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Abstract: Collagen is a promising biomaterial used in the beauty and biomedical industries.
In this study, the physicochemical characterization, antioxidant activities, and protective effects
against H2O2-induced injury of collagen isolated from Acaudina molpadioides were investigated.
The amino acid composition analysis showed that the collagen was rich in glycine (Gly), alanine
(Ala), and glutamic acid (Glu), but poor in tyrosine (Tyr) and phenylalanine (Phe). Zeta potential
analysis revealed that the isoelectric point (pI) of collagen from Acaudina molpadioides was about
4.25. It possessed moderate scavenging activities of 2,2-diphenyl-1-picrylhydrazyl (DPPH) and
2,2’-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radicals in a dose-dependent manner.
In addition, the collagen was able to effectively improve cell viability and morphology, inhibit
the production of Malondialdehyde (MDA), and increase the activities of Superoxide Dismutase
(SOD) and Glutathione Peroxidase (GSH-Px) in cultured RAW264.7 cells, resulting in a protective
effect against H2O2-induced injury. Overall, the results showed that collagen extracted from A.
molpadioides has promising prospects in the beauty and cosmetics industries.
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1. Introduction

Collagen is a major structural protein that is widely found in multicellular organisms and
constitutes about 30% of the total protein in many cases [1,2]. Collagen possesses a set of specific
mechanical and biochemical properties, such as a weak solubility in water, high tensile strength, and
the ability to bind water and form aqueous gels, which have resulted in its broad applications in
the food industry [3,4]. In addition, due to its low antigenicity, good biocompatibility, and its biological
activity, collagen could be used in the fields of medicine and healthcare, in applications such as burn and
trauma treatment, beauty, tissue repair, and wound hemostasis. Over the past decade, the enzymatic
hydrolysis of collagen for the production of functional peptides with antimicrobial, antioxidant, and
antitumor activities has emerged as a promising new field [5,6]. Therefore, the demand of collagen
from animal sources has been increasing year by year, due to its emerging and widespread applications.

Currently, at least 29 types of collagen have been identified and characterized from animal skin,
bone, swim bladder, and cartilage tissues [7,8]. Each type of collagen from a different tissue has its own
unique amino acid composition, molecular weight, and sequence, which help determine the differences
in quality, biophysical properties, and peptide bioactivity found across different collagens [2]. It has
been shown that the environmental temperatures in which different animals reside are highly related
to the amino acid compositions and thermal stabilities of their collagens. The thermal stability of
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collagens from cold water animals, for example, are generally relatively poorer than those from warm
water and land animals [9]. The ocean is rich in biological resources; thus, potential sources of collagen
derived from marine animals have attracted increasing attention in recent years. Yu et al. extracted
and characterized collagens from the spines and skulls of skipjack tuna (Katsuwonus pelamis), and
found type I collagens with denaturation temperatures of only about 17 ◦C [10]. The collagen from
the skin of the giant croaker was shown to be a type I collagen and had a decrease in solubility in
the presence of sodium chloride [11]. Zhao et al. found that collagen from the swim bladders of miiuy
croakers showed 26.7 ◦C of the denaturation temperatures and antioxidant functions, with potential
cosmeceutical applications [8].

The sea cucumber is an important marine resource, with over 1400 species around the world, many
of which are edible and have high medicinal value [12]. The body wall of the sea cucumber is rich in
protein, of which collagen accounts for 70%. Thus far, the preparation and characterization of collagen
from Parastichopus californicus [13], Stichopus vastus [14], Holothuria parva [15], Stichopus japonicus [16],
Stichopus monotuberculatus [17], and Acaudina leucoprocta [18] have been reported. Furthermore,
bioactive peptides produced by the hydrolysis of sea cucumber collagen have also been extensively
studied [19–21]. One highly valued sea cucumber, Acaudina molpadioides, is widely distributed at
the sandy bottoms of the East China Sea. However, the development and utilization of Acaudina
molpadioides have not received extensive attention, resulting in very low prices for this species. In our
previous paper, we had studied the antioxidant activities and protective effect against H2O2-induced
injury of hydrolysates of collagen from Acaudina molpadioides by using alkaline protease [22]. However,
there has been very little information available about the properties and functions of collagen from
Acaudina molpadioides. The analysis of total collagen from Acaudina molpadioides could expand its
application fields, such as directly used as biomedical materials, rather than just used in the form of
protein hydrolysate. Therefore, we chose to characterize collagen isolated from Acaudina molpadioides
in this study, by various techniques such as amino acid composition, Fourier Transform Infrared
Spectroscopy (FTIR) spectrum, and zeta potential. In addition, its antioxidant activity and protective
effect against H2O2-induced injury in RAW264.7 cells were also evaluated. This research may
hopefully provide a reference for biomedical and cosmeceutical applications for collagen from Acaudina
molpadioides in the future.

