
ORIGINAL RESEARCH ARTICLE
published: 09 January 2015

doi: 10.3389/fncel.2014.00452

Subthreshold membrane currents confer distinct tuning
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Neurons rely on action potentials, or spikes, to encode information. But spikes can
encode different stimulus features in different neurons. We show here through simulations
and experiments how neurons encode the integral or derivative of their input based
on the distinct tuning properties conferred upon them by subthreshold currents.
Slow-activating subthreshold inward (depolarizing) current mediates positive feedback
control of subthreshold voltage, sustaining depolarization and allowing the neuron to
spike on the basis of its integrated stimulus waveform. Slow-activating subthreshold
outward (hyperpolarizing) current mediates negative feedback control of subthreshold
voltage, truncating depolarization and forcing the neuron to spike on the basis of its
differentiated stimulus waveform. Depending on its direction, slow-activating subthreshold
current cooperates or competes with fast-activating inward current during spike initiation.
This explanation predicts that sensitivity to the rate of change of stimulus intensity differs
qualitatively between integrators and differentiators. This was confirmed experimentally in
spinal sensory neurons that naturally behave as specialized integrators or differentiators.
Predicted sensitivity to different stimulus features was confirmed by covariance analysis.
Integration and differentiation, which are themselves inverse operations, are thus shown
to be implemented by the slow feedback mediated by oppositely directed subthreshold
currents expressed in different neurons.
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INTRODUCTION
Nearly all neurons use action potentials, or spikes, to transmit
information. But that does not mean that all neurons gener-
ate spikes in the same way or that all spikes convey the same
information. Tuning properties differ between neurons. Neurons
are often said to operate as integrators or coincidence detectors
based on the time interval over which they sum inputs (Abeles,
1982; König et al., 1996; Ratté et al., 2013). When temporally
dispersed inputs cumulatively depolarize the neuron to thresh-
old, integration time is long; on the other hand, when temporally
coincident inputs rapidly depolarize the neuron to threshold,
integration time is short. According to this explanation, operat-
ing mode depends on the temporal patterning of inputs (Segundo
et al., 1963) and other input properties, like excitatory postsy-
naptic current (EPSC) kinetics, that affect temporal summation
(König et al., 1996). However, certain neurons respond prefer-
entially or even exclusively to certain types of input, implying
that such neurons have a preferred operating mode because of
their intrinsic properties (Lundstrom et al., 2009; Ratté et al.,
2013; Gjorgjieva et al., 2014). The present study focuses on the
relationship between intrinsic neuronal properties and operat-
ing mode, and specifically on how operating mode derives from

the operation—integration or differentiation—performed on the
input by key voltage-dependent currents.

Voltage-dependent currents active at subthreshold voltages
affect excitatory postsynaptic potential (EPSP) kinetics (Fricker
and Miles, 2000; Magee, 2000; Prescott and De Koninck, 2005;
Gastrein et al., 2011; Remme and Rinzel, 2011), which in turn
affect the temporal summation of inputs. But encoding is a two-
step process insofar as input-driven depolarization must be con-
verted into all-or-none spikes. This digital conversion also differs
across neurons as evident from the diversity of spiking patterns
observed when equivalent stimulation is applied to different neu-
rons (Hodgkin, 1948; Llinás, 1988; Connors and Gutnick, 1990;
Prescott et al., 2008a). Indeed, integration and coincidence detec-
tion are best suited to different conversion strategies: Integrators
must spike repetitively at a rate proportional to their graded
depolarization whereas coincidence detectors should spike reli-
ably when abruptly depolarized (which is best achieved in the
absence of repetitive spiking) (Gutkin et al., 2003; Prescott et al.,
2006; Prescott and Sejnowski, 2008). A parsimonious explanation
of encoding, including how tuning differs between integrators
and coincidence detectors, must therefore address both analog
processing and digital conversion.
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We hypothesized that the same subthreshold-activating cur-
rents responsible for different spike initiation dynamics (Prescott
et al., 2008a) also modulate subthreshold voltage trajectories,
and that it is this inextricable combination of perithreshold
effects that controls neuronal operating mode. Previously, we
focused on explaining how three qualitatively distinct spik-
ing patterns, each corresponding to one of Hodgkin’s three
classes of excitability (Hodgkin, 1948), arose from a contin-
uum in underlying biophysical properties (Prescott et al., 2008a).
Moving beyond spiking patterns, the present study sought to
identify if seemingly independent response properties linked
to distinct operating modes arise from common biophysi-
cal mechanisms. To this end, we constructed minimal com-
puter models that reproduced the response properties observed
in two types of spinal sensory neurons, one that naturally
behaves as an integrator and the other as a coincidence detec-
tor. Inclusion of a slow-activating subthreshold inward or out-
ward current was sufficient to reproduce the full constellation
of response properties in integrators and coincidence detectors,
respectively. Further analysis revealed how such currents coor-
dinately regulate the subthreshold voltage trajectory and spike
initiation dynamics. Key modeling predictions were experimen-
tally confirmed, thus demonstrating that slow-activating sub-
threshold current, depending on its direction, enables the neu-
ron to calculate (and encode) the integral or derivative of its
input.

METHODS
SLICING AND ELECTROPHYSIOLOGY
All experimental protocols were approved by the Hospital for Sick
Children Animal Care Committee and University of Pittsburgh
IACUC and have been described previously in detail (Prescott
and De Koninck, 2002). Briefly, adult male Sprague Dawley
rats were deeply anesthetized and perfused intracardially with
ice-cold oxygenated (95% O2 and 5% CO2) sucrose-substituted
artificial cerebrospinal fluid (S-ACSF) containing (in mM) 252
sucrose, 2.5 KCl, 2 CaCl2, 2 MgCl2, 10 glucose, 26 NaHCO3, 1.25
NaH2PO4, and 5 kynurenic acid; pH 7.35; 340–350 mOsm. The
spinal cord was removed by hydraulic extrusion and sliced in the
parasagittal plane at a thickness of 300 μm. Slices were stored
in room temperature ACSF (126 mM NaCl instead of sucrose
and without kynurenic acid; 300–310 mOsm) until recording.
Slices were transferred to a recording chamber constantly per-
fused at ∼2 ml/min ACSF at room temperature. Neurons were
viewed with gradient contrast optics using a Zeiss AxioExaminer
microscope and were recorded with whole cell patch clamp using
an Axopatch 200B amplifier (Molecular Devices, Palo Alto, CA)
and electrodes filled with (in mM) 135 KMeSO4, 5 KCl, 10
HEPES, and 2 MgCl2, 4 ATP (Sigma, St Louis, MO), 0.4 GTP
(Sigma). Traces were low-passed filtered at 3-10 KHz and sampled
at 10 KHz.

