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An increasing number of resting-state functional magnetic resonance neuroimaging

(R-fMRI) studies have used functional connections as discriminative features for

machine learning to identify patients with brain diseases. However, it remains unclear

which functional connections could serve as highly discriminative features to realize

the classification of autism spectrum disorder (ASD). The aim of this study was

to find ASD-related functional connectivity patterns and examine whether these

patterns had the potential to provide neuroimaging-based information to clinically

assist with the diagnosis of ASD by means of machine learning. We investigated

the whole-brain interregional functional connections derived from R-fMRI. Data

were acquired from 48 boys with ASD and 50 typically developing age-matched

controls at NYU Langone Medical Center from the publicly available Autism Brain

Imaging Data Exchange I (ABIDE I) dataset; the ASD-related functional connections

identified by the Boruta algorithm were used as the features of support vector

machine (SVM) to distinguish patients with ASD from typically developing controls

(TDC); a permutation test was performed to assess the classification performance.

Approximately, 92.9% of participants were correctly classified by a combined SVM

and leave-one-out cross-validation (LOOCV) approach, wherein 95.8% of patients

with ASD were correctly identified. The default mode network (DMN) exhibited

a relatively high network degree and discriminative power. Eight important brain

regions showed a high discriminative power, including the posterior cingulate

cortex (PCC) and the ventrolateral prefrontal cortex (vlPFC). Significant correlations
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were found between the classification scores of several functional connections and

ASD symptoms (p < 0.05). This study highlights the important role of DMN in ASD

identification. Interregional functional connections might provide useful information for

the clinical diagnosis of ASD.

Keywords: autism spectrum disorder, support vector machine, resting-state functional magnetic resonance

neuroimaging (R-fMRI), functional connection (FC), Boruta

INTRODUCTION

Autism spectrum disorder (ASD) is a neurodevelopmental

disability characterized by persistent deficits in social
communication associated with restricted and repetitive patterns
of behavior, interests, or activities (Minshew and Williams,
2007). Individuals with ASD have difficulty with everyday

reciprocal social communication and social interactions, causing

heavy burdens to individuals, families, and society (Van Loo
and Martens, 2007). However, the neural correlates underlying
ASD symptoms have not been fully elucidated, and further
examination is warranted to gain a more comprehensive
understanding of this disorder. Resting-state functional
MRI (R-fMRI), which measures the blood oxygen level-
dependent (BOLD) signal recorded at rest, has emerged as a
promising tool for exploring disorder-related brain function
alterations (Biswal, 2012; Lau et al., 2019). Previous R-fMRI
studies have demonstrated dispersively distributed functional
disruptions in ASD, while this disorder has been increasingly
characterized as the dysregulation of brain networks with altered
functional connectivity (Hull et al., 2017). Connectivity is a
general description of the interactive relationship between two
independent brain regions in anatomical space. Functional
connectivity aims to describe this relationship from the point of
functional synchronization. In the scan of R-fMRI, functional
connectivity is measured by statistical dependence in BOLD
fluctuations between two brain regions or brain networks.
Except for anatomical morphology, the human brain regions can
also be subdivided by functional characteristics. In a previous
study (Dosenbach et al., 2010), the 160 regions of interest
(ROIs) covering the whole brain were labeled and grouped
into six networks, namely, the default mode network (DMN),
frontoparietal network (FPN), cingulo-opercular network
(CON), sensorimotor network (SMN), occipital network (ON),
and cerebellum network (CN). This brain atlas was defined based
on activation patterns of the brain across different cognitive
tasks and may support additional information for interpreting
developmental changes in brain function.

According to a previous study, there was a decrease in
the functional connectivity of the medial prefrontal cortex
(mPFC) with left anterior insula in patients with ASD (Von
dem Hagen et al., 2013). In contrast to healthy subjects,
patients with ASD exhibited decreased posterior cingulate
cortex (PCC) connectivity with the superior frontal gyrus and
increased connectivity of which with the parahippocampal
gyrus (Monk et al., 2009). Moreover, associations between
functional connectivity and ASD symptoms have been observed.