2. Results and Discussion

2.1. Ultraviolet (UV) Absorption Spectrum

It is well known that the UV absorption spectrum of a protein is determined by its amino acid
composition. Although the maximum absorption peak of collagen was observed in the 210–240 nm
range due to its triple helical structure, there were some differences found in its UV absorption spectrum
compared to other sea cucumber collagens, due to its different amino acid composition. As shown
in Figure 1, the collagen from the body wall of A. molpadioides exhibited maximum absorbance at
232 nm, suggesting that C=O, -COOH, and CONH2 moieties are present in the polypeptide chains of
collagen. In addition, no obvious absorption peak was observed at 250–280 nm, indicating that levels
of tryptophan, tyrosine, and phenylalanine were low in collagen from A. molpadioides. Compared
to collagens from the sea cucumber S. monotuberculatus (218 nm) and S. japonicus (220 nm) [2,23],
the maximum absorbance peak of collagen from A. molpadioides was more similar to collagen from
large barbell catfish (233 nm) [24], showing that collagens from A. molpadioides and barbell catfish are
likely similar in the amino acid composition.
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Figure 1. Ultraviolet (UV) spectra of collagen from the body wall of A. molpadioides. 

2.2. Fourier Transform Infrared Spectroscopy (FTIR) 

The FTIR spectrum (400–4000 cm−1) of collagen from the body wall of A. molpadioides is shown in 
Figure 2. Five major amide bands (amide A, amide B, amide I, amide II, and amide III) were found at 
wavenumbers of 3422.1, 2931.6, 1654.0, 1541.4, and 1241.9 cm−1. The amide A band is a free N-H 
stretching vibration, which is commonly located next to 3400–3440 cm−1. A lower wavenumber of 
amide A suggested more hydrogen bonding by N-H groups [25]. The amide A wavenumbers of 
acid-soluble collagen from the scales of miiuy croaker (M. miiuy) were in 3415 cm−1, indicating that 
the hydrogen-bonding numbers of collagen from A. molpadioides were less than that of collagen 
from M. miiuy [26]. The amide B band corresponded to an asymmetric stretch vibration of -NH3+ and 
=C-H, and an increase of free -NH3+ groups would result in a higher wavenumber [2,8,25]. The 
amide B band of collagen in this study was observed at 2931.6 cm-1, which was higher than that of 
collagen from A. leucoprocta (2926.4 cm−1). Amide I and amide II are considered the most important 
factors for evaluating the degree of molecular order and secondary structure of collagen [27]. When 
the molecular order is reduced,or the secondary structure changed, the wavenumber of the amide I 
band will be lower. The amide I band is related to the C=O stretching vibration, and its wavenumber 
is in the range of 1600-1700 cm−1. The wavenumber of the amide I band of collagen from the body 
wall of A. molpadioides was 1654.0 cm−1, indicating that the collagen retained its native secondary 
structure and molecular order. The amide II band is associated with N-H bending, and a lower 
wavenumber for this band indicates a higher structure order. The wavenumber of amide II of 
collagen was 1541.4 cm−1, suggesting a high structure order in collagen from A. molpadioides. The 
amide III band of collagen (1241.9 cm−1) was related to C-N stretching vibrations and N-H bending, 
demonstrating the existence of a helical structure. 

Figure 1. Ultraviolet (UV) spectra of collagen from the body wall of A. molpadioides.

