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ABSTRACT

The profile of gut microbiota can vary according to host genetic and dietary characteristics, and be influenced by disease
state and environmental stressors. The uremic dysbiosis results in a loss of biodiversity and overgrowth of
microorganisms that may cause elevation of metabolic solutes such as trimethylamine N-oxide (TMAO), inducing
pathogenic effects on its host. In patients with chronic kidney disease (CKD), TMAO levels are elevated because of a
decreased clearance and an increased production from the uremic gut dysbiosis with a disrupted intestinal barrier and
elevated enzymatic hepatic activity. Dietary precursors of TMAO are abundant in animal-derived foods such as red meat,
egg yolk and other full-fat dietary products. TMAO is also found naturally in fish and certain types of seafood, with the
TMAO content highly variable according to the depth of the sea where the fish is caught, as well as processing and
storage. Although evidence points towards TMAO as being an important link to vascular damage and adverse
cardiovascular outcomes, the evidence in CKD patients has not been consistent. In this review we discuss the potential
dietary sources of TMAO and its actions on the intestinal microbiome as an explanation for the divergent results. We
further highlight the potential of a healthy diet as one feasible therapeutic opportunity to prevent gut dysbiosis and
reduce uremic toxin levels in patients with CKD.

LAY SUMMARY

There is a link between the intestinal microbiota and human health. Patients with chronic kidney disease have an
altered microbiota, with accumulation (because of decreased renal clearance) and increased production of toxins
such as trimethylamine-N-oxide (TMAO). Elevated TMAO may induce cardiovascular and kidney damage. Dietary
precursors of TMAO are found in animal-derived foods (red meat, egg, fish) and full-fat dietary products. In this
review we discuss the potential dietary sources of TMAO, and its actions on the intestinal microbiome and
association with worse clinical outcomes. We further highlight the potential of a healthy diet as one feasible
therapeutic opportunity to prevent dysbiosis and reduce toxin levels in patients with chronic kidney disease.
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AN INDUSTRIALIZED MICROBIOTA

The human gut serves as the host for trillions of microorgan-
isms, commonly referred to as the gut microbiome. These mi-
croorganisms constitute its own ecosystem, with physiological
functions such as vitamin synthetization and immune system
maturation, and they maintain functions for the intestinal bar-
rier defence [1]. In this intricate process, the gut microbiome
produces numerous metabolites, either derived directly from
dietary compounds or generated through the complex host–
microbiome interplay. The metabolome of the gut could thus be
of three different types: entirely produced from themicrobiome,
produced from both the host and the microbiome, or produced
from the microbiome and diet [2]. Among the metabolic com-
pounds, the short-chain fatty acids such as propionate and ac-
etate are involved in energy homeostasis, immune regulation,
blood pressure control and maintaining the gut barrier defence
[3]. One example of the metabolic effects of short-chain fatty
acids is that experimental administration of these to humans
stimulates the production of glucagon-like peptide 1 and results
in lower weight gain [3]. Other important metabolites that inter-
act with the gut microbiota are bile acids, which primarily are
synthesized in hepatocytes from cholesterol. Dysbiosis of the
gut impacts on bile acid metabolism leading to the accumula-
tion of primary conjugated bile acids in the colon, which may
exert pro-inflammatory effects on the intestinal epithelial cells
and ultimately result in impaired insulin sensitivity and liver
steatosis [1]. Thus, through various interactions with its host,
the gut microbiome exerts its actions through regulating vari-
ous metabolic pathways.

The gut microbiota is individual and varies according to
host genetic and dietary characteristics, disease state and en-
vironmental stressors such as medication. In chronic non-
communicable diseases, the gut microbiome is less diverse.
Those with a less rich microbacteria flora have been shown
to have elevated insulin resistance, more obesity and dyslipi-
demia [4]. During the current era, an industrialized microbiota
have emerged due not only to changes in eating habits but
also to air pollution, microplastics and heat stress [5]. The
obesity-associated microbiome usually presents with a reduc-
tion in Bacteroides species, along with an increase of Firmicutes
phylum (e.g. Clostridium, Lactobacillus, Bacillus, Ruminococcus and
Enterococcus) [6]. In chronic kidney disease (CKD), dysbiosis is
common and referred to as “uremic dysbiosis.” The uremic dys-
biosis results in an altered gut microbiome with an overgrowth
of microorganisms which may cause pathogenic effects on its
host [7]. These changes occur already in mild kidney dysfunc-
tion; Roseburia, which has been suggested to serve as amarker of
a normal intestinal microbiome, are decreased already in early-
stage CKD and become even less abundant in patients on dialy-
sis [8]. This imbalance, which also may be exacerbated by iatro-
genic causes such asmedicationwith phosphate binders, proton
pump inhibitors and antibiotics, could result in the accumula-
tion of uremic retention products that may further impact on
disease pathogenesis and clinical outcomes [9, 10]. The impor-
tance of the gutmicrobiota in CKDwas first demonstrated in the
1960s in an experimental study where nephrectomized rats ab-
sent of microbiome were observed to live longer than nephrec-
tomized rats with a preserved gut microbiota [11]. Since then, a
number of uremic retention products, both protein-bound and
soluble, and have been identified as being microbiota-derived
and potentially responsible for several of the observed patho-
logical effects in CKD patients [12].