For instance, the connectivity between the left anterior insula
and bilateral precuneus showed a negative correlation with
autism symptom severity (Xu et al., 2018). Atypical functional
interactions between the core regions of the DMN, including
the PCC and the mPFC, were correlated with impaired social
function in patients with ASD (Lynch et al., 2013; Von
dem Hagen et al., 2013). These findings indicated that the
clinical characteristics of ASD might be represented in aberrant
functional interactions in large-scale brain networks.

Machine learning has attracted an increasing amount of
attention in R-fMRI studies as a promising technique for
identifying patients with neuropsychiatric diseases at the
individual level (Geng et al., 2018; Riaz et al., 2018). Previous
studies have suggested that functional interactions in large-
scale brain networks could be utilized for the classification
of patients vs. healthy subjects. For example, interregional
functional connections were regarded as discriminative
features of support vector machine (SVM) to differentiate
patients diagnosed with attention deficit hyperactivity disorder
(ADHD) from healthy subjects (Sun et al., 2020). Whole-
brain functional connections were also adopted as features
of SVM to identify patients with schizophrenia (Li et al.,
2019). Machine learning has been regarded as an exploratory
framework to characterize the brain functional organization from
interregional functional connections that may be implicated
in neuropathology underlying neuropsychiatric disorders. For
example, the cerebellum showed high discriminative power
for identifying patients with ADHD (Sun et al., 2020). The
functional connections across the DMN and visual cortical areas
showed high discriminative power when discriminating major
depressive patients from healthy subjects (Zeng et al., 2012).
Despite progress in patient identification usingmachine learning,
it is not yet clear how functional interactions in large-scale brain
networks serve as highly discriminative features to realize the
classification of ASD.

“Boruta” algorithm (Kursa et al., 2010) preserves the feature
set with statistically significant contributions to classification
rather than highest contributions and, thus, reduces the
overfitting. In this study, the Boruta algorithm was used to
determine the ASD-related functional connectivity pattern.
Based on this pattern, we distinguished patients with ASD
from typically developing controls (TDC) using SVM and then
characterized brain network and regions with high discriminative
power. Considering that the DMN has been shown to be
significantly involved in ASD (Padmanabhan et al., 2017), we
expected that the DMN would play an important role in
ASD identification.
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TABLE 1 | Demographic and clinical data.

Groups ASD (mean ± SD) TDC (mean ± SD) p-value

No. of subjects 48 50

Sex (M/F) 48/0 50/0

Age 11.02 ± 2.65 11.96 ± 2.87 0.090

FIQ 107.92 ± 16.66 111.92 ± 14.30 0.200

VIQ 104.81 ± 14.96 112.16 ± 12.94 0.011*

PIQ 110.19 ± 18.79 108.90 ± 15.85 0.710

ADI S 19.85 ± 5.10

ADI C-V 15.34 ± 3.84

ADOS T 11.71 ± 4.28

ADOS C 3.56 ± 1.64

ADOS S 8.15 ± 2.97

FIQ, full IQ; PIQ, performance IQ; VIQ, verbal IQ; ADI S, ADI-R social total; ADI C-V,

ADI-R communication total for verbal children; ADOS T, ADOS total; ADOS C, ADOS

communication total; ADOS S, ADOS social total. *indicates p < 0.05 after two-sample

t-test.

MATERIALS AND METHODS

Participants
Table 1 shows the characteristics of all participants in this study.
A total of 48 boys with ASD and 50 typically developing age-
matched male controls were included. These participants were
part of the New York University (NYU) Langone Medical Center
dataset on the Autism Brain Imaging Data Exchange (ABIDE)
platform (http://fcon_1000.projects.nitrc.org/indi/abide/). The
exclusion criteria were as follows: (1) female sex; (2) not between
7 and 18 years old; and (3) excessive head motions. Considering
that gender imbalance might interfere with the ASD analysis, we
regarded sex as a potential confounding factor and employed a
relatively careful participant selection criterion by choosing only
male subjects.