2.2. Fourier Transform Infrared Spectroscopy (FTIR)

The FTIR spectrum (400–4000 cm−1) of collagen from the body wall of A. molpadioides is shown in
Figure 2. Five major amide bands (amide A, amide B, amide I, amide II, and amide III) were found
at wavenumbers of 3422.1, 2931.6, 1654.0, 1541.4, and 1241.9 cm−1. The amide A band is a free N-H
stretching vibration, which is commonly located next to 3400–3440 cm−1. A lower wavenumber of
amide A suggested more hydrogen bonding by N-H groups [25]. The amide A wavenumbers of
acid-soluble collagen from the scales of miiuy croaker (M. miiuy) were in 3415 cm−1, indicating that
the hydrogen-bonding numbers of collagen from A. molpadioides were less than that of collagen from
M. miiuy [26]. The amide B band corresponded to an asymmetric stretch vibration of -NH3

+ and =C-H,
and an increase of free -NH3

+ groups would result in a higher wavenumber [2,8,25]. The amide B
band of collagen in this study was observed at 2931.6 cm-1, which was higher than that of collagen
from A. leucoprocta (2926.4 cm−1). Amide I and amide II are considered the most important factors for
evaluating the degree of molecular order and secondary structure of collagen [27]. When the molecular
order is reduced, or the secondary structure changed, the wavenumber of the amide I band will
be lower. The amide I band is related to the C=O stretching vibration, and its wavenumber is in
the range of 1600–1700 cm−1. The wavenumber of the amide I band of collagen from the body wall of
A. molpadioides was 1654.0 cm−1, indicating that the collagen retained its native secondary structure
and molecular order. The amide II band is associated with N-H bending, and a lower wavenumber for
this band indicates a higher structure order. The wavenumber of amide II of collagen was 1541.4 cm−1,
suggesting a high structure order in collagen from A. molpadioides. The amide III band of collagen
(1241.9 cm−1) was related to C-N stretching vibrations and N-H bending, demonstrating the existence
of a helical structure.
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Figure 2. The fourier transform infrared spectroscopy (FTIR) spectrum of collagen from the body 
wall of A. molpadioides. 

2.3. Amino Acid Analysis 

The amino acid composition of the collagen from the body wall of A. molpadioides, compared to 
collagen from S. monotuberculatus [2], H. parva, and calfskin [15] are presented in Table 1. The results 
show that the collagen from A. molpadioides is rich in glycine (Gly), alanine (Ala), glutamic acid 
(Glu), and proline (Pro), but poor in methionine (Met), tyrosine (Tyr), phenylalanine (Phe), lysine 
(Lys), and histidine (His). Gly represents about one-third of the total residues. Similar results were 
also observed in collagens from the sea cucumbers S. monotuberculatus and H. parva. In general, the 
content of Glu is closely related to the Isoelectric point (pI) of the protein. The pI value tends to 
decrease as the Glu content increases in collagen. The Glu content of collagen in this study was 100.8 
residues/1000 residues, which was lower than that of Glu in collagen from the sea cucumber S. 
monotuberculatus (127 residues/1000 residues), but significantly higher than that of collagen from H. 
parva (74 residues/1000 residues) and calfskin (75 residues/1000 residues). This result suggested that 
the collagen from H. parva and calfskin probably had higher pI values than that from A. molpadioides. 
The imino acids hydroxyproline (Hyp) are unique amino acids in collagen and play important roles 
in stabilizing its triple helix structure. As shown in Table 1, the content of Hyp in collagen from A. 
molpadioides (57.5 residues/1000 residues) was similar to that in collagen from H. parva (62 
residues/1000 residues) and P. californicus (58 residues/1000 residues) [13], but significantly lower 
than those of collagens from S. monotuberculatus (67 residues/1000 residues), S. japonicus (66 
residues/1000 residues)[23], M. miiuy (89.5 residues/1000 residues), and calfskin (94 residues/1000 
residues)[8]. This result suggests that the collagen from A. molpadioides may not be the best source of 
Hyp but it can still be used as a potential substitute for mammalian collagen due to the abundant 
resources and low price of A. molpadioides. 
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Amino Acid A. Molpadioides S. Monotuberculatus H. Parva  Calf Skin 
Aspartic acid (Asp) 63.7 70 50 45 

Threonine (Thr) 40.8 34 ND1 ND1 
Serine (Ser) 40.7 26 20 39 
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Glycine (Gly) 336.9 320 270 330 
Alanine (Ala) 127.9 92 91 119 
Valine (Val) 21.1 21 18 21 
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Figure 2. The fourier transform infrared spectroscopy (FTIR) spectrum of collagen from the body wall
of A. molpadioides.

