertical position signal.

Each gait cycle was divided into two phases: stance and swing. Stance consisted of
the entire time that a foot was on the ground, starting with an initial contact (IC) when
the foot touched the ground, and ending with a toe off (TO) when the foot left the ground.
Swing corresponded of the entire time that a foot was in the air, starting with TO and
ending at the next IC. The principle of detection used by HoloStep was based on the fact
that during walking, the body displacement is pseudo-periodic. The body slightly leaned
to the left/right side. It created a characteristic variation on x-axis. Moreover, at each
IC (i.e., when the foot was touching the ground), the body was at a lower position on
y-axis. Therefore, when the user was leaning to the left (x min) and the body was at a lower
position (y min), the left foot of the user started to touch the ground. The similar situation
happened on the other side (x max and y min).

HoloStep was developed using a combination of locking distance [41], locking time [42,43]
and peak amplitude detection with custom thresholds for children with CP. In each window,
the minimum peak position on yF signals was used to detect initial contact IC. In order
to define if the distance between two peaks should be considered as a real step, three
conditions were checked:

• First, the locking distance was defined: new IC was considered only if the distance
between two IC was greater than this threshold (Figure 2). In order to make Holostep
the most suitable for children with CP, we reviewed a separate data set from the gait
analysis of 188 children with CP in a specialised laboratory. The mean distance
between two IC was 44.31 cm, with SD = 11.87. We have set the locking distance
at 20 cm (rounded down of mean− 2× SD).

Figure 2. Representation of the locking distance threshold. In blue, vertical head position yF of
the user wearing the AR HMD over the walkway. The green diamonds were IC detected with
HoloStep. The red circle were IC detected with Zeni algorithm reported to yF. The orange bands
were the locking distance threshold (minimum peaks ignored by HoloStep).

• Second, the locking time was defined : new IC was considered only if the time between
two IC detected was greater than this threshold (Figure 3). As before, after analysis of
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the specific data set for children with CP, mean time between two IC was 56.01 ms,
with SD = 12.54. The locking time was set to 30 ms (rounded down of mean− 2× SD).

Figure 3. Representation of the locking time threshold. In blue, vertical head position yF of the user
wearing the AR HMD over the walkway. The green diamonds were the IC detected with HoloStep.
The red circle were IC detected with Zeni algorithm reported to yF. The orange bands were the locking
time threshold (minimum peaks ignored by HoloStep).

• Third, the peak amplitude threshold was defined: the minimum difference required
between previous maximal (Py) f and current minimal (Py) f . As before, after analysis
of the specific data set for children with CP, mean peak amplitude detection was small
at 0.3 cm. This is the value we have retained for the peak amplitude threshold.

3.3.2. Step Length and Walking Distance

After detecting 2 consecutive steps, step length (SL) was the dot product between
walking direction

−−−−→
IC1 IC3 and two successive initial contacts

−−−−→
IC1 IC2 (Figure 4):

−−−−→
IC1 IC2 ·

−−−−→
IC1 IC3 = IC1 IC2 × IC1 IC3 × cos( ̂IC2 IC1 IC3)

Figure 4. Representation of Step Length in the coordinate system of the AR headset (0; ~x; ~y;~z).

Finally, the total walking distance was the sum of the successive step lengths.
Figure 5 summarises the flow chart of the HoloStep algorithm.



Sensors 2021, 21, 2697 8 of 16

Figure 5. Flow chart of the proposed method HoloStep for step detection and step length calculation
of children with CP.

3.4. Experimental Procedure

Participants were instructed to walk at a comfortable speed in a straight line along
an 8-m path in the gait lab. Data were collected for three successful trials.

3.5. Data Processing

The user’s head position was measured with the AR HMD and with MOCAP using
4 reflective markers placed on the AR HMD. Pelvic and feet position were measured with
MOCAP using reflective markers. Dataset was processed using two different algorithms:

• Reference: Zeni algorithm using a set of pelvic and feet markers calculating spatiotem-
poral gait parameters with high accuracy [22];

• Challenger: HoloStep algorithm using head pose.

From HoloStep algorithm (C#) deployed in the AR HMD, user’s position (xH , yH , zH),
user’s position filtered (xF, yF, zF), walking speed, step length, number and timing of step
detected were extracted in .csv format. From MOCAP, user’s position filtered was extracted
from the reflective markers placed on the AR HMD (xG, yG, zG), walking speed, step length
and number of step were calculated using Zeni algorithm. The AR HMD signals were
synchronized to the MOCAP signals by an automatic time shifting procedure using a local
minimum detection. An Iterative Closest Point (ICP) algorithm was used to align the 3D
positions given by the two systems minimizing the distance between them, using geometric
transformations (rotations R and translations T) [44,45]. The ICP algorithm had two steps:
The first step consisted of determining the correspondence pairs (~p, ~m) from two data sets
H and G. The aim was to find for each point p in H its closest point in G. The second
step was to apply a transformation (R and T) in order to minimize the distance between
the correspondence pairs:

E(R, T) =
1

NH

NH

∑
i=1

∥∥Gi − RHi − T
∥∥2
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with H = (xH , yH , zH) and G = (xG, yG, zG) the corresponding points, from AR HMD
and from MOCAP respectively. These two steps were repeated until the error was below
a given threshold or until the maximum number of iterations was reached. Data processing
was performed with MATLAB 2019a.