The Diagnostic and Statistical Manual of Mental Disorders,
Fourth Edition (DSM-IV-TR) was used to diagnose ASD.
This study was carried out in accordance with the principles
of the Declaration of Helsinki and was approved by the
Institutional Review Board (IRB) of NYU and the NYU School of
Medicine. Prior to participation, informed consent was obtained
from all participants and their parents/legal guardians (for
participants < 18 years).

Image Preprocessing
All images were acquired using a Siemens MAGNETOM Allegra
syngo 3.0 T MR Scanner (Siemens AG, Medical Solutions,
Erlangen, Germany). A 8:07min T1-weighted sagittal MP-RAGE
structural image was obtained (flip angle= 7◦, time of repetition
(TR) = 2,530ms, time of echo (TE) = 3.25ms, number of
volumes = 256, voxel size= 1.3× 1× 1.3mm, FOV= 256mm,
slice thickness= 1.33mm, and T1= 1,100ms). A 6-min R-fMRI
scan was obtained using a T2∗-weighted gradient-echo EPI pulse
sequence (flip angle= 90◦, number of slices= 33, TR= 2,000ms,
TE = 15ms, number of volumes = 180, voxel size = 3 × 3 ×

4mm, FOV = 240mm, and slice thickness = 4mm). During
the R-fMRI scan, participants were asked to relax with their eyes

open, while a white cross-hair against a black background was
projected on a screen.

Data processing was performed using a combination of
DPABI (http://www.rfmri.org/), SPM (http://www.fil.ion.ucl.ac.
uk/spm/), and custom code written in MATLAB. For each
subject, the first 10 volumes of functional images were
discarded to allow for magnetization equilibration effects and
the adaptation of the participants to the scan circumstances. The
remaining images were corrected for slice timing and motion.
All participants in this study had a maximum displacement
of < 2mm in the x-, y-, or z-axes and an angular motion
of <2◦. The corrected images were then normalized into
a standard stereotactic space as defined by the Montreal
Neurological Institute (resampling voxel size = 3 × 3 ×

3mm) and smoothed using a 6-mm full-width at half-maximum
Gaussian kernel. To further reduce the effects of confounding
factors, we also regressed out the nuisance signals (Friston-24
motion parameters, white matter signal, and cerebrospinal fluid
signal). Finally, functional images underwent temporal band-pass
filtering ([0.01–0.08 Hz]).

Boruta Feature Selection
The Boruta algorithm was adopted based on the interregional
functional connections for feature selection before ASD
identifying in this study. Interregional functional connections
were calculated based on the functional brain atlas (Dosenbach
et al., 2010). First, the average R-fMRI time series of 160 ROIs
of the atlas (Dosenbach et al., 2010) were extracted to calculate
functional connections between all possible pairs of ROIs.
Specifically, the functional connections between two ROIs were
obtained by calculating the Pearson’s correlation coefficient
between their average R-fMRI time series. Then, correlation
coefficients were subsequently converted to z-values by Fisher’s
r-to-z transformation to improve the normality of values.
Finally, a series of 160 × 160 symmetric matrices represented
the whole-brain network of participants, and the upper triangle
elements of the matrix were extracted for feature selection.

As a feature selection method built based on a random
forest classifier, the Boruta method selects the features that have
significantly more relevance with classification than randomly
permuted features (Kursa et al., 2010). Compared with general
feature selection methods that focus on the so-called “minimal-
optimal” problem by obtaining the best possible classification
results with possibly minimal feature sets, the Boruta method
aims to identify all features that are relevant for classification. In
this study, we employed the Boruta method to examine the ASD-
related functional connectivity pattern (implemented in Python:
https://github.com/scikit-learn-contrib/boruta_py). In brief, the
method can be described as follows: each feature of the original
feature matrix A is shuffled across subjects to generate shadow
features to add randomness and remove correlations between
features and class labels, and then, the shadow feature matrix B is
concatenated with the original featurematrix A to form amixture
feature matrix C (C = [A, B]) in which the number of features
is twice that of the original feature matrix A. A random forest
classifier is performed on the mixture feature matrix C (the Gini
value was utilized as the cost function; the number of the decision
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FIGURE 1 | The Boruta-SVM process flowchart. FC, functional connection; SVM, support vector machine; DMN, default mode network; FPN, frontoparietal network;