Among the uremic retention products there has been a par-
ticular focus on generation of the free-water-soluble molecule
trimethylamine N-oxide (TMAO), which has been associated
with an increased risk of cardiovascular disease (CVD) and all-
cause mortality [13, 14]. Initially thought to be a waste prod-
uct, TMAO serves as a link to a number of disease conditions
and their related pathogenetic mechanisms, including endothe-
lial dysfunction [15], acute heart failure [16], foam cell formation
[17], infarcted coronary arteries [18], decreased reverse choles-
terol transport [19], inflammation [20, 21] and early vascular
ageing [22].

THE LINK BETWEEN GUT MICROBIOTA, TMAO
AND THE KIDNEY

Humans are not able to demethylate TMAOand>95% is excreted
unchanged by the kidneys through tubular section or glomerular
filtration [23]. As kidney function deteriorates, TMAO concentra-
tions increase [24]. The median TMAO concentration is around
5.8 μM/L in healthy volunteers but rises 13-fold in CKD stage 5
and remains high after 12 months on dialysis [24]. TMAO, which
is a free-soluble low-molecular weight solute of 75 Da is cleared
by extracorporeal dialysis to around 85% as opposed to other
protein-bound gut-derived uremic toxins such as indoxyl sul-
fate [25]. The different mechanisms by which TMAO accumu-
lates in CKD are summarized in Fig. 1. Supporting the evidence
of a significant role of renal clearance of TMAO, it was observed
that following a successful kidney transplantation, TMAO lev-
els return to the levels of healthy adults [24, 26]. TMAO forma-
tion could be due to breakdown of food rich in the precursor
of TMAO, trimethylamine (TMA). Intestinal bacteria could also
produce TMA directly from dietary l-carnitine, phosphatidyl-
choline, choline or betaine. The TMA–lyase enzyme complex
CutC/D converts choline to TMA [27], while l-carnitine and be-
taine are converted to TMA by CntA/B and YeaW, respectively
[28]. The precursor TMA is subsequently transformed into TMAO
by the liver-enzyme flavin-containingmonooxygenase 3 (FMO3).
The activity of FMO is increased in the uremic milieu, thus be-
ing at least partly responsible for the elevated TMAO forma-
tion associated with CKD [29]. Additionally, patients with CKD
have been shown to harbormore of the TMAO-producing intesti-
nal bacteria as opposed to healthy people. Dysbiosis result in
the breakdown of the intestinal mucosa barrier through disrup-
tion of the enterocyte tight junctions [30]. Consequently, more
of the uremic toxins and precursors, such as TMA, are leaked
to the bloodstream, reaching the liver, and are converted to
TMAO. These alterations are believed to occur in the beginning
of the disease process. Even in children with CKD, serum lev-
els of sCD14 and the tight junction protein Zo-1 were increased
in those with reduced kidney function, indicating that the phe-
notype of the “leaky gut” is present at an early stage [31]. Thus,
TMAO levels are elevated in CKD because of a decreased clear-
ance and an increased production from the uremic gut dysbiosis
with a disrupted intestinal barrier and elevated FMO3 activity in
the liver.