3.6. Statistical Analysis

Bland and Altman analysis was performed to compare walking speed, step length and
cadence between the two methods given the bias d̄ (the mean of the differences between
the two methods) and the limits of agreement (LoA). The Intraclass Correlation Coefficient
for absolute agreement among measurements, also known as criterion-referenced reliability,
was calculated (ICC(A, 1)) [46]. The Pearson correlation coefficient r and determination
coefficient r2 were calculated to compare the two methods.

The two-sample t-test was done to compare means of the two methods for walking
speed, step length and cadence. The 5% significance level was used to reject the null
hypothesis. The confusion matrix allowed visualization of the performance of HoloStep
algorithm: sensitivity (true positive rate), specificity (true negative rate), accuracy (true
negative and positive rate) and precision (positive predictive value) of step detection
for HoloStep algorithm, for each group, were calculated. Each row of the matrix repre-
sented the instances in the challenger class (HoloStep), while each column represented
the instances in the reference class (Zeni).

4. Results
4.1. Healthy Participants

For the 13 healthy participants, the total number of IC detected was 65 with Zeni
and 63 with HoloStep. The HoloStep algorithm ignored 2 IC (false negative) for 2 partici-
pants. Sensitivity, specificity, accuracy and precision of HoloStep algorithm were excellent
(Table 2). The Bland and Altman analysis shown a bias d̄ = 0.054 m for step length and
0.035 m/s for walking speed. The mean difference between the two algorithms for all
variable were not significant. The ICC coefficients were excellent for walking speed
(ICC = 0.973) and good for step length and cadence (ICC = 0.778 and 0.534, respectively).
The mean difference for step length between Zeni and HoloStep was 5.6 cm (Table 3).

Table 2. Sensitivity, specificity, accuracy and precision of step detection with HoloStep algorithm for
healthy participants and children with CP.

Sensitivity Specificity Accuracy Precision

Healthy participant (n = 13) 0.969 1.000 0.999 1.000

Children Group 1 (n = 32) 0.969 0.999 0.999 0.964
Children Group 2 (n = 30) 0.989 1.000 1.000 0.984

All CP children (n = 62) 0.979 1.000 0.999 0.974

Table 3. Concurrent validity for spatiotemporal gait parameters in healthy participants (HP) and in children with cerebral
palsy (Group 1 and Group 2).

.
MOCAP Zeni Hololens HMD HoloStep

Mean +/− SD Mean +/− SD Bias (95% LoA) t-statistics ICC(A,1) r corr

Walking Speed (m/s) CP-Group 1 1.044 +/− 0.254 1.026 +/− 0.258 0.018 (−0.012 0.048) t(30) = −0.28, p = 0.78 0.996 0.998
CP-Group 2 0.667 +/− 0.180 0.648 +/− 0.174 0.018 (−0.017 0.053) t(28) = −0.40, p = 0.69 0.990 0.995

HP 1.277 +/− 0.199 1.242 +/− 0.197 0.035 (−0.026 0.096) t(11) = −0.45, p = 0.66 0.973 0.988

Step Length (m) CP-Group 1 0.488 +/− 0.090 0.514 +/− 0.105 0.017 (−0.106 0.140) t(30) = 1.07, p = 0.29 0.922 0.885
CP-Group 2 0.430 +/− 0.064 0.434 +/− 0.079 0.005 (−0.152 0.162) t(28) = 0.18, p = 0.86 0.863 0.649

HP 0.623 +/− 0.079 0.679 +/− 0.087 0.054 (−0.048 0.156) t(11) = 1.74, p = 0.095 0.778 0.802

Cadence (steps/s) CP-Group 1 1.980 +/− 0.272 1.838 +/− 0.267 0.142 (−0.249 0.534) t(30) = −2.11, p = 0.29 0.642 0.726
CP-Group 2 1.178 +/− 0.308 1.425 +/− 0.294 −0.247 (−0.589 0.095) t(28) = 3.18, p = 0.86 0.625 0.833

HP 1.908 +/− 0.196 1.808 +/− 0.231 0.0099 (−0.288 0.486) t(11) = −1.18, p = 0.095 0.534 0.582
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4.2. Children with CP