CON, cingulo-opercular network; SMN, sensorimotor network; ON, occipital network; CN, cerebellum network.

tree was set as 500 in this study). The Gini importance of each
feature is calculated. Real features with Gini importance higher
than the 95th percentile of shadow features will be assigned a
hit and then a statistical test (using a binomial distribution with
p = 0.05, two-step correction: FDR and Bonferroni correction)
will be performed to mark features as “confirmed” or “rejected.”
The features marked as “rejected” will be removed from original
feature matrix A. The above steps are repeated until each feature
has a mark or the number of iterations reaches the predefined
criterion (the maximum of iterations was set as 250 in this study).

We applied a k-means clustering method based on functional
connections to classify the aforementioned ASD-related
connections into several patterns. Specifically, a matrix with the
ASD-related connections as rows and the subjects as columns
was constructed. The rows of this matrix were then classified into
different clusters based on their distributions across subjects. The
connections assigned into the same cluster constitute a unique
pattern of connection that covary across subjects.

The brain functional connection network has amounts of
nodes and functional interactions and can be represented as
a graph. The topological complexity of a brain functional
connection network that reflects the global performance of

a network was generally characterized with graph theory
measures (Bullmore and Sporns, 2012). ASD-related functional
connectivity pattern was a sparse presentation of the whole
brain and also a specific representation for the classification
of ASD. In this study, we aimed to employ the network
degree (ND) to describe the topological characteristics of this
pattern. The ND of a brain network was defined as the number
of direct connections between a predefined brain network
and other networks, representing the relative importance of a
brain network in regard to the information flow in the brain
(Zuo et al., 2012).

SVM Classification
Figure 1 shows a flowchart for SVM classification including
the construction of whole-brain interregional functional
connections, Boruta feature selection, and SVM classification.
We defined the ASD-related functional connections after the
Boruta feature selection as classification features and used
SVM with the radial basis function (RBF) kernel function to
distinguish patients with ASD from TDC (implemented using
“libsvm”: https://www.csie.ntu.edu.tw/~cjlin/libsvm/). SVM is
the most common machine learning technique for the clinical
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FIGURE 2 | Permutation distribution of the classification accuracy estimate.

The permutation was repeated 10,000 times, resulting in 10,000 classification

accuracies based on random labels. The classification accuracy (92.9%)

based on the true labels exceeded each of the classification accuracies

resulting from the permutation, indicating that our classifier can reliably learn

the relationship between the features and the labels with a probability higher

than the predetermined 95% criterion.

application study of R-fMRI.When the cost of sample acquisition
is expensive, SVM displays a key advantage due to its algorithm
principle. The hyperplane of SVM used to distinguish different
categories can be determined by fewer support vectors and thus
exhibit excellent performance in small samples usually. The
classification weight of a functional connection was obtained
by averaging weights across all trials of leave-one-out cross-
validation (LOOCV). We defined the classification weight of
a brain region as the sum of the classification weight of all the
connections to and from that brain region. The classification
weight of each brain network was evaluated by summing the
classification weight of all the regions within that brain network.
The brain regions whose classification weights were two SDs
higher than the average classification weight of brain regions
contributing to classification were defined as the important
brain regions.