COMPUTATIONAL MODELING
Our model is based on the Morris-Lecar model (Morris and
Lecar, 1981; Rinzel and Ermentrout, 1989) and has been
described in detail (Prescott et al., 2008a). All simulations, unless
otherwise indicated, are based on the following equations:

CdV/dt = Istim − gleak(V − Eleak) − ḡNam∞(V)(V − ENa)

−ḡK,drw(V − EK) − ḡsubz(V − Esub)

−ḡadapta(V − EK) (1)

dw/dt = φ
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(2)
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(
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)
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(
V − βw
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(7)

where V is voltage and w, z, and a control the time- and
voltage-dependent activation of gK,dr, gsub, and gadapt, respec-
tively; gNa is assumed to activate instantaneously and m is
therefore always at steady state. The following parameters are
the same for integrators and differentiators: C = 2 μF/cm2;
leak conductance gleak = 2 mS/cm2, Eleak = −70 mV; sodium
conductance ḡNa = 20 mS/cm2, ENa = 50 mV, βm = −1.2 mV,
γm = 18 mV; delayed rectifier potassium conductance ḡK,dr =
20 mS/cm2, EK = −100 mV, φ = 0.15, βw = −10 mV, γw =
10 mV; AHP-type adaptation conductance ḡadapt = 5 mS/cm2,
βa = 0 mV, γa = 5 mV, and τa = 20 ms. Voltage-dependency of
the subthreshold conductance gsub was equivalent between the
integrator and differentiator: βz = −40 mV and γz = 10 mV. For
the integrator, ḡsub = 0.7 mS/cm2, τz = 2 ms, Esub = ENa. For the
differentiator, ḡsub = 1.5 mS/cm2, τz = 10 ms, and Esub = EK. We
have not modeled processes that change slowly on the timescale
of a single spike (e.g., slow inactivation of sodium or potas-
sium channels) because those ultra-slow processes are too slow
to interact dynamically with the faster processes controlling spike
initiation; accordingly, those processes can influence the inter-
actions controlling spike initiation by modulating the effective
density (or availability) of fast-activating channels, but they do
not otherwise contribute to the relevant nonlinearities.

Simulations were run in XPP (Ermentrout, 2002) using the
Euler method with a time step of 0.05 or 0.1 ms. Phase plane anal-
ysis was also conducted in XPP. For calculating nullclines at time t,
all variables not associated with the nullcline were held constant
at their value at time t. Time points are indicated in associated
figures. Bifurcation analysis was conducted with AUTO using the
XPP interface.

NOISE STIMULI AND SPIKE-TRIGGERED ANALYSIS
For electrophysiological experiments, stimulation was applied by
injecting current through the pipette. For simulations, equiva-
lent stimulus waveforms were applied via Istim. This included
a noisy waveform generated through an Ornstein-Uhlenbeck
process (Uhlenbeck and Ornstein, 1930),

Frontiers in Cellular Neuroscience www.frontiersin.org January 2015 | Volume 8 | Article 452 | 2

http://www.frontiersin.org/Cellular_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Cellular_Neuroscience/archive


Ratté et al. Biophysics of neuronal calculus

dζ = − ζ

τnoise
dt + σnoiseNτ ξ (0, 1)

√
dt (8)

where ξ(0,1) is a random number drawn from a Gaussian dis-
tribution with average 0 and unit variance, and Nτ is a scaling
factor

√
2/τnoise so that ζ (t) has unit variance before scaling

by σnoise. ξ is white noise while ζ is colored noise whose spec-
tral properties are controlled by the autocorrelation time τnoise.
The spike-triggered average stimulus (STA-Istim) was calculated
by taking the average across the stimulus waveform preceding
each spike elicited by colored noise input; the STA-Istim calculated
from the shuffled spike train was subtracted so that the final STA-
Istim reflects stimulus fluctuations around the average sustained
input.

Covariance analysis was conducted following the methods and
conventions described by Fairhall et al. (2006). Colored noise was
applied to each model neuron as described above but the underly-
ing white noise was used to calculate the STA and spike-triggered
covariarance (STC) to avoid autocorrelations in the stimulus.
Surrogate data were generated through the same shuffling process
described above.

RESULTS
EXPERIMENTAL CHARACTERIZATION OF INTEGRATOR AND
DIFFERENTIATOR TRAITS
We began by contrasting the response properties of second-
order sensory neurons in lamina I of the spinal dorsal horn,
focusing on tonic- and single-spiking neurons because those
neurons exemplify the traits of (and are henceforth referred
to as) integrators and differentiators, respectively. Tonic- and
single-spiking neurons constitute distinct cell types that together
comprise the majority of lamina I neurons (Prescott and De
Koninck, 2002). They most likely represent inhibitory and exci-
tatory interneurons, respectively (Prescott and Ratté, 2012) but
that distinction does not affect the present investigation into
why each cell type behaves the way it does and nor was it the
intent of this study to explore how cellular properties impact
network function and pain processing. Instead, we focus here
on the biophysical basis for cellular properties with the goal of
identifying how key computational operations are biophysically
implemented.

Integrators spiked repetitively during prolonged current steps
unlike differentiators, which spiked only at stimulus onset
(Figure 1A). Differentiators could nonetheless respond to incre-
ments in stimulus intensity without requiring intervening hyper-
polarization, as revealed by their response to biphasic current
steps (Figure 1B). Because integrators fired repetitively, they
could encode stimulus intensity by modulating their firing rate
whereas differentiators could not (Figure 1C). Stimulus intensity
also influenced spike latency in integrators whereas differentia-
tors spiked at a consistently short latency (Figure 1D). Variability
in spike latency had important consequences for how each cell
type responded to stimulus trains: Differentiators responded with
spikes time-locked to the individual pulses whereas integrators
exhibited irregular spike timing (Figure 1E). Those effects are
visualized here using return plots, which show latency (from
stimulus onset) to spike n vs. latency of the previous spike

n-1. The pattern observed for the integrator indicates that spike
timing is influenced by previous spikes, which compromises
phase-locking to the stimulus train; by comparison, the differ-
entiator with its consistently short spike latency exhibited good
phase-locking. When the cells received weaker stimulus pulses,
the integrator exhibited temporal summation whereas the dif-
ferentiator did not (Figure 1F). Absence of summation in the
differentiator voltage response, despite a very short inter-pulse
interval, is notable since temporal summation of the mem-
brane potential could conceivably occur without evoking spikes
purely because of the spike initiation process (e.g., because
spikes must occur within a short latency of stimulus onset; see
Figure 1E).