2.3. Amino Acid Analysis

The amino acid composition of the collagen from the body wall of A. molpadioides, compared to
collagen from S. monotuberculatus [2], H. parva, and calfskin [15] are presented in Table 1. The results
show that the collagen from A. molpadioides is rich in glycine (Gly), alanine (Ala), glutamic acid
(Glu), and proline (Pro), but poor in methionine (Met), tyrosine (Tyr), phenylalanine (Phe), lysine
(Lys), and histidine (His). Gly represents about one-third of the total residues. Similar results
were also observed in collagens from the sea cucumbers S. monotuberculatus and H. parva. In
general, the content of Glu is closely related to the Isoelectric point (pI) of the protein. The pI
value tends to decrease as the Glu content increases in collagen. The Glu content of collagen in
this study was 100.8 residues/1000 residues, which was lower than that of Glu in collagen from
the sea cucumber S. monotuberculatus (127 residues/1000 residues), but significantly higher than
that of collagen from H. parva (74 residues/1000 residues) and calfskin (75 residues/1000 residues).
This result suggested that the collagen from H. parva and calfskin probably had higher pI values
than that from A. molpadioides. The imino acids hydroxyproline (Hyp) are unique amino acids in
collagen and play important roles in stabilizing its triple helix structure. As shown in Table 1,
the content of Hyp in collagen from A. molpadioides (57.5 residues/1000 residues) was similar to that in
collagen from H. parva (62 residues/1000 residues) and P. californicus (58 residues/1000 residues) [13],
but significantly lower than those of collagens from S. monotuberculatus (67 residues/1000 residues),
S. japonicus (66 residues/1000 residues) [23], M. miiuy (89.5 residues/1000 residues), and calfskin
(94 residues/1000 residues) [8]. This result suggests that the collagen from A. molpadioides may not be
the best source of Hyp but it can still be used as a potential substitute for mammalian collagen due to
the abundant resources and low price of A. molpadioides.

Table 1. Amino acid composition of collagen in comparison with the amino acid composition of
collagens from other sea cucumbers (residues/1000 residues).

Amino Acid A. Molpadioides S. Monotuberculatus H. Parva Calf Skin

Aspartic acid (Asp) 63.7 70 50 45
Threonine (Thr) 40.8 34 ND 1 ND 1

Serine (Ser) 40.7 26 20 39
Glutamic acid (Glu) 100.8 127 74 75

Glycine (Gly) 336.9 320 270 330
Alanine (Ala) 127.9 92 91 119
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Table 1. Cont.

Amino Acid A. Molpadioides S. Monotuberculatus H. Parva Calf Skin

Valine (Val) 21.1 21 18 21
Methionine (Met) 5.7 6 5 6

Isoleucine (Ile) 7.1 15 4 11
Leucine (Leu) 19.6 20 16 23
Tyrosine (Tyr) 10.5 6 4 3

Phenylalanine (Phe) 8.0 10 6 3
Lysine (Lys) 4.1 6 7 26

Histidine (His) 4.6 9 ND 1 5
Arginine (Arg) 45.1 71 49 50
Proline (Pro) 98.5 84 96 121

Hydroxyproline (Hyp) 57.5 67 62 94
Imino Acid 156 151 158 215

1 not detected.