Statistical Analysis and Permutation Tests
The Pearson correlation analyses were performed between
the classification scores of the functional connections and
ASD symptoms including the Autism Diagnostic Observation
Schedule (ADOS: ADOS_total, ADOS_communication, and
ADOS_social) and Autism Diagnostic Interview-Revised
(ADI_R: ADI_R_social total and ADI_R_verbal total). The
p = 0.05 was set as the statistical threshold. We employed
a permutation test to evaluate the statistical significance of
classification accuracy (Golland and Fischl, 2003). Specifically,
after randomly permuting the labels corresponding to the
training samples, we trained the classifier on the permuted
training samples and then performed validation. The
permutation process was conducted 10,000 times in total.
It is assumed that classification performance is reliable when the

generalization rate obtained by the classifier trained on the real
class labels is higher than the 95% CI of the classifier trained on
randomly relabeled class labels. To comprehensively evaluate
the classification performance, we also assessed sensitivity and
specificity. These two measures are commonly utilized together
to estimate the predictive performance of a classification model.
The sensitivity indicates the proportion of positive predictions in
the group of patients, and the specificity indicates the proportion
of negative predictions in the group of healthy controls.

RESULTS

Classification Results
The results indicated that 92.9% of subjects were correctly
classified using an SVM method by LOOCV (sensitivities =

95.8% and specificities= 90.0%). The classification features were
extracted using the Boruta method, and a total of 125 ASD-
related functional connections were selected. The distribution
of the permutation tests (10,000 times) showed that our
classification accuracy (92.9%) was significantly higher than the
random level (p < 0.0001, Figure 2).

Brain Regions and Networks With High
Classification Weights
The DMN exhibited the highest ND, followed by the FPN and
ON (Figure 3A). As shown in Figure 3B, three interregional
connectivity patterns were detected by k-means clustering based
on the ASD-related functional connections. Specifically, the
DMN and ON showed relatively higher ND in pattern 1, while
relatively higher ND was found in the DMN and FPN in pattern
2. Pattern 3 showed lower ND in each network and a higher
proportion of within-network connections than other patterns.

As shown in Figure 4, eight important brain regions were
identified and ranked by classification weights, including the
PCC, ventrolateral prefrontal cortex (vlPFC), anterior prefrontal
cortex, superior parietal lobe, inferior parietal lobe, posterior
occipital lobe, superior temporal sulcus, and angular gyrus. Most
regions were part of the DMN or FPN. Furthermore, the DMN
and FPN exhibited higher classification weights.

As shown in Figure 5; Table 2, there was a significantly
negative correlation (p < 0.05) between the classification
scores of five DMN-related functional connections and ASD
symptoms measured by clinical scales (ADI_R_social total,
ADI_R_verbal total, or ADOS_communication) in patients
with ASD. The classification scores of fourteen functional
connections were positively correlated (p < 0.05) with
ASD symptoms (ADI_R_social total, ADI_R_verbal total,
ADOS_total, ADOS_social, or ADOS_communication) in
patients with ASD.

DISCUSSION

In this study, we distinguished patients with ASD from TDC
based on resting-state interregional functional connections using
a Boruta-SVM approach. A high classification accuracy of 92.9%
was achieved based on the classification features of ASD-
related functional connections by means of the Boruta feature
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FIGURE 3 | Network degree (ND) analysis of ASD-related functional connections. (A) The ND distribution of six networks. (B) The three functional connectivity

patterns identified by k-means clustering. Patterns 1, 2, and 3 consist of 57, 47, and 21 functional connections, respectively. The yellow and blue lines in circles

indicate between-network and within-network connections, respectively. The yellow lines in the line charts indicate the ND or the number of between-network

connections for each network. The red and blue lines in the line charts indicate the number of functional connections and within-network functional connections for

each network, respectively. FC, functional connection; DMN, default mode network; FPN, frontoparietal network; CON, cingulo-opercular network; SMN,

sensorimotor network; ON, occipital network; CN, cerebellum network; a, anterior; d, dorsal; dl, dorsolateral; inf, inferior; Lat, lateral; med, medial; post, posterior;

sup, superior; v, ventral; vm, ventromedial; vl, ventrolateral; ACC, anterior cingulate cortex; AG, angular gyrus; BG, basal ganglia; FFG, fusiform gyrus; INS, insula; IPL,

inferior parietal lobe; IPS, intraparietal sulcus; mINS, middle insula; PCC, posterior cingulate cortex; PCUN, precuneus; PFC, prefrontal cortex; PrCG, precentral gyrus;