The temporal summation observed in tonic-spiking neurons
is consistent with a long integration time, while its absence in
single-spiking neurons is consistent with a short integration time.
Beyond these differences in analog processing, tonic- and single-
spiking neurons evidently differ in their digital conversion prop-
erties in ways beyond their namesake spiking patterns. Spiking
pattern, spike latency/precision, and temporal summation rep-
resent a triad of response dimensions along which integrators
and differentiators sit at opposite extremes, but it remains unan-
swered whether those properties derive from the same or different
biophysical mechanisms.

REPRODUCTION OF INTEGRATOR AND DIFFERENTIATOR TRAITS IN A
MINIMAL MODEL
To identify which biophysical mechanisms account for the
response properties that distinguish integrators and differen-
tiators, we sought (1) to reproduce each response pattern in
the simplest possible computer model and (2) to convert that
model between integrator and differentiator modes by varying
as few parameters as possible. Starting from a “base” model,
we added an inward or outward current to reproduce tonic-
and single-spiking, respectively; the design of those subthresh-
old currents was based on previous work on spiking pattern
(see Methods). The voltage-dependency of the added conduc-
tances were equivalent, thus isolating the reversal potential and
maximal conductance as key differences between integrator and
differentiator models. Maximal conductance was adjusted to give
the desired spiking pattern (Figure 2A). We knew that spiking
patterns could be reproduced in this way based on our previ-
ous work (Prescott et al., 2008a), but what is important here is
that all other response properties were reproduced without fur-
ther parameter changes (Figures 2B–F). This argues that the triad
of response properties—spiking pattern, spike latency/precision,
and temporal summation—originate from a common biophysi-
cal mechanism, namely the subthreshold current that was added
to the base model.

As explained in more detail in the next section, the added
current confers certain response properties by implementing
delayed feedback. The voltage-dependency of that current dic-
tates the voltage range in which that feedback operates; feedback
must operate in a relatively narrow voltage range near thresh-
old. The kinetics of that current dictates how the feedback
responds to inputs with different kinetics; the feedback must
operate primarily on slow inputs and therefore has a slow time
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FIGURE 1 | Comparison of integrator and differentiator response

properties in spinal neurons. All sample traces are from a single tonic- or
single-spiking cell that is representative of that cell type. (A) The integrator
spikes repetitively during stimulation whereas the differentiator spikes only
once or twice at the stimulus onset, even in response to strong stimulation
as illustrated here with stimulation 2.5× rheobase (top right trace). (B)

Differentiator can respond to subsequent increments in stimulus intensity.
(C) Integrator encodes the stimulus intensity by modulating its firing rate
(reported here as number of spikes per 900 ms-long stimulus) whereas the
differentiator is incapable of such rate coding. (D) Mean latency from
stimulus onset to first spike (±sem, n = 5 cells of each cell type) for stimulus

intensities expressed relative to rheobase (i.e., minimum Istim required to
elicit spiking) identified independently for each neuron. (E) Trains of short,
moderate-amplitude pulses elicit an irregular spike train in the integrator
compared with a very regular spike train in the differentiator. Fidelity of spike
timing is shown using return plots in which latency (from onset of the
stimulus pulse) of one spike (n) is plotted against latency of the previous
spike (n − 1). Open circle indicates first data point. Spike latency in the
integrator is sensitive to past spiking, unlike in the differentiator where spikes
are time-locked to the underlying stimulus. (F) In response to stimulus pulses
weaker than those in (E), the integrator exhibits temporal summation
whereas the differentiator does not, even at very short inter-pulse intervals.

constant between 2 and 10 ms which, although still quite fast,
is slower than fast sodium channel activation and the fastest
components of the input. Slow-activating subthreshold inward
or outward current is sufficient to confer integrator or differen-
tiator traits, respectively, but these data do not exclude neurons
from differing in other ways [e.g., tonic- and single-spiking
neurons differ in their dendritic morphology (Prescott and De
Koninck, 2002) and in the degree of spike height accommoda-
tion] but any relationship with operating mode must be treated
as correlative until proven otherwise. That said, other factors

could, in theory at least, contribute to integrator or differen-
tiator traits (see below). With respect to these spinal neurons,
the subthreshold currents identified here as conveying integra-
tor and differentiator traits are known to exist in tonic- and
single-spiking neurons, respectively, are necessary for their associ-
ated spiking patterns, and have been implicated in shaping EPSP
kinetics (Prescott and De Koninck, 2005; Prescott et al., 2008a).
Specifically, integrators express a persistent sodium and calcium
current whereas differentiators express a Kv1-type potassium
current.
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FIGURE 2 | Reproduction of integrator and differentiator response

properties in a minimal model. Addition of a subthreshold inward or
outward current to a base model was sufficient to reproduce the responses
to current steps (A), responses to biphasic steps (B), stimulus-response

curves (C), spike latency (D), spike-timing precision (E), and temporal
summation (F) characteristic of integrators or differentiators, respectively.
Small amplitude noise (τnoise = 5 ms, σnoise = 1 μA/cm2) was added to
account for effects of intrinsic noise sources on spike timing.

DIFFERENCES IN SPIKE INITIATION DYNAMICS
Next, we sought to explain how slow-activating subthreshold
current (Isub) interacts with other currents to affect the spike initi-
ation process. The nonlinear dynamics underlying spike initiation
have been described in detail before (Rinzel and Ermentrout,
1989; Borisyuk and Rinzel, 2005; Izhikevich, 2007; Prescott et al.,
2008a) but a description is provided here to explain the specific
models developed in this study and to help establish experi-
mentally testable predictions with respect to differences between
integrators and differentiators. Moreover, our demonstrations
emphasize the biophysical basis for nonlinear interactions and
lead to interpretations that differ from those previously published
(see also Discussion).

Briefly, bifurcation analysis describes how behavior of the
system qualitatively changes (e.g., switches from quiescence to
repetitive spiking) when a parameter is changed. Such changes

reflect the nonlinear interaction between system variables. Those
interactions can be visualized by plotting one variable against
other variables to create a phase plane. Nullclines represent every-
where along the phase plane where a given variable does not
change. Identifying how nullclines intersect and how those so-
called fixed points change during a bifurcation can predict how
system variables will evolve. For a more in-depth explanation of
these sorts of analysis, see Izhikevich (2007).

Starting with the integrator, Figure 3A shows how variables
V, w, and z evolve during a depolarizing step stimulus, where w
and z control activation of gK,dr and gsub, respectively. To quan-
tify the impact of subthreshold inward current, we conducted
bifurcation analysis by systematically increasing the activation of
that current (controlled by z) rather than letting z evolve freely
as a variable. Notably, this bifurcation analysis differs from the
more typical analysis in which stimulating current Istim is varied.