2.4. Zeta Potential

Zeta potential is an important factor in the stability of collagen, which tends to form aggregates
when the zeta potential of the collagen is close to zero [28]. Therefore, the zeta potential is also used to
evaluate the isoelectric point (pI). The zeta potential of collagen from A. molpadioides was determined
at pH values ranging from 3–9, and the result is shown in Figure 3. The data showed that the zeta
potential values of collagen decreased as the pH was increased, being positively charged from pHs 3
to 4 and negatively charged from pHs 5 to 9. The pH was about 4.25 when the zeta potential value
was zero, indicating that the pI of collagen from A. molpadioides was about 4.25. Generally, the pIs of
collagens from different organisms are different due to differences in their amino acid compositions. It
has been reported that the pI of collagen is always between pH 6.0 to 9.0 [29], such as the collagen from
the tilapia skin (6.42) [30], the brown-banded bamboo shark (6.21) [31], the scales of the Miiuy Croaker
(6.81) [26], and the seabass (6.46) [32]. The lower pI demonstrates that there are more acidic amino acids
in collagen from A. molpadioides, especially glutamic acid, which was also proved by the amino acid
analysis in Table 1. Low pI values due to high contents of glutamic acid were also observed in collagen
from other sea cucumbers, including S. monotuberculatus [2], A. leucoprocta [18], P. californicus [13], and
S. japonicus [33].
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Figure 3. Zeta potential of collagen from A. molpadioides at different pH values. 

2.5. Antioxidant Activity 

Many collagens from marine organisms have antioxidant, antibacterial, and anti-aging 
activities, which have attracted wide attention in the biomedical materials and cosmeceutical 
industries. The radical scavenging rate is an important indicator for evaluating antioxidant 
capability, which plays an important role in promoting wound healing and preventing skin aging. 
Therefore, scavenging assays of 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2’-azino-bis-3- 
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2.5. Antioxidant Activity

Many collagens from marine organisms have antioxidant, antibacterial, and anti-aging activities,
which have attracted wide attention in the biomedical materials and cosmeceutical industries.
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The radical scavenging rate is an important indicator for evaluating antioxidant capability, which plays
an important role in promoting wound healing and preventing skin aging. Therefore, scavenging
assays of 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2’-azino-bis-3- ethylbenzothiazoline-6-sulfonic
acid (ABTS) were implemented to evaluate the antioxidant activities of collagen from the body wall of
A. molpadioides.

As shown in Figure 4, the collagen from A. molpadioides exhibited antioxidant activities against
both DPPH and ABTS, and the higher the collagen content, the stronger the antioxidant activity.
The scavenging activity of ABTS increased rapidly from 12.5% to 57.9% for collagen at concentrations
ranging from 0.5 to 2 mg/mL (p < 0.05), but increased slowly to 73.7% at a concentration of 10 mg/mL
(p < 0.05). For DPPH, the scavenging activity increased gradually from 14.6% to 66.5% at the tested
concentrations of collagen (p < 0.05). The results indicated that collagen from the body wall of A.
molpadioides revealed higher antioxidant activity for ABTS than DPPH, especially at low concentrations.
Pal reported that the DPPH radical scavenging activity was about 20% for collagen from a carp swim
bladder at a concentration of 1.0 mg/mL [34]. Similarly, acid-soluble collagen from the scales of
the miiuy croaker has been shown to have 20% DPPH radical scavenging activity at a concentration
1.0 mg/mL [35]. The DPPH radical scavenging activity of collagen from A. molpadioides at 1.0 mg/mL
in this study was 19.6%, which is similar to the results obtained with collagens from the carp swim
bladder and the scales of the miiuy croaker. In addition, the ABTS radical scavenging activity for
collagen from A. molpadioides at 1.0 mg/mL was 48.4%, which was significantly higher than that of
collagen from the swim bladders of miiuy croakers (about 10%) at the same concentration [8]. It was
reported that the antioxidant activity of collagen may be related to its ability to reduce hydroperoxide
content, inactivate active oxygen and scavenge free radicals [36].
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Figure 4. The scavenging activities of 2,2’-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) 
and 2,2-diphenyl-1-picrylhydrazyl (DPPH) at different concentrations of collagen from A. 
molpadioides. (a–g) values with different letters indicated significant differences in the same samples 
at different concentrations (p < 0.05); (A–B) values with different letters indicated significant 
differences in the different samples at the same concentration (p < 0.05). 
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2.6. Protective Effect against H2O2-induced Injury on RAW264.7 Macrophage Cells