DIETARY SOURCES OF TMAO

Dietary precursors of TMAO are abundant in animal-derived
foods such as red meat (beef, pork, lamb, veal, processed meat
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Figure 1: TMAO in patients with CKD. Created with BioRender.com.

and ham), egg yolk and other full-fat dietary products (whole
milk, yogurt, cream cheese and butter) (Fig. 2). Consumption of
food items rich in dietary precursors of TMAO will lead to pro-
cessing by the gut microbiome [27] resulting in the release of
TMA into the blood and further oxidization into TMAO by hep-
atic FMO3 [32]. A study on protein source (redmeat versus white
meat versus non-meat) found that subjects consuming approx-
imately 220 g of steak/day for 1 month had higher TMAO lev-
els accompanied by a reduced fractional renal excretion rate of
TMAO [33]. In addition to TMAO derived from its dietary pre-
cursors, TMAO is found naturally in fish and certain types of
seafood. Fish-source TMAO can bypass gut and liver metabolism
and be absorbed directly into the blood stream. TMAO is also
present in fish oil/krill oil supplements. A variety of internal and
external factors, such as fish/seafood species, feeding quality,
fishing zone and storage conditions, could affect the endoge-
nous TMAO concentration in fish products and subsequently
contribute to the variation in urinary and circulating TMAO af-
ter fish consumption [34, 35]. To date, population studies as-
sessing the relation between diet and circulating TMAO have
been inconclusive [36–38], possibly due to differences in dietary
habits/culture and genetic heterogeneity in host gut microbial
and FMO3 activity across populations. Other factors, such as
the role of kidney excretion in the metabolic process could fur-
ther complex the link between diet and TMAO. It is worth not-
ing that the health effects of TMAO may vary with its dietary
source, highlighting the relevance of other compounds in the
food.

FISH AND TMAO—A MATTER OF DEPTH

A Swedish group were the first to report that TMA and urinary
TMAO levels were associated with intake of fish [39]. A subse-
quent study showed that compared with a group consuming red
meat, the group consuming fish had 4–6 times higher urinary
TMAO levels [40]. In another study of 9694 healthy people, it was
reported that TMAO levelswere associatedwith kidney function,
being male and fish intake [41]. Based on such studies, it has
been suggested that TMAO could serve as a potential biomarker
of cod and salmon intake [42]. Fish commonly containAeromonas
salmonicida, a bacterial species that is responsible for the pro-
duction of TMA,which causes the unpleasant “fishy odour.” The
content of TMA increases with spoilage and during storage of
chilled fish fillets [43]. Taken together, fish may be a rich source
of both TMA and TMAO, and fish consumption associates with
urinary and plasma TMAO concentrations [36]. As fish is con-
sidered a healthy choice of food and a significant source of
lipid bio-actives possessing cardiovascular health benefits, the
link between TMAO and fish intake is counterintuitive. How-
ever, understanding the function of TMAO in nature may help
explain this “fish paradox.” In nature, TMAO protects proteins
and acts as an osmolyte that counteracts the effects of destabi-
lizers such as low temperature, high urea and high hydrostatic
pressure. In deep sea waters the weight of the water pushes wa-
ter molecules into proteins and distorts them. Without the pro-
tection of TMAO life would not be possible in deep oceans. Thus,
to habituate deep oceans, marine fish need to build up a protec-
tive muscular content of TMAO. A study by Yancey et al. [44] in
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Figure 2: Dietary measures to lower TMAO levels.

the Hadal snailfish (the second-deepest fish recorded) showed a
strong linear correlation between themuscular content of TMAO
and depth. In general, deep-sea fish species contain high TMAO
levels whereas freshwater and shallow-living seafood, such as
farm-raised salmon, shrimp, trout and clams, are low or even
absent in TMAO [45]. To test the effects of a single fish meal on
circulating TMAO levels, a study was conducted in 10 healthy
controls. The study showed that whereas a meal consisting of
shrimp and canned tuna did not result in elevated circulating
TMAO levels, wild salmon and especially fish sticks resulted in
a major increase in serum TMAO. Deep-sea fish like cod and
Alaska pollock are the main ingredients in fish sticks and a sig-
nificant source of TMAO. Although serum TMAO levels had re-
turned to baseline the next day the marked increase in TMAO,
especially following a meal of fish sticks, is worrisome [45]. It
is likely that when kidney function is compromised, TMAO lev-
els may accumulate with time if TMAO-rich fish is consumed
on a regular basis. To test this hypothesis, the effects of a single
and regular meals with fish low or rich in TMAO should be con-
ducted in CKD patients. Beside depth, water temperature also
affects TMAO levels in fish. A study from New Zealand not only
confirmed the link between depth and TMAO but also showed
that the TMAO content was lower in the summer months when
water was warmer [43]. As TMAO accumulate in deep-sea fish
this offers clues for specific nutritional recommendations in pa-
tients with a reduced clearance of TMAO. This is a research area
in which more work needs to be done with a huge potential for

clinical impact in patients with reduced renal function. A com-
parative study of TMAO in different animal species has strength-
ened the link between eating habits and outcome and survival
advantage in the animal kingdom [46].