Frontiers in Cellular Neuroscience www.frontiersin.org January 2015 | Volume 8 | Article 452 | 5

http://www.frontiersin.org/Cellular_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Cellular_Neuroscience/archive


Ratté et al. Biophysics of neuronal calculus

FIGURE 3 | Spike initiation dynamics in the integrator. (A) Response of
voltage (V ), activation of IK,dr(w ) and activation of Isub (z) to a stimulus
current (Istim) plotted against time. Colored dots and arrows indicate time
points illustrated in (B,C). (B) Bifurcation diagrams at rest (top) and during
stimulation (bottom) with z treated as a parameter and varied
systematically from 0 to 1. Green curves show fixed point; orange curves
show maximum and minimum of limit cycle. The bifurcation diagrams
show that a Hopf bifurcation occurs (the fixed point becomes unstable and
a stable limit cycle appears) if z is increased high enough. To predict how
high z increases in the full model, the voltage-dependent activation curve
for Isub (gray) was overlaid on the bifurcation diagram; the response of the
full model is shown in black. Without stimulation, the gray curve intersects
the bifurcation diagram at a stable fixed point (red dot), which is where z
remains in the full model. During stimulation, the fixed point is destroyed
and the system moves from the blue dot toward the purple dot, after
which a spike occurs. (C) Phase planes showing V-w interaction (top) and
V-z interaction (bottom). Nullclines represent where a variable remains

constant; w - and z-nullclines are shown in gray; V -nullclines vary with time
and are shown in different colors corresponding to time points indicated in
(A). In the V -w phase-plane, stimulation shifts the V -nullcline upward
(from red to blue position) but the intersection between the V - and
w -nullclines is not destabilized until the V -nullcline is shifted further (to
purple position) secondary to activation of Isub. Activation of Isub can be
understood from the V -z phase plane, where stimulation shifts the
V -nullcline far enough downward that it no longer intersects the z-nullcline.
Spike initiation in the integrator can therefore be described as a sequence
of two bifurcations: a SNIC bifurcation in the V-z plane that facilitates a
subsequent Hopf bifurcation in the V-w plane. Yellow boxes show enlarged
view of critical regions. (D) Effects of subthreshold current activation time
constant (τz) and spike-dependent adaptation. (a) Although slow to start,
spiking is very fast for τz = 2 ms because gsub remains activated between
spikes. Activation of gsub is interrupted between spikes if τz is lengthened
(b) and /or spike-dependent adaptation is included (c,d). Adaptation also
serves to increase the dynamic range.

As z was systematically increased, the stable fixed point destabi-
lized through a Hopf bifurcation and was replaced with a stable
limit cycle; the value of z at which this occurs depended on
stimulus intensity (Figure 3B). To predict behavior of the full
model (i.e., with z treated as a variable), we projected the voltage-
dependent activation curve for Isub onto the bifurcation diagram.
Prior to stimulation (Figure 3B top), the activation curve inter-
sected the bifurcation diagram in a region corresponding to a
stable fixed point, which accurately predicts that the full model
will rest at a subthreshold voltage with minimal activation of Isub.
During stimulation (Figure 3B bottom), the bifurcation diagram
is shifted such that it no longer intersects the activation curve
at a stable fixed point; under those conditions, the full model
spikes repetitively because of unrestricted activation of Isub. This
is further illustrated by phase-plane analysis. In the V-w phase-
plane (Figure 3C top), stimulation shifts the V-nullcline upwards

(from red to blue position) but this is not enough to destabilize
the intersection between the V- and w-nullclines; it is only after
the V-nullcline is shifted further (to the purple position) by the
contribution of Isub that a Hopf bifurcation occurs. Activation of
Isub can be understood from the V-z phase-plane (Figure 3C bot-
tom), where stimulation is sufficient to shift the V-nullcline far
enough downwards that its stable intersection with the z-nullcline
is destroyed through a saddle-node on invariant circle (SNIC)
bifurcation. That bifurcation un-restricts the activation of inward
Isub, leading to positive feedback depolarization and to the Hopf
bifurcation in the V-w subsystem, whereupon repetitive spiking
ensues.

An adaptation current was included in the integrator model
to help reproduce the experimental data. Figure 3D shows the
effects of the adaptation current and of varying the activation
time constant for the subthreshold current, τz. If τz is long,
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the first spike is slow to occur but the firing rate thereafter is
high because the positive feedback is slow to initially activate
but then remains activated between spikes (Figure 3Da). This is
inconsistent with experimental data (Figure 1A) and is corrected
by shortening τz so that the positive feedback (i.e. subthresh-
old inward current) deactivates between spikes (Figure 3Db).
However, positive feedback results in even weakly suprathresh-
old stimuli causing high firing rates, thus causing the dynamic
range to be narrow. The dynamic range is broadened by inclu-
sion of a spike-dependent adaptation that activates abruptly with
each spikes and decays slowly, thus intermittently interrupting
the positive feedback process (Figures 3Dc,d). The prominent
afterhyperpolarization (AHP) observed in tonic-spiking neu-
rons is consistent with spike-dependent adaptation in this cell
type (Prescott and De Koninck, 2002). Equivalent adaption was
included in the differentiator model for sake of comparison but it
had no notable effects.

Spike initiation dynamics in the differentiator are completely
different from those in the integrator insofar as differentia-
tor spiking must occur despite subthreshold outward current
rather than with the assistance of subthreshold inward current.
Figure 4A shows how variables V, w, and z evolve during a depo-
larizing step stimulus. Bifurcation analysis using z as the bifurca-
tion parameter shows that there is no limit cycle in the absence of
stimulation (Figure 4B top). With sufficiently strong stimulation,
a stable limit cycle exists but only at low values of z (Figure 4B
bottom), which implies that repetitive spiking is possible but will
be prevented if Isub activates strongly enough. Notably, the acti-
vation curve for Isub intersects the bottom bifurcation diagram
in a region corresponding to a stable fixed point. Simulations
in the full model show that the model stabilizes at that inter-
section but not before producing a single spike. This suggests
that if the differentiator is to spike, it must do so before Isub

becomes too strongly activated, which is consistent with results
of phase-plane analysis. In the V-w plane (Figure 4C top), stimu-
lation shifts the V-nullcline upwards (from red to blue position),
which is sufficient to cause a Hopf bifurcation, but activation of
Isub shifts the V-nullcline downwards so that it once again inter-
sects the w-nullcline at a stable fixed point. Activation of Isub

can be understood from the V-z nullcline (Figure 4C bottom).
Stimulation shifts the V-nullcline upwards but its intersection
with the z-nullcline remains stable; despite this, simulations in
the full model show that the trajectory follows an indirect route
from the originally positioned stable fixed point to the newly
positioned stable fixed point. This circuitous trajectory can occur
because z does not change instantaneously, thus allowing the sys-
tem to escape transiently from a stable fixed point when that
point moves too rapidly (e.g., during abrupt onset of a stimu-
lus step). Whether the system escapes far enough from the fixed
point to produce a spike is explained by whether the trajectory
crosses a quasi-separatrix—a boundary separating flow on the
phase plane. Accordingly, we refer to spike initiation through
this mechanism as a quasi-separatrix-crossing (Prescott et al.,
2008a).