SMA, supplementary motor area.

selection method. The DMN exhibited a high ND with a
larger classification weight. The eight important brain regions
with high classification weights, including the PCC, vlPFC,
aPFC, superior parietal lobe, inferior parietal lobe, posterior
occipital lobe, superior temporal sulcus, and angular gyrus, were
primarily located in the DMN and FPN. Thereinto, the PCC and

vlPFC presented relatively high discriminative power. We found
statistically significant correlations between the classification
scores of several ASD-related functional connections and ASD
symptoms. The DMN was negatively correlated with ASD
symptoms. These findings highlighted an important role of the
DMN in distinguishing ASD patients from TDC.
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FIGURE 4 | Regional importance in the resting-state network. (A) The location

of the top eight important brain regions. (B) Regional importance ranking. The

important regions whose classification weights are two SDs above the mean

classification weights of all the discriminative regions are presented with purple

bars. The y- and x-labels represent the regional name and classification

weight, respectively. a, anterior; d, dorsal; dl, dorsolateral; inf, inferior; Lat,

lateral; med, medial; post, posterior; sup, superior; v, ventral;

vm, ventromedial; vl, ventrolateral; ACC, anterior cingulate cortex; AG, angular

gyrus; BG, basal ganglia; FFG, fusiform gyrus; INS, insula; IPL, inferior parietal

lobe; IPS, intraparietal sulcus; mINS, middle insula; PCC, posterior cingulate

cortex; PCUN, precuneus; PFC, prefrontal cortex; PrCG, precentral gyrus;

SMA, supplementary motor area.

We proposed the Boruta method to select features reflecting
ASD-related functional connectivity patterns. The Boruta
method recognizes features relevant to the target and was used to
construct an interpretable predictive model (Kursa et al., 2010).
Most of the previous combined SVM and R-fMRI studies were

mainly dedicated to identifying features that were useful for
making accurate predictions, but the limitation of those studies
was that the interpretability of the predictive model was
seldom assessed (Wee et al., 2012). We employed the ND to
describe classification features selected using the Boruta method.
The highest ND was found in the DMN and might suggest
a predominance in the ASD-related functional connectivity
pattern. According to the results of the weight analysis, we
found that these functional connections involved in the DMN
were of high discriminative power during SVM classification,
highlighting the importance of the DMN. These findings were
consistent with previous results showing an abnormal DMN
connectivity pattern in ASD (Cheng et al., 2015; Abbott et al.,
2016). For example, patients with ASD exhibited reduced
network integration (reduced within-network connections) and
increased out-of-network connections for the DMN (Abbott
et al., 2016). Furthermore, increased functional connectivity
between the DMN and salience network was associated with
a higher cognitive impairment in ASD (Abbott et al., 2016).
Together, these findings suggest that the DMN might be
considered a relevant locus for ASD identification.

The FPN exhibited a relatively higher classification weight and
ND in pattern 2, indicating a potential high contribution to the
ASD-related functional connectivity pattern. The FPN is crucial
for coordinating behavior in an accurate, rapid, and flexible goal-
driven manner (Bareham et al., 2018; Fiebelkorn et al., 2018).
A growing number of studies implicate the FPN as a neural
substrate for impaired executive function, which is a frequently
reported symptom of ASD, thus prompting researchers to further
examine the potential contribution of the FPN to the underlying
pathophysiology of ASD. For example, a significantly decreased
FPN-insular participation coefficient was found in children with
ASD during a task with executive function demand (Lynch et al.,
2017). A previous study demonstrated that patients with ASD
exhibited lower levels of network integration in the FPN and
that reduced FPN connectivity was related to attention deficit
symptoms in the ASD group (Solomon et al., 2009), indicating
that functional connection disruptions of the FPN involved in the
clinical symptoms of ASD.