For the 32 participants from group 1 (children with CP walking without aids/GMFCSI),
the total number of IC detected was 194 with Zeni and 195 with HoloStep. The HoloStep
algorithm ignored 6 IC (false negative) and added 7 false IC (false positive) for 7 different
patients. Sensitivity, specificity, accuracy and precision of HoloStep algorithm were excellent
(Table 2). The Bland and Altman analysis shown a bias d̄ = 0.017 m for step length and
0.018 m/s for walking speed (Figure 6a). The mean difference between the two algorithms for
all variable were not significant (Figure 7a). The ICC coefficients were excellent for step length
and walking speed (ICC = 0.922 and 0.996 respectively) and good for cadence (ICC = 0.642).
The mean difference for step length between Zeni and HoloStep was 2.6 cm (Table 3).

For the 30 participants from group 2 (children with CP walking with aids/GMFCSII-III),
the total number of IC detected was 184 with Zeni and 185 with HoloStep. The HoloStep
algorithm ignored 2 IC (false negative) and added 3 false IC (false positive) for 3 different
patients. Sensitivity, specificity, accuracy and precision of HoloStep algorithm were excellent
(Table 2). The Bland and Altman analysis shown a bias d̄ = 0.005 m for step length and
0.018 m/s for walking speed (Figure 6b). The mean difference between the two algorithms for
all variable were not significant (Figure 7b). The ICC coefficients were excellent for step length
and walking speed (ICC = 0.863 and 0.990 respectively) and good for cadence (ICC = 0.625).
The mean difference for step length between Zeni and HoloStep was 4 cm (Table 3).

(a)

(b)

Figure 6. Statistical analysis graphics for children with CP. Left: Linear Distribution of step length
between the two algorithms. Right: Bland and Altman plot representing step length. A bolt horizontal
line representing the bias. Additional dotted horizontal lines, limits of agreement, are added to
the plot at d̄± 1.96 SD. (a) Children with CP—Group 1 (b) Children with CP—Group 2.
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(a)

(b)

Figure 7. Difference between HoloStep and Zeni algorithm. Box plot visualizing raw data along
the mean, 95% confidence interval, and 1 SD. (a) Children with CP—Group 1 (b) Children with
CP—Group 2.

5. Discussion

This study is the first to describe and assess the validity of a custom algorithm
deployed in the Hololens AR HMD to calculate spatiotemporal gait parameters both
in healthy participants and children with CP. The results of our study suggest that HoloStep
algorithm using Hololens AR HMD calculate spatiotemporal gait parameters with sufficient
accuracy even in people with gait disorders using walking aids.

5.1. Comparison with Other Methods

HoloStep performance for speed calculation was comparable to those obtained with
an IMU. For ex., Zijlstra et al. obtained a mean difference between predicted and real
speeds below 0.05 m/s [25]. HoloStep had a mean difference from 0.018 m/s to 0.035 m/s
between groups. For foot contacts detection, the sensitivity across various methods using
IMU varied between 81% and 100% [27], whereas HoloStep was between 97% to 99%.
For step length, the mean absolute error in estimating stride length for adult with gait
disorders varied from 1.8 cm for hemiparetic to 2.6 cm for choreic people. HoloStep error
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varied from 2.6 cm to 4 cm for children with CP. This gap could be explained by the use
of a posterior rollator which led to the detection of false steps. HoloStep using AR HMD
obtained better results than other commercial devices like the wrist-based FitBit Flex and
the hip-based FitBit One in quantitatively measuring the ambulation of children with
CP [33]. In this study, mean absolute error in number of steps detected for children varied
from 6 to 17 depending on the used walking aids. For HoloStep, those parameters varied
from 2 to 7. Paraschiv-Ionescu et al. have developed a robust algorithm that used data from
IMU device worn on lower back (L5 vertebrae) to calculate gait parameters. Performance
metrics (sensitivity, specificity and precision) were excellent, from 0.90 to 0.98 for children
with CP. But, this algorithm could not be used in the AR HMD because it used the norm of
trunk acceleration signals.

Recently, Geerse et al. proposed a method to calculate spatiotemporal gait parameters
using a Hololens AR HMD and compared this method to the reference Interactive Walkway
System (IWS). They found that ICC were excellent for between-systems agreement for
walking speed, step length and cadence for healthy adults and people with Parkinson’s
Disease (PD) (ICC > 0.92). But limits of agreement obtained with Bland-Altman analy-
sis were quite narrow. Still, walking speed and step length were underestimated with
biases increasing with faster walking speeds (min bias of 0.6 for people with PD to 3.1 for
healthy people walking faster) [32]. They also found statistical difference between step
length measured with Hololens and IWS (p < 0.05). These between-systems biases were
justified by the authors because of the drift in tracking and deviations in the map (caused
by the Hololens AR HMD spatial mapping component). Using data available in supple-
mentary material, we have calculated step length with HoloStep. Using population-best
matched thresholds, we have found no statistical difference between step length calculated
with HoloSD and IWS, and HoloStep seemed to have better results on the biases (min bias
of 0.07 for people with PD to 1.9 for healthy walking faster). These results suggest that
the use of custom thresholds enhances the calculation of spatiotemporal gait parameters,
but a stronger method to compare these two algorithms is necessary to conclude.