According to the above description, spike initiation in the dif-
ferentiator depends on the competition between slow-activating
potassium current and fast-activating sodium current. It is,

therefore, notable that sodium channel inactivation is more
prominent among differentiators (see Figure 1) as this effectively
reduces ḡNa and biases the competition in favor of onset-only
spiking (Prescott et al., 2008a; Rho and Prescott, 2012). If such
inactivation were to occur slowly—so slow that inactivation is
effectively constant during any one spike—then it can be mod-
eled as a static change in ḡNa, whereas if inactivation occurs more
rapidly, it must be modeled as a dynamic variable. To test the
effects of slow inactivation, we co-varied ḡNa and ḡsub in our dif-
ferentiator model and confirmed that onset-only spiking can be
produced without subthreshold outward current but only for a
narrow range of fast sodium conductance; onset-only spiking was
more robustly produced when the model contained strong sub-
threshold outward current (Figure 4D). To test the effects of faster
inactivation, we altered Eqn 1 (see Methods) to produce a new
current balance equation,

C
dV

dt
= Istim − gleak (V − Eleak)

−ḡNa m∞ (V) (1 − z) (V − ENa)

−ḡK,drw(V − EK) − ḡadapt(V − EK)

where z now controls inactivation of the fast sodium current.
All other parameters were unchanged from the original differ-
entiator model—z has the same kinetics and voltage-dependency
as in the original differentiator model—but gsub is absent. This
“inactivation” model accurately reproduced the onset-only spik-
ing pattern, including the response to biphasic stimulus steps
(Figure 4E). The same competition between positive and nega-
tive feedback occurs as in our original differentiator model but
is now implemented through fast activation and slower inacti-
vation, respectively, of the fast sodium current. This mechanism
may help confer differentiator traits but the fact that differentia-
tors express Kv1 channels and spike repetitively after blockade of
those channels (Prescott et al., 2008a) argues that activation of
subthreshold outward current is the dominant (and necessary)
negative feedback mechanism in differentiators in lamina I of the
spinal dorsal horn.

To summarize, the integrator spikes repetitively when a SNIC
bifurcation enables positive feedback activation of subthreshold
inward current whereas the differentiator spikes only if its quasi-
separatrix is crossed, which corresponds to stimulus-induced
depolarization outrunning the negative feedback mediated (pre-
dominantly) by subthreshold outward current. In both models,
a Hopf bifurcation must also occur to initiate positive feedback
activation of the fast-activating sodium current. According to this
explanation, the spike initiation process comprises two threshold
mechanisms. In the integrator, both thresholds (the Hopf bifurca-
tion and the SNIC bifurcation) depend on stimulus intensity. In
the differentiator, one threshold (the Hopf bifurcation) depends
on stimulus intensity but the other (the quasi-separatrix cross-
ing) depends on the rate of change of stimulus intensity. These
differences, which have obvious implications for neuronal tuning
(see below), ultimately boil down to whether the slow feedback
process cooperates or competes with the fast positive feedback
directly responsible for spiking.
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FIGURE 4 | Spike initiation dynamics in the differentiator. (A) Variables
plotted against time, like in Figure 3A. Colored dots and arrows indicate time
points illustrated in (B,C). (B) Bifurcation diagrams at rest (top) and during
stimulation (bottom). Stimulation is required for a limit cycle to exist, but that
limit cycle is lost if z is increased high enough. To predict how high z would
increase in the full model, the voltage-dependent activation curve for Isub

(gray) was overlaid on the bifurcation diagram; the response of the full model
is shown in black. Without stimulation, the gray curve intersects the
bifurcation diagram at a stable fixed point (red dot). During stimulation, the
gray curve intersects the bifurcation at a stable fixed point, but the system
must move from the blue dot to the purple dot, and can produce a spike
along the way. (C) Phase planes showing V-w interaction (top) and V-z
interaction (bottom). In the V -w phase-plane, stimulation shifts the V -nullcline
upward (from red to blue position), destabilizing the intersection between the
V - and w -nullclines in the process, but that intersection is re-stabilized when
activation of Isub shifts the V -nullcline downward. Activation of Isub can be
understood from the V -z phase plane, where stimulation shifts the
V -nullcline upward, although its intersection with the z-nullcline remains
stable. A single spike is generated because the quasi-separatrix shifts above

the blue dot, meaning the trajectory must follow an indirect route to the
purple dot. In other words, crossing the quasi-separatrix in the V-z subsystem
corresponds to the fixed point in the V-w subsystem remaining unstable long
enough for a spike to be produced. (D) Effects of ultra-slow sodium channel
inactivation modeled as a static change in sodium channel density (ḡNa). Blue
and gray region show parameter combinations giving repetitive or onset-only
spiking, respectively. Graph shows how density of subthreshold outward
current (ḡsub) needed for onset-only spiking depends on ḡNa. Data are shown
for Istim = 60 μA/cm2; regions shift depending on Istim (not shown).
Onset-only spiking can be produced in the absence of subthreshold outward
current if ḡNa is sufficiently low but only for a narrow parameter range (i.e.,
gray region gets narrower as ḡsub is reduced) whereas onset-only spiking is
produced across a broad range of ḡNa when outward ḡsub is higher. (E)

Effects of slow sodium channel inactivation modeled dynamically by having
variable z control inactivation (see Results). Sample response to biphasic
stimulus steps reproduces the experimental data in Figure 1B. Since
changes in z are described by the same differential equation as in the original
model (see Equation 3), its interactions with other variables are the same as
described in panel C for the original differentiator model.

DIFFERENTIAL RESPONSES TO RAMP STIMULI
The threshold mechanisms described above predict differences
in tuning that are pivotal to the distinction between integration
and differentiation. If differentiator spiking occurs only when
stimulus-driven depolarization outpaces the negative feedback

implemented by outward current, then the rate of change of
stimulus intensity will be a crucial factor in their decision to
spike. The same is not predicted for integrators; in fact, the
positive feedback implemented by subthreshold inward current
ought to mitigate the intrinsic leakiness of the cell membrane
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and thereby encourage (rather than actively discourage) temporal
summation.