TMAO AND THE LINK TO CARDIOVASCULAR
DAMAGE

Several epidemiological studies have shown an association be-
tween higher TMAO levels and increased cardiovascular risk [17,
47, 48]. The initial human study that suggested TMAO as amedi-
ator of CVD, utilized a plasma metabolomic screening to detect
three metabolites of phosphatidylcholine (choline, betaine, and
TMAO). These threemetabolites were independently found to be
predictive of incident CVD events such as heart attack, stroke,
and cardiovascular death over a 3-year follow-up period in 1876
subjects who were undergoing cardiac disease evaluation [17].
Subsequently, the researchers expanded their study and discov-
ered that increased plasma levels of l-carnitine, a precursor to
TMAO,also predicted cardiovascular eventswhen elevated in as-
sociation with TMAO over a 3-year follow-up period [19].

The relationship between cardiovascular outcomes, mortal-
ity and TMAO has also been demonstrated in CKD patients [18,
26, 49]. In a cross-sectional sample, serum TMAO independently
predicted the number of infarcted coronary arteries [18]. In an-
other cross-sectional analysis of 220 patients with estimated
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glomerular filtration rate <45 mL/min/1.73 m2 who underwent
coronary angiography, elevated serum TMAO levels were associ-
ated with the severity of coronary arterial disease after adjust-
ing for traditional cardiovascular risk factors [26]. Over a subse-
quent follow-up over 4 years, every 10-μM increase in baseline
TMAOwas associated with a 19% increase in total mortality [26].
One study included 521 CKD3 patients and found that those in
the highest quartile of TMAO had a 1.9-fold greater risk of 5-
year all-cause mortality compared with those with the lowest
quartile [49]. However, the evidence of the detrimental effect of
TMAO has not been consistent. In a large study of Canadian CKD
patients, circulating TMAO levels independently predicted CVD
events over a 3-year follow-up period in CKD3 but not in CKD4
[50]. Furthermore, in another study, those with prior cerebrovas-
cular disease had lower TMAO levels [51] and a European follow-
up study did not find an association between the development
of coronary artery disease and plasma TMAO [52]. The reasons
for these inconsistencies are not clear, but one alternative hy-
pothesis is that only glomerular function was accounted for in
the analyses showing a positive correlation between TMAO and
CVD. This opened the possibility of residual confounding from
tubular renal function [53].

TMAO EFFECTS ON THE VASCULAR SYSTEM

Themechanisms bywhich TMAOexerts its effects on the cardio-
vascular system have gradually been revealed. Predominantly,
the consequences of TMAO are linked to vascular inflamma-
tion [15], platelet hyperactivity, calcification and atherosclero-
sis [54]. Experimental evidence indicates that TMAO may di-
rectly contribute to the development of atherosclerosis and
lead to cardiovascular events by disrupting lipid handling and
macrophage function, as well as causing vascular inflammation
and platelet activation, which could result in thrombosis [55].
Studies using atherosclerosis-prone apolipoprotein E knockout
mice (ApoE–/–) supplemented with choline or TMAO showed in-
creased plasma TMAO levels and larger aortic atherosclerotic
plaques with higher macrophage content compared with wild-
type mice [17]. In ApoE–/– mice, elevated TMAO reduced the
reverse cholesterol transport [19] and caused development of
cholesterol-laden foam cells [17]. Proinflammatory mediators,
such as cyclo-oxygenase-2, E-selectin and intracellular adhe-
sion molecule-1, were upregulated in the aortic tissue of low-
density lipoprotein receptor knockoutmicewho received dietary
choline or intraperitoneal TMAO [56]. In vitro studies showed that
TMAO may increase leukocyte adhesion to endothelial cells in
an nuclear factor κB–dependent manner [56]. Furthermore, en-
hanced platelet activation and adhesion was observed follow-
ing intraperitoneal TMAO injections in an in vivo carotid artery
injury model [57]. TMAO also exacerbates the development of
atherosclerotic plaques, which may ultimately lead to reduced
blood flow or increased arterial stiffness [17]. In addition, TMAO
was shown to impair endothelial signalling [15], an early event
in the development of atherosclerosis [58], and an animal ex-
periment showed that supplementation with TMAO impaired
endothelium-dependent dilatation via reduced contribution of
hyperpolarizing factor–type contribution [59].