H2O2 is a Reactive Oxygen Species (ROS) that may damage or even kill cells through direct
oxidation of biomolecules (lipids, proteins, DNA) or by triggering intracellular pathways [35].
Macrophages are essential for identifying and eliminating microbial pathogens in the host defense
system and are the main targets of pro-oxidants. It is commonly used in macrophages to study
apoptosis or oxidative stress-mediated cell damage [35,37,38]. As shown in Figure 5, the viability
of RAW264.7 cells incubated with 1 mM H2O2 for 4 h was 86.8% of the control value. In order to
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evaluate the protective effect of collagen from A. molpadioides against H2O2-induced injury on RAW264.7
macrophage cells, 6.25, 12.5, 25, and 50 µg/mL of collagen were selected to study the effects of collagen
on cell viability and morphology. As the concentration of collagen increased from 0 to 25 µg/mL, as
shown in Figure 5, the cell viability increased from 86.8% to 128.5%. However, a small decline in cell
viability was observed at a concentration of 50 µg/mL, indicating that high concentrations of collagen
may be toxic to RAW264.7 cells. When the concentration of collagen was in the range of 12.5–50 µg/mL,
the cell viability was significantly improved compared to the control and H2O2 model groups.
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The cell viability was measured after incubation for 24 h in medium with or without collagen and
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As shown in Figure 6, the morphologies of RAW264.7 cells in the control group were very regular
and intact, while cells in the model group were largely damaged. When pretreated with 6.25 µg/mL
of collagen (C group), the cell morphology was significantly improved, but some broken cells were
still visible. As the concentration of collagen increased to 12.5 or 25.0 µg/mL, the cell morphology
was substantially improved, and no damaged cells were observed. However, a small number of
damaged cells were observed in group F (50 µg/mL of collagen), which was probably due to the high
concentration of collagen poisoning these cells.

Malondialdehyde (MDA) is the major product of the reaction of free radicals with lipids in the body.
The level of MDA indirectly reflects the level of severity of the cellular attack by free radicals [39]. As
shown in Figure 7A, the MDA level of the H2O2-induced model group was significantly higher than that
of the control group, indicating that the cells were severely damaged by H2O2 stimulation. The collagen
treatment group showed a significantly lower MDA content compared to the H2O2-induced model
cells in a dose-effect relationship. When the concentration of collagen reached 25 µg/mL, the level of
intracellular MDA was comparable to that of the control group. When the concentration of collagen
continued to increase to 50 µg/mL, the level of MDA was even lower than that of the control group.
This result indicates that collagen could effectively alleviate the oxidative stress damage of free radicals
to the body.
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Figure 6. Effect of collagen from A. molpadioides on H2O2-induced injury RAW264.7 cell morphology.
The cells of each group were directly observed under an inverted microscope, and the background
of the pictures were set to green. (A) control group; (B) model group (1 mM H2O2); (C) 6.25 µg/mL
collagen + 1 mM H2O2; (D) 12.5 µg/mL collagen + 1 mM H2O2; (E) 25.0 µg/mL collagen + 1 mM H2O2;
(F) 50.0 µg/mL collagen + 1 mM H2O2.
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Figure 7. Effect of collagen from A. molpadioides on levels of Malondialdehyde (MDA) (A), Superoxide
Dismutase (SOD) (B), and Glutathione Peroxidase (GSH-Px) (C) in RAW264.7 cells induced by H2O2.
Values with different letters were significantly different (p < 0.05).
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Both Superoxide Dismutase (SOD) and Glutathione Peroxidase (GSH-Px) are important
components of antioxidant enzymes in cells, playing important roles in the balance between antioxidants
and oxidative stress [40]. SOD catalyzes the disproportionation of peroxy anions for the scavenging
of free radicals. GSH-Px catalyzes the reaction of GSH with peroxide, removing toxic and harmful
hydrogen peroxide. Therefore, the levels of antioxidant enzyme activities in the body directly
reflect the level of dynamic balance regulation of cells under oxidative stress [41]. It could be seen
from Figure 7B that the SOD activity of the model group was significantly decreased compared to
the control group, and that collagen pretreatment could effectively increase SOD activity in the model
cells. The activities of SOD in the 6.25 µg/mL and 12.5 µg/mL of collagen pretreatment groups had
increased to levels that were no longer significantly different from that of the control group. When
the concentration of collagen increased to 25 µg/mL or 50 µg/mL, the SOD activities in the model cells
were even higher than in normal cells (control group). Figure 7C shows that the GSH-Px activity in
the model group was significantly lower than that of the control group but increased significantly after
pretreatment with collagen. When the collagen concentration was ≥12.5 µg/mL, the GSH-Px activities
in the H2O2-induced model cells increased to levels even higher than those of the normal cells (control
group).