Differential sensitivity to the rate of change of stimulus inten-
sity was tested by applying ramp stimuli with different slopes.
As expected, the integrator model responded to extremely shal-
low ramps with repetitive spiking whereas differentiator mod-
els responded only to ramps that exceeded a threshold slope
(Figure 5A). Notably, the V-z subsystem of the differentiator
model can experience a Hopf bifurcation at high stimulus inten-
sities; accordingly, the peak intensity of each ramp was capped
at a value below that intensity threshold. We hypothesized that
slowing down the negative feedback (by lengthening τz, the time
constant controlling activation of subthreshold current) would
reduce the threshold slope, which indeed it did (Figure 5A).
Furthermore, fast ramps elicited >1 spike, as expected so long as
the rate of stimulus-induced depolarization continues to exceed
the rate at which negative feedback activates.

This ramp-driven repetitive spiking as well as the main
prediction—that ramps must exceed a threshold slope to elicit
differentiator spiking—were confirmed in 3 of 3 differentiator
neurons tested whereas arbitrarily shallow ramps elicited repet-
itive spiking in 3 of 3 integrator neurons tested (Figure 5B).
Notably, differentiator neurons were never seen to elicit >2 spikes
in response to depolarizing steps with amplitude 2–3× rheobase,
and so the observation of 4–5 spikes during a ramp is clearly
not attributable to stimulus intensity. Based on the attenuation
of spike amplitude, failure to continue spiking during the ramp is
likely due to sodium channel inactivation.

DIFFERENTIAL PROCESSING OF SYNAPTIC-LIKE INPUTS
Sensitivity to stimulus intensity or to the rate of change of stimu-
lus intensity impacts how synaptic input is processed. To explore
this, we began by measuring the integration time (Tint) based
on excitatory postsynaptic currents (EPSCs) applied at regular

intervals. Using a fixed-amplitude EPSC, we adjusted the inter-
val to determine the maximum latency to spike, which was 8x
less in the differentiator model compared with the integrator
model, while the base model was intermediate (Figure 6A). To
test responses to an irregular input comprising a broad mix
of frequencies, we generated colored noise using an Ornstein-
Uhlenbeck process and measured Tint by calculating the spike-
triggered average stimulus (STA-Istim). Slowly fluctuating input
(τnoise = 100 ms) elicited vigorous spiking in the integrator and
base models but not in the differentiator model (Figure 6B),
which is consistent with the latter’s need for rapid depolarization
that is not achieved by this sort of input. In the integrator and base
models, Tint was ∼200 ms, consistent with the prolonged autocor-
relation time of the input (Figure 6B). All models responded to
faster fluctuating input (τnoise = 5 ms), but whereas the integra-
tor model exhibited a monophasic STA-Istim with Tint = 16 ms,
the differentiator model exhibited a biphasic STA-Istim whose pos-
itive phase corresponds to Tint = 6 ms, and the base model was
intermediate (Figure 6C). The exact integration time varies with
stimulus parameters such as the average stimulus intensity, but
the differentiator always had the shortest value and the integrator
always had the longest. For data reported here, average stimulus
intensity was adjusted to produce comparable firing rates in each
cell type (see Figure 6 legend).

Based on the distinguishing STA-Istim shapes revealed by test-
ing with fast fluctuating input, we tested the same input experi-
mentally. Like in simulations, integrator and differentiator neu-
rons exhibited monophasic and biphasic STA-Istims, respectively
(Figure 6D). These data confirm that differentiators prefer more
rapid depolarizing input than do integrators. Based on testing in
three of each type of neuron, average Tint ± SEM was significantly
longer in integrator neurons (30.4 ± 0.4 ms) than in differen-
tiator neurons (19.4 ± 1.3 ms) (p < 0.005, t-test). Repeating the
same fast fluctuating stimulus multiple times in the same neuron

FIGURE 5 | Responses to ramp stimuli. (A) Integrator model responded to
extremely shallow ramps with repetitive spiking whereas differentiator
models only responded to steep ramps. All ramps applied to differentiator
models were capped below the intensity causing a Hopf bifurcation, thus
ensuring that spikes occurred through a quasi-separatrix-crossing.
Differentiator model was tested with the activation time constant for its

subthreshold current τz = 10 ms (left) and 20 ms (right). As expected, slowing
down the rate of negative feedback activation reduced the threshold stimulus
slope. Differentiator model could spike more than once in response to
supthreshold slopes. (B) Sample traces from each cell type confirming the
model predictions. Sample responses from two differentiator neurons are
shown. Experiments were repeated in three of each cell type.
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FIGURE 6 | Responses to synaptic-like stimuli. (A) Response of model
neurons to regularly spaced synaptic inputs modeled as
Isyn = gsyn(1 − e−t/τrise )e−t/τdecay (V − Erev ), where gsyn = 0.7 mS/cm2,
τrise = 0.5 ms, τdecay = 5 ms, and Erev = 0 mV. Inter-event interval was
varied to find the minimum rate capable of eliciting a spike and integration
time (Tint) was estimated from the latency to spike. To simulate irregular
synaptic-like input (B–E), slow and fast fluctuating inputs were generated
using an Ornstein-Uhlenbeck process with τnoise = 100 ms or 5 ms. Tint was
also measured as the duration of the positive phase of the spike-triggered
average (STA) stimulus. (B) The integrator and base models responded to
slow fluctuating input with Tint ≈ 200 ms but the differentiator did not,
consistent with its need for rapid depolarization that is not achieved with
this sort of input. With σnoise = 10 μA/cm2, average Istim was 10 and
25 μA/cm2 for the integrator and base model, respectively, to get a firing
rate of around 10 Hz. (C) All three models responded to fast fluctuating
input, but whereas the integrator model exhibited a monophasic STA with
Tint = 16.0 ms, the differentiator model exhibited a biphasic STA with

(Continued)

FIGURE 6 | Continued

Tint = 5.8 ms. The base model was intermediate with Tint = 9.9 ms. With
σnoise = 10 μA/cm2, average Istim was 3, 20, and 48 μA/cm2 for the
integrator, base model, and differentiator, respectively, to get a firing rate of
around 10 Hz. (D) Example STAs are shown for a typical integrator neuron
(Tint = 30.8 ms) and a differentiator neuron (Tint = 18.7 ms) measured with
fast-fluctuating input. Mean Tint ±SEM measured from three integrators
(30.4 ± 0.4 ms) was significantly longer than that measured in three
differentiators (19.4 ± 1.3 ms) (∗p < 0.005, t-test). Average Istim was
adjusted for each cell to give firing between 5 and 10 Hz. (E) Rasters show
spike times in response to “frozen noise” repeated five times in one of
each cell type. The integrator and differentiator often responded to the
same input events although there are clear instances (highlighted in gray) in
which only one or the other responded. Arrows highlight examples
(observed only in integrators) in which a response to preceding input event
prevented the response to a subsequent input event that would have
otherwise elicited a spike.

revealed some additional observations (Figure 6E). First, the inte-
grator and differentiator neurons each tended to respond reliably
across trials but the two types of neurons did not necessar-
ily respond to the same input fluctuations. Also, the integrator
neuron exhibited a pattern wherein responding to an earlier
fluctuation could prevent it from responding to a subsequent
fluctuation, which is reminiscent of data in Figures 1E, 2E.