Several studies have showed a link between TMAO and vas-
cular ageing via upregulation of a prooxidative environment,
further strengthening the suggestion that TMAO-deteriorated
endothelial function is the link between TMAO and CVD [60,
61]. TMAO may also inhibit protein function or limit degra-
dation of key enzymes or signalling proteins, leading to po-
tentially harmful downstream effects [62]. TMAO promotes

atherosclerosis by inhibiting reverse cholesterol transport, a pro-
cess that removes excess cholesterol from arterial walls [55].
Moreover, elevated TMAO promotes endothelial cell senescence
[60]. TMAO also inhibits autophagy, causing the accumulation of
damaged proteins and the impairment of cellular function [63].
Moreover, TMAO reduces the activity of a key enzyme, CYP3A4,
responsible for metabolizing various drugs, including statins,
which are commonly used to lower cholesterol levels [64]. TMAO
can also cross the blood–brain barrier and affect brain function,
leading to cognitive impairment and dementia [65].

TMAO AND THE LINK TO KIDNEY DISEASE
PROGRESSION

In addition to the effects on vascular smooth muscle cells and
endothelium,TMAO induces structural kidney damage [49]. Ani-
mal studies show that a high-fat diet or dietary supplementation
with choline or TMAO induces tubulointerstitial fibrosis and pro-
mote the expression of kidney injury markers and pro-fibrotic
genes [66]. TMAO activates renal fibroblasts and causes fibrob-
last proliferation [67]. In support of this finding, pharmacologi-
cal inhibition of the TMA production in mice has been related
to a lesser kidney injury and fibrosis [68]. Furthermore, TMAO
may exert its actions directly on renal tubular cells through
decreasing the protein expression of megalin, an effect that
could be reversed by the antiproteinuric drugs candesartan and
dapagliflozin [69].

DIETARY SOURCES OF TMAO AND
CARDIOVASCULAR OUTCOMES IN CKD

So far inconsistences exist with respect to the association be-
tween TMAO and CVD in CKD. One putative reason for the dif-
ference in effect of TMAO on clinical outcomes in CKD patients
is that the elevated TMAO levels may arise from different di-
etary sources. Red meat as an important source of TMAO, has
negative effects on both gut microbiota and host health [70].
Red meat also reduces the ability of kidneys to excrete TMAO
[33]. Due to its choline content, intake of egg may also increase
systemic TMAO levels. However, a study conducted in healthy
controls showed that an intake of four eggs per day for 28 days
did not increase circulating TMAO levels [71]. As previously re-
ported, fish could also be a dietary source of TMAO [40], but
fish intake (especially that rich in ω-3 fatty acids) is associated
with lower cardiovascular event rate and lower risk of death
in high risk cohorts or people with previously known vascu-
lar disease [72]. Examples of fish that are high in ω-3 levels
include herring, mackerel, sable, salmon, tuna, anchovy, trout
and sardine. To investigate the hypothesis that different dietary
sources of TMAO could interact with the TMAO–mortality as-
sociation, we performed an analysis in a European cohort of
737 patients with CKD stage 4–5 where we investigated the as-
sociation between mortality, TMAO and 3-carboxy-4-methyl-5-
propyl-2-furanpropionate (CMPF). CMPF is a metabolite of furan
fatty acids, which is found predominantly in fish and fish oils,
and considered as a biomarker of fish intake [73]. Long-chain
ω-3 fatty acids are suggested to be the precursors of CMPF [74].
We found that, after extensive adjustments, ln-TMAO was pos-
itively associated with mortality, whereas ln-CMPF was nega-
tively associated [75]. When we combined levels of TMAO and
CMPF, we observed that compared with patients with low levels
of both TMAO and CMPF, those with low TMAO levels and high
CMPF levels had a lower mortality, while those with high TMAO
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levels and lowCMPF levels had highermortality rate in the unad-
justedmodel, albeit outside the significance level in the adjusted
analysis. Patients with high levels of both TMAO and CMPF did
not have any different associationwithmortality comparedwith
patients with low levels, suggesting that the concomitant high
CMPF levelsmay counteract an unfavorable association between
TMAO andmortality. CMPF was further associated with an over-
all lower risk of start in kidney replacement therapy. Our in-
terpretation is that an overall high fish intake, as suggested by
high CMPF levels from fish predominantly rich in ω-3 fatty acids,
also may result in higher TMAO levels that may be less harm-
ful, as compared with high TMAO levels from red meat or fish
low in ω-3 fatty acids but high in TMAO. A proper clinical trial
with different dietary protein sources, including fish with dif-
ferent TMAO contents, is needed to confirm this hypothesis. As
a recent study showed that a higher intake of plant-based pro-
tein, but not animal or dairy protein, was related to a lower risk
of frailty [76] we believe that the renal community should pay
much more attention to the impact of different sources of pro-
tein in relation to progression of kidney disease and the uremic
phenotype.