Sun et al. have developed two AR-based automated functional mobility test using
Hololens AR HMD: Sit To Stand (STS) and Time Up and Go (TUG). In comparison with
reference inertial sensor (Opal, APDM), vertical kinematic data (displacement, velocity
and acceleration) shown a bias less than 0.02 s for STS and 0.13 s for TUG, with range of
error within ±0.8 s. Correlation coefficient for kinematic measurement agreement between
Hololens and reference sensors were from 0.74 to 0.99 [47]. We obtained similar results
with HoloStep for kinematic measurement.

5.2. Gait Detection for Children with CP

Children with CP present alteration of dynamic stability during gait because of deficits
in balance and postural control. Hsue et al. demonstrated that children with CP showed
significantly larger vertical and medio-lateral displacements of the Center of Mass than
TD group. But, the trajectories have the same shape (sinusoidal pattern) both for TD
group than children with CP. In vertical directions, the Center of Mass reached a maximum
peak at mid-stance, and a minimum at the end of terminal stance (when the two feet are
in contact with the ground). It was interesting to observe that the minimum peaks were
shifted for children with CP (4% of gait cycle after) [48]. When children have an asym-
metrical gait (this is often the case for children using crutches), this pattern was not that
regular: amplitude of the first peak (more affected side) is higher than the second [48].
Moreover, children with CP walking with crutches presented some small and inconsistent
peaks on vertical axis. This variation of walking pattern conducted to a lot of false IC
detection by existing algorithms. HoloStep used custom thresholds, based on the analysis
of CP gait pattern, in order to minimize these bias. Eyes, head and chest orientation are
strongly correlated when people walk with a fixed gaze direction [49]. The head and trunk
trajectories are also linked during locomotion (signals have the same sinusoidal shape) [50].
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These considerations encouraged to develop wearable technology fixed to the participant’s
head [51] which is the case of a HMD.

5.3. HoloStep Limitations

HoloStep is based on the kinematics of the head, which requires special attention
as it has 6 degrees of freedom and can have variable patterns. In sagittal plane, the variabil-
ity of head displacement for children with CP is high during gait [52]. But, at initial contact,
Heyrman et al. reported that ICC within and between session were above 0.7 (comparable
to the thorax kinematics) [52]. In our study, children were asked to look straight ahead
during walking tests to minimize head movement, which could be considered as non
spontaneous gait. However, this constraint is relevant to the future use of the Hololens AR
HMD, which will display holograms in front of the subject, encouraging them to keep their
gaze on the horizon. Each child produced distinctive walking pattern, peak amplitudes
could be different (regular, asymmetric, short, round...). Thus, a method based on individ-
ual signals could be better than predefined thresholds [41]. The IC detection could be more
specific to the individual’s gait pattern. In the same way, the locking period threshold could
be customized for one gait pattern. The use of machine learning method could contribute
to improve step detection, and by extension step length [31]. Another limitation is that
HoloStep has been tested only with the Hololens AR HM version 1. Using another device
would probably require some adjustments to the thresholds used. Furthermore, it can be
assumed that future versions of the various manufacturers’ HMD will further improve
the robustness and accuracy of head pose capture.

6. Conclusions and Future Work

We have developed and evaluated a new algorithm called HoloStep to calculate
spatiotemporal gait parameters using only the head pose provided by an augmented
reality headset (Hololens). It is based on the detection of peaks associated to initial contact
event, and used a combination of locking distance, locking time, peak amplitude detection
with custom thresholds for children with CP. An experimental comparison with a reference
algorithm based on full motion kinematics shown that HoloStep accurately detected foot
contact, and calculated step length, total distance walked and gait speed both for children
with CP and healthy participants.

Once the gait parameters have been obtained, another step before designing relevant
rehabilitation exercises is to investigate feedback on gait performance in AR. We therefore
started to model and evaluate different visual feedback on speed, and their effects on
patients’ walking performance. We have also started the development of a serious game
using a process framework that involves a multidisciplinary team and is inspired by
existing methodologies [53,54]. This serious game includes sprint training sessions and
adaptive feedback. We will start a larger clinical study to assess acceptance, usability [55]
and therapeutic effects on children with CP.

Beyond this specific application, we believe that the HoloStep algorithm can be
implemented in other serious games aimed at a wider range of different patients for motor
rehabilitation purposes.
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