In summary, the collagen from A. molpadioides is able to significantly improve the cell viability and
morphology of H2O2-induced RAW264.7 cells. The protective effect of collagen against H2O2-induced
injury in RAW264.7 cells may be related to the fact that it significantly reduced the intracellular MDA
content and increased the enzymatic activities of both SOD and GSH-Px. This study suggested that
collagen from A. molpadioides may be a promising source for the development of natural antioxidants,
and could be effectively used in the beauty and cosmetics industry.

3. Materials and Methods

3.1. Materials

Sea cucumber A. molpadioides was obtained from the wharf of Xiangshan, in the Zhejiang
Province of China. The protein marker was purchased from Sigma-Aldrich (Shanghai, China).
The 2,2-dipehnyl-1-picryldydrazyl (DPPH) and dimethyl sulfoxide (DMSO) were purchased from
Sigma-Aldrich (Shanghai, China). The malondialdehyde (MDA), glutathione peroxidase (GSH-Px),
and superoxidase dismutase (SOD) assay kits were provided by the Nanjing Jiancheng Bioengineering
Institute (Nanjing, China). All other chemicals used were of analytical grade.

3.2. Extraction of Collagen from A. Molpadioides

The collagen was extracted from the body wall of A. molpadioides according to previously reported
methods [18]. The A. molpadioides was washed and cut into small pieces. The samples were soaked
in 10 times the volume of ethylenediamine tetraacetic acid (EDTA, 0.2 M, pH 8.0) and NaOH (0.1 M)
in turn. After 48 h, the precipitate after centrifugation was transferred to a 10-fold volume of acetic
acid (0.5 M) containing 0.1% (w/v) pepsin at 4 ◦C for 48 h. NaCl was added into the filtrate obtained
by two layers of cotton cloth with the final concentration of 0.8 M. The precipitate was collected by
centrifugation, then dialyzed, and freeze-dried to obtain collagen.

3.3. UV Absorption Spectrum

The UV absorption spectra of collagen were performed using a spectrophotometer (UV-1800,
Mapada Instruments Co., Ltd., Shanghai, China) from 200 to 600 nm. Collagen was dissolved in 0.5 M
acetic acid solution with a final concentration 0.1 mg/mL.

3.4. FTIR Spectrum Analysis

The FTIR spectrum of collagen was performed by the spectrophotometer Nicolet 6700 (Thermo
Fisher Scientific Inc., Waltham, MA, USA). The mixture with 0.1 mg collagen and 10 mg KBr was
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pressed into a disk for spectrum recording. The infrared spectroscopy (IR) spectra were recorded in
the range of 4000–400 cm−1 at a rate of 2 cm−1 per point. The final spectrum curve was obtained by
Excel 2007.

3.5. Amino Acid Analysis

The amino acid composition of collagen was analyzed using a previously described protocol [42].
The collagen samples were hydrolyzed with 6 M HCl at 110 ◦C for 24 h. The hydrolysates were then
used to analyze the amino acid composition on an automated HITACHI L8900 amino acid analyzer
(Hitachi High-Technologies Corporation, Tokyo, Japan).

3.6. Zeta Potential

Collagen was dissolved in 0.2 M acetic acid to a final concentration of 0.1 mg/mL. The zeta
potential of collagen was measured using a Malvern Zetasizer Nano ZS90 (Malvern Instruments Ltd.,
UK). The tested pH (3–9) was adjusted with 1 M NaOH and 1 M HCl.