We returned to the model to compare the STA-Istim against
activation of Isub, which we plot here as the spike-triggered
average subthreshold current (STA-Isub). We reasoned that the
positive phase of the differentiator STA-Istim is short because this
minimizes activation of outward Isub whereas the positive phase
of the integrator STA-Istim is relatively long because this capi-
talizes on activation of inward Isub. Comparing the STA-Isub for
integrators and differentiators confirmed this predicted pattern
(Figure 7A). Since the change in voltage depends on the sum
of Istim and Isub (along with other transmembrane currents), we
plotted STA-Istim against STA-Isub (Figure 7B). Dots are plotted at
1 ms-intervals to help visualize the rate of change. The integrator
trajectory curls counterclockwise, confirming that slow depolar-
ization driven by Istim causes activation of inward Isub so that by
the time the spike occurs (at the end of the trajectory), Istim and
Isub contribute equally to depolarization. On the other hand, the
differentiator trajectory spirals in a clockwise direction, revealing
how slow initial hyperpolarization by Istim causes a net inward
current by deactivating outward Isub; this is followed by rapid
depolarization such that outward Isub exceeds its baseline acti-
vation only 3 ms before the spike. If depolarization was slower,
Isub would activate more strongly, resulting in a tighter spiral,
less depolarization, and no spike. A voltage threshold corresponds
to a vertical boundary on Figure 7B. One should appreciate that
that the differentiator trajectory might not cross that boundary
(even if Istim is very strong) because activation of outward Isub

causes the trajectory to veer away. In contrast, activation of inward
Isub causes the trajectory to veer toward such a boundary, thus
increasing the likelihood that the voltage threshold is reached.
These results emphasize how the selectivity for different stimu-
lus features (i.e., the capacity for different stimulus waveforms to
evoke a spike) depends on how the stimulus interacts with the
subthrehsold current.
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FIGURE 7 | Feature selectivity depends on how Istim interacts with Isub.

(A) Spike-triggered averages were calculated for the stimulus (STA-Istim)
and for the subthreshold current that was activated (STA-Isub). Depolarizing
current is shown as an upward (positive) deflection. Average Istim was
5 μA/cm2 and 80 μA/cm2 for the integrator and differentiator, respectively;
σnoise was 10 μA/cm2 for both. (B) Same data as in A but now with Istim and
Isub plotted relative to one another rather than against time. Dots are
plotted at 1 ms intervals to illustrate the rate at which each variable
changes, where wide spacing represents rapid change. For the integrator,
Istim causes relatively slow depolarization, thus giving inward Isub time to
activate, which results in counterclockwise bending of the trajectory.
Counterclockwise bending reflects cooperativity between Istim and inward
Isub, which increases the capacity of slow stimulus fluctuations to drive
suprathreshold depolarization. For the differentiator, the initial slow
reduction in Istim causes deactivation of outward Isub, thus producing a net
inward current. The subsequent rapid increase in Istim drives depolarization
while minimizing the time available for outward Isub to activate before the
spike is initiated. Clockwise bending of this trajectory reflects competition
between Istim and outward Isub, which ensures that only fast stimulus
fluctuations drive suprathreshold depolarization.

SPIKE-TRIGGERED COVARIANCE ANALYSIS OF SENSITIVITY TO
STIMULUS FEATURES
As demonstrated by the responses to ramp stimulation (Figure 5),
differentiator spiking is sensitive to the rate of change of stimulus
intensity and to stimulus intensity itself. In that respect, neither
our conductance-based differentiator model nor our differentia-
tor neurons are pure differentiators. We hypothesized that this
joint sensitivity to the stimulus intensity and its rate of change
arises from the two requirements for differentiator spike ini-
tiation: A Hopf bifurcation in the V-w subsystem depends on
stimulus intensity while the quasi-separatrix-crossing in the V-z
subsystem depends on the rate of change of stimulus intensity
(see Figure 4). Both thresholds must be satisfied. By compari-
son, integrator spike initiation depends on a Hopf bifurcation in
the V-w subsystem or a SNIC bifurcation in the V-z subsystem
(see Figure 3). The SNIC bifurcation is inconsequential if stim-
ulus intensity is sufficient to cause the Hopf bifurcation on its
own; on the other hand, the Hopf bifurcation becomes inevitable
once the SNIC bifurcation occurs so long as stimulation is not
abruptly discontinued. In other words, the two intensity thresh-
olds amount to a single intensity threshold whose precise value
can vary, unlike the dual-threshold predicted for differentiators.
To summarize, we reasoned that sensitivity to different stimulus
features, namely stimulus intensity and its derivative, is a direct
consequence of the two dynamical processes comprising the spike
initiation process.

To investigate this further, we conducted spike-triggered co-
variance analysis to identify the stimulus features to which
each spike initiation mechanism is sensitive (see Methods). As
explained by Fairhall et al. (2006), this analysis identifies direc-
tions in stimulus space along which variance differs relative to
the prior stimulus distribution; the eigenvalue of each direction
reveals the stimulus features (i.e., directions) to which the neuron
is sensitive. Spike-triggered covariance revealed only one signifi-
cant eigenvalue for the integrator model whereas two significant
eigenvalues were found for the differentiator model (Figure 8A).
For both models, the eigenvector for the smallest eigenvalue
(identified as feature 1) resembles the STA for that cell type
(Figure 8B). For the differentiator, the eigenvector for the second
smallest eigenvalue (feature 2) resembles the derivative of feature
1 but is unstructured in the case of the integrator (Figure 8B).
Next, we projected the spike-triggered stimulus ensemble onto
the two features (Figure 8C). The spike-triggered stimuli form a
distinct cloud that can be compared to the prior. The STA-Istim

describes how the mean of this cloud is offset relative to the prior
while compression of the cloud reflects the information provided
by each feature. For the integrator, STA-Istim points horizontally
and only feature 1 provides information. For the differentiator,
STA-Istim points diagonally and both features 1 and 2 provide
information, thus confirming our prediction. Applying the same
sort of analysis to experimental data recorded from differentia-
tors in the auditory brainstem, Slee et al. (2005) found similar
results, specifically that blockade of the low-threshold potassium
current changed the projection onto the second feature (and the
spiking predicted therefrom) although the second feature was still
evident.