This study found that the PCC and vlPFC were the two
most discriminative regions. As a central region of the DMN,
The PCC showed abnormalities in many neurological and
psychiatric disorders including ASD (Sun et al., 2012; Yang et al.,
2016). For example, ASD exhibited hypoconnectivity between
the PCC and other regions within the DMN (Weng et al.,
2010). Moreover, the hyperconnectivity of the PCC with the
parahippocampal gyrus has been shown to relate with the severity
of ASD symptoms measured by the ADOS (Lynch et al., 2013).
The vlPFC is an important region in the FPN that involves
goal-appropriate response selection and response inhibition
(Aron et al., 2004). Patients with ASD showed significantly
decreased brain activation in the vlPFC when participating in a
temporal discounting task (Murphy et al., 2017). The functional
connection of the vlPFC with the anterior cingulate cortex was
associated with the performance of a cognitive control task
(Solomon et al., 2014). Compared with TDC, patients with ASD
had weaker activation in the occipital area which is mostly
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FIGURE 5 | Correlations between the functional connection classification scores and clinical scales in patients with ASD. (A) The functional connections whose

classification scores were negatively correlated with at least one of the ASD measures (ADI_R_social total, ADI_R_verbal total, or ADOS_communication). (B) The

functional connections whose classification scores were positively correlated with at least one of the ASD measures (ADI_R_social total, ADI_R_verbal total,

ADOS_total, ADOS_social total, and ADOS_communication). The meanings of the regional colors are the same as in Figure 3B. a, anterior; d, dorsal; inf, inferior;

post, posterior; sup, superior; dl, dorsolateral; vm, ventromedial; v, ventral; vl, ventrolateral; ACC, anterior cingulate cortex; AG, angular gyrus; fusiform gyrus, FFG;

IPL, inferior parietal lobe; IPS, intraparietal sulcus; ITG, inferior temporal gyrus; med, medial; mINS, middle insula; mPFC, medial prefrontal cortex; PCC, posterior

cingulate cortex; PFC, prefrontal cortex; PrCG, precentral gyrus.

associated with face processing (Renzi et al., 2015). Increasing
evidence suggests associations between abnormal face processing
and impaired social function in ASD (Nomi and Uddin, 2015). A
study combining DTI and fMRI found that abnormal structural
connectivity and functional activation of the occipital cortex were
related to social communication deficits in patients with ASD
(Jung et al., 2019).

In the ASD group, several classification scores of functional
connections were significantly correlated with ASD symptoms,
indicating that the ASD-related functional connectivity pattern
has the potential to reflect symptom severity. Notably, the
functional connections whose classification scores were
correlated with ASD symptoms were widely distributed
throughout the whole brain, further supporting the hypothesis
that the clinical characteristics of ASD were represented in
aberrant functional interactions in large-scale brain networks
(He et al., 2007; Fiebelkorn et al., 2018). Functional connections
whose classification scores were negatively correlated with
ASD symptoms were connected from/to the DMN, which

might imply a close relationship between the DMN and
ASD symptoms.

Previous studies proposed different pipelines to classify ASD
from TDC, while most efforts were made to improve accuracy,
and the clinical relevance was partly overlooked. This study
further decodes the connectivity patterns which could be used
to distinguish ASD from TDC. In addition, we not only
replicated the important role of the DMN in ASD from the
classification of the disease but also identified the relationships
between autistic symptom severity and classification weight of
the DMN. These results suggested that the clinical relevance of
features served more focus in the machine learning study of
R-fMRI studies.

Notably, the functional connections whose classification
scores were correlated with ASD symptoms were widely
distributed throughout the whole brain, further supporting
the hypothesis that the clinical characteristics of ASD were
represented in aberrant functional interactions in large-scale
brain networks (He et al., 2007; Fiebelkorn et al., 2018).
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TABLE 2 | Correlations between classification score and clinical scales of

functional connections in ASD.