3.7. Antioxidant Activity

3.7.1. DPPH Radical Scavenging Activity

DPPH was dissolved in absolute ethanol with final concentration 0.04 mol/mL. Two mL DPPH
solution, and 1 mL ethanol were added into 1 mL of the sample solution. The mixture was incubated
for 30 min at room temperature. After centrifugation at 5000 rpm for 5 min, the absorbance of
the supernatant was measured at 517 nm. A control (containing 2 mL DPPH solution, 1 mL water,
and 1 mL ethanol) and a blank (containing 1 mL sample solution and 3 mL ethanol) were prepared.
The antioxidant activity of the sample was evaluated by the scavenging rate of DPPH with the Equation
(1):

DPPH scavenging rate (%) = (A0 − A + A1)/A0 × 100% (1)

where A was the sample absorbance; A0 was the control absorbance; A1 was the blank absorbance.

3.7.2. ABTS Radical Scavenging Activity

Four hundred and forty µL of 140 mM potassium persulfate solution and 25 mL of 7 mM ABTS
solution were mixed and incubated for 14 h. The mixture was diluted with methanol to an absorbance of
0.7± 0.002 as a working solution. 0.15 mL of the sample solution was added into 2.85 mL of the working
solution. After being incubated for 10 min, the absorbance was measured at 734 nm. The antioxidant
activity of the sample was evaluated by the scavenging rate of ABTS with the Equation (2):

ABTS scavenging rate (%) = (Ac − As)/Ac × 100% (2)

where Ac was the absorbance without the sample and As was the absorbance with the sample.

3.8. Cell Morphology Observation and Measurement of Cell Viability

RAW264.7 cells were seeded in 96-well plates at a density of 1 × 105 /mL in culture medium and
incubated for 24 h at 37 ◦C and 5% CO2. The control group and the model group were supplemented
with 200 µL medium, and the experimental groups each received 200 µL of a solution with a different
concentration of collagen (6.25, 12.5, 25, and 50 µg/mL). After incubation for 24 h at 37 ◦C and 5%
CO2, the model group and the experimental groups were then exposed to H2O2 (1 mM) for 4 h.
The morphology of each group was observed under an inverted microscope. Two hundred µL
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) was added to each well, followed
by 4 h of incubation at 37 ◦C. One hundred and fifty µL DMSO was added into each well and incubated
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for 20 min. The absorbance of the plate was determined using a microplate reader at 490 nm. The cell
viability was calculated according to the following formula:

cell viability (%) = 100 × (absorbance of treatment/absorbance of control)

3.9. Assays for the Levels of MDA, SOD, and GSH-Px

Two mL of RAW264.7 cells with a cell concentration of 1.0 × 105 /mL were inoculated into six-well
plates and cultured for 24 h at 37 ◦C and 5% CO2. The cells were grouped and cultured as described
in Section 3.8. Next, the cells were washed twice with phosphate buffered solution (PBS) and lysed
with cell lysates. After centrifugation at 1000 rpm for 10 min at 4 ◦C, the supernatant fractions were
collected. Assays for quantification of the levels of MDA, SOD, and GSH-Px in the collagen were
conducted according to the kit instructions, using spectrophotometric methods.

3.10. Statistical Analysis

All experiments were carried out in triplicate. Significant differences between means were
measured by Duncan’s multiple range test (p < 0.05). The analysis was performed using the software
SPSS 19.0 (SPSS Inc., Chicago, IL, USA).

4. Conclusions

In this study, the physicochemical properties, antioxidant activity, and protective effect against
H2O2-induced injury in RAW264.7 cells of collagen from A. molpadioides were investigated. The collagen
from Acaudina molpadioides has a lower isoelectric point compared to collagens from tilapia and th miiuy
croaker, due to its higher content of Glu. It showed scavenging activities for both DPPH and ABTS
radicals in a dose-dependent manner. Furthermore, the collagen exhibited protective effects against
H2O2-induced injury in RAW264.7 cells by reducing their MDA contents and increasing the activities
of SOD and GSH-Px. This study will hopefully provide helpful information for the further application
of collagen from A. molpadioides in the beauty and biomedical industries.
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