DIETARY THERAPEUTIC OPPORTUNITIES

Dietary composition can modulate the gut microbiota and con-
sequently affect microbiota-derived TMA and TMAO levels. The
potential strategies to normalize TMAO levels in patients with
CKD are summarized in Fig. 2. Since TMAO is generated from
the gastrointestinal metabolism of foods containing choline,
lecithin and l-carnitine, and these in turn are mostly present in
red meat, deep water fish, eggs, milk and cheese, a dietary pat-
tern compatible with a plant-based diet is an attractive and op-
timal opportunity to decrease TMAO levels [77]. Diets rich in an-
imal protein with saturated fat are related to higher abundance
of the bacteria phylum Firmicutes, which is associated with
TMA production [19], while vegetarian diets, rich in oligosac-
charide, are associated with bacteria genus Prevotella (related
to a reduction in choline availability for TMA synthesis) [78].
In studies with healthy individuals following plant-based diets
(Mediterranean, vegetarian and vegan diets) the TMAO levels de-
crease, while animal-based diets had the opposite effect [77].

Beyond the restricted intake of precursors of TMA/TMAO
from redmeat, a plant-based dietary pattern can decrease TMAO
levels due to a synergistic effect with other dietary components,
such as high phytochemicals and fiber intake, which can pro-
mote commensal microbial growth and ameliorate dysbiosis
[79]. Even though there is a need to investigate the influence
of plant-based diets in altering the TMAO in CKD, several stud-
ies with specific dietary interventions from vegetable sources al-
ready point in this direction. For example, interventional studies
using resistant starch (a type of dietary fiber that can act as a
substrate for microbial fermentation and improve the integrity
of the intestinal epithelial barrier) is of great potential [80]. A
meta-analysis that included eight crossover or parallel-designed
randomized controlled trials that lasted for >4 weeks aiming to
study the effect of resistant starch in in CKD (including dialysis)
showed that resistant starch promoted a reduction in the uremic
toxin serum indole phenol sulfate, phosphate and interleukin-
6 in patients on dialysis [81]. Under the same rational of foods
to improve the gut microbiota health, the consumption of fer-
mented food increases the microbiome diversity and can ame-
liorate postprandial TMAO response [82]. Sources of fermented

food include yogurt, fil, kefir, kombucha and kimchi, but there
are plenty of recipes for fermenting vegetables, using cabbage,
beetroot, radish, turnip and carrots, that can be more culturally
appealing for incorporating into the diet.

In addition to the dietary changes suggested above, it may be
beneficial to replace fish and seafood from deep waters (orange
roughy, snow crab, lobster, cod) by those from shallow waters
(mackerel, barracouta, squid, herring, salmon, trout, clams, grey
mullet and shrimp) [83], although studies are yet to prove this.
Tuna is an exception, as it is fish from deep water, but has
low TMAO levels [83]. Finally, the increasing consumption in
the Western dietary pattern of so-called ultra-processed foods
(UPF) requires attention. UPF encompass industrialized foods
that have undergone heavy industrial processing (food heating
and Maillard reaction), with the addition of sugar, salt, artificial
non-caloric sweeteners, saturated fat and trans-fat, and of food
additives to change the color and enhance taste [84]. Examples
of UPF include salty and sweet chips, breakfast cereals, sugary
products, soft drinks and processed juices, and commercialized
ready-to-eat meals, such as the fish nuggets and others [84]. In
mice it was shown that heated food (such as UPF) contributed
to a decrease in the intestinal epithelial barrier with translo-
cation of lipopolysaccharide from the gut to the systemic cir-
culation, with an increase in colonization of Firmicutes in the
gut, which could lead to an enhanced rise in TMAO levels [85].
However, as of yet this is of a speculatory nature and requires
confirmation.

CONCLUDING REMARKS

In patients with kidney dysfunction, several fundamentally dif-
ferent mechanisms contribute to increased TMAO levels linked
to high CVD burden. Dietary changes could be an important and
modifiable factor that offer potential beneficial effects on the gut
microbiota and uremic retention solute concentrations. Under-
standing the way different dietary sources of TMAO may induce
the detrimental effect of TMAO on host health is vital in order
to be able to improve the outcomes of our CKD patients.
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