ROI-ROI Network Scale r-value p-value

Positive correlations

Post occipital—aPFC ON—CON ADI_R_V 0.369 0.011

Occipital—vaPFC ON—FPN ADI_R_V 0.323 0.027

Occipital—vlPFC ON—DMN ADI_R_V 0.416 0.004

Occipital—vlPFC ON—DMN ADI_R_V 0.324 0.026

Post occipital—ACC ON—FPN ADI_R_V 0.357 0.014

Occipital—dlPFC ON—FPN ADI_R_S

ADI_R_V

0.350

0.300

0.017

0.041

IPL—dFC FPN—FPN ADOS_C 0.300 0.043

Temporal—mINS SMN—CON ADOS_C 0.383 0.009

Parietal—PrCG SMN—SMN ADOS_S 0.318 0.028

AG—AG DMN—DMN ADOS_T

ADOS_C

0.296

0.299

0.041

0.044

PCC—Sup parietal DMN—SMN ADI_R_S

ADOS_T

ADOS_C

ADOS_S

0.302

0.336

0.300

0.301

0.042

0.020

0.043

0.038

ITG—Inf cerebellum CN—DMN ADOS_T

ADOS_C

ADOS_S

0.458

0.389

0.419

0.001

0.008

0.003

PCC—Med cerebellum CN—DMN ADOS_C 0.314 0.034

Occipital—Inf cerebellum CN—DMN ADI_R_V 0.356 0.015

Negative correlations

FFG—mPFC DMN—DMN ADI_R_S −0.330 0.025

vmPFC—Sup temporal DMN—CON ADOS_C −0.321 0.030

Occipital—Inf temporal DMN—DMN ADI_R_S −0.312 0.035

Occipital—AG DMN—CON ADI_R_V −0.353 0.015

IPS—Inf cerebellum DMN—CN ADI_R_V −0.311 0.033

Positive correlations: functional connections whose classification score was positively

correlated with at least one of the ADI_R_social total, ADI_R_verbal total, ADOS_total,

ADOS_social, and ADOS_communication; negative correlations: functional connections

whose classification score was negatively correlated with at least one of the ADI_R_social

total, ADI_R_verbal total, and ADOS_communication.

DMN, default mode network; FPN, frontoparietal network; CON, cingulo-opercular

network; SMN, sensorimotor network; ON, occipital network; CN, cerebellum network;

a, anterior; d, dorsal; inf, inferior; med, medial; post, posterior; sup, superior; v, ventral;

vm, ventromedial; vl, ventrolateral; ACC, anterior cingulate cortex; AG, angular gyrus; FFG,

fusiform gyrus; IPL, inferior parietal lobe; IPS, intraparietal sulcus; ITG, inferior temporal

gyrus; mINS, middle insula; mPFC, medial prefrontal cortex; PCC, posterior cingulate

cortex; PFC, prefrontal cortex; PrCG, precentral gyrus; ADI_R_S, ADI_R social total;

ADI_R_V, ADI_R_verbal total; ADOS_T, ADOS_total; ADOS_C, ADOS_communication;

and ADOS_S, ADOS_social.

Functional connections whose classification scores were
negatively correlated with ASD symptoms were connected
from/to the DMN, which might imply a close relationship
between the DMN and ASD symptoms.

Two limitations should be considered. First, only male
patients were included in the present analysis because ASD
is more prevalent among males than among females in the
general population; however, this might limit the generalizability
of our findings. Therefore, further studies should take into
account the relationship between gender and ASD. Second, this
study demonstrates that the DMN might play a key role in
ASD; however, how the DMN specifically interacts with ASD
symptoms needs more in-depth research.

CONCLUSION

We demonstrated that the ASD-related functional connections
identified by the Boruta method could be regarded as features to
differentiate patients with ASD from TDC. This finding indicated
that resting-state interregional functional connections might
provide neuroimaging-based information to clinically assist with
the diagnosis of ASD. In particular, the DMN and its core region
(the PCC) exhibited high discriminative power for identifying
ASD, thereby highlighting the important role of the DMN in
understanding the potential pathophysiology of ASD.
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