DISCUSSION
Using a combination of simulations and experiments, we have
explored the biophysical mechanisms whereby neurons com-
pute the integral or derivative of their input. We found
that integrators and differentiators differ in multiple response
properties—temporal summation, spike latency/precision, and
spiking pattern—yet all of those differences have a common bio-
physical explanation, namely the direction of slow-activating sub-
threshold current. The direction of that current dictates whether
the slow feedback on subthrehsold voltage is positive or neg-
ative. This, in turn, dictates whether temporal summation is
encouraged or discouraged and it also leads to fundamentally
different thresholding mechanisms based on how slow-activating
subthreshold current interacts with the fast-activating positive
feedback responsible for spiking.

In integrators, subthreshold inward current creates a positive
feedback loop that sustains depolarization and interacts cooper-
atively with fast-activating sodium current to produce repetitive
spiking at a rate proportional to stimulus intensity. The posi-
tive feedback loop is initiated when stimulus intensity exceeds
the threshold required to produce a SNIC bifurcation in the
interaction between voltage and the activation variable for the
subthreshold current. This differs from the standard dynamical
explanation of class 1 excitability, which explains slow repetitive
spiking as originating from a SNIC bifurcation in the interaction
between voltage and the recovery variable w (where w represents
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FIGURE 8 | Differences in encoding properties revealed by co-variance

analysis. Stimulus parameters were as reported in Figure 7 but the
underlying white noise was used for all analysis. (A) Rank-ordered
eigenvalues are shown for spike-triggered data (circles) and for surrogate
data (black line) based on a spike-triggered stimulus ensemble found after
shuffling the spike times. Ten surrogate data sets were generated by
re-shuffling the spike times. The two smallest eigenmodes deviated
significantly from the surrogate data (p < 0.01; one-sample t-tests) for the
differentiator whereas only one eigenmode deviated significantly in the
case of the integrator. (B) STA-Istim and the eigenvectors corresponding to
the two smallest eigenmodes, which are designated feature 1 and 2. (C)

When spike-triggered stimuli are projected onto features 1 and 2, they form
a cloud (black points) that can be compared against surrogate data
projected onto the same two features (gray points). Pink arrows, which
correspond to the STA-Istim, show the difference in the center of mass of
each cloud. The dimensions of the black cloud relative to the gray cloud
reveal the stimulus features about which a spike conveys information.
These data argue that integrators encode information about a single
stimulus feature, namely stimulus intensity, whereas differentiators encode
information about both stimulus intensity and its rate of change.

activation of the delayed rectifier potassium current) (Izhikevich,
2007; Prescott et al., 2008a; Prescott, 2015). In our integrator
model, the effects of positive feedback are kept in check by the
afterhyperpolarization (AHP) caused by spike-dependent adap-
tation. This amounts to a push-pull mechanism: Subthreshold
inward current “pushes” membrane potential up (toward a sec-
ond threshold defined by a Hopf bifurcation in the interaction
between voltage and the recovery variable) while the AHP “pulls”
membrane potential down. This leads to strong internal dynam-
ics that depend on the AHP kinetics. Those internal dynamics
have been shown previously to linearize the input-output curve
(Ermentrout, 1998) and to cause noise shaping by introducing

negative interspike interval correlations (Prescott and Sejnowski,
2008). Both effects selectively benefit the rate coding of slow
signals with dense spiking (Chacron et al., 2004), and thus are
relevant for integrators operating in a mean-driven or oscillatory
regime. In the fluctuation-driven regime, which is characterized
by sparse spikes each driven by separate stimulus fluctuations, the
AHP may prevent bursting but is negligible from one fluctuation-
driven spike to the next. Under those conditions, the positive
feedback control of subthreshold voltage trajectory—the “push”
mechanism—enhances temporal summation. Our noise-based
analysis focused on the fluctuation-driven region.

By comparison, the subthreshold outward current expressed
by differentiators creates a negative feedback loop that trun-
cates depolarization and prevents repetitive spiking by interacting
competitively with fast-activating sodium current. Equivalent
negative feedback can in principle be achieved through slow inac-
tivation of the fast-activating sodium current. Either mechanism
might be said to mediate a form of spike threshold accommo-
dation. An isolated spike is produced when stimulus-mediated
depolarization causes a quasi-separatrix-crossing, which amounts
to escaping the negative feedback by outrunning its activation.
According to this explanation, spike initiation depends on the rate
of change of stimulus intensity exceeding some threshold, and the
threshold slope naturally depends on the activation kinetics of
the subthreshold outward current. Lundstrom et al. (2009) have
carefully demonstrated how the kinetics of that feedback tune
neuronal sensitivity to fluctuating input. Our models predicted
and experiments confirmed that differentiators spike repetitively
as long as the rate of change of stimulus intensity exceeds the
threshold slope. In theory at least, the rate of such spiking could
encode the derivative of the stimulus. In practice, a rapidly depo-
larizing stimulus (such as that caused by a volley of synchronous
inputs) is likely to be so brief that only one spike can occur dur-
ing it. The timing of such spikes indicates when suprathreshold
stimulus events occurred, while the rate of those spikes indi-
cates the rate of suprathreshold stimulus events. What is most
important is that differentiators, because of their selectivity for
rapidly depolarizing input, respond selectively to synchronous
inputs; furthermore, a set of such neurons receiving common
input can respond with synchronous spikes, thus ensuring good
synchrony-based coding (Hong et al., 2012; Ratté et al., 2013).
Integrators can obviously respond to synchronous inputs, but
a set of such neurons does not necessarily respond with good
output synchrony. In effect, differentiators always operate in a
fluctuation-driven regime and, moreover, respond selectively to
fluctuations comprising relatively high frequencies because of
the high-pass filtering implemented by the subthreshold outward
current.

According to the explanations provided above (see also
Figures 3, 4), spiking involves two thresholds. In the integrator,
one threshold (the SNIC bifurcation) controls activation of the
subthreshold inward current and the other (the Hopf bifurca-
tion) controls activation of the fast-activating sodium current.
In the differentiator, one threshold (the quasi-sepratrix crossing)
describes whether stimulus-driven depolarization outruns acti-
vation of the subthreshold outward current while the other is
the same Hopf bifurcation seen in the integrator. Having two
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thresholds begs the question of whether one threshold is dom-
inant over the other, and if not, how the two combine. In the
case of integrators, reaching the first threshold initiates a posi-
tive feedback process, which, given sufficient time, will insure that
the second threshold is reached. Accordingly, the importance of
the second threshold depends on the kinetics of the input rel-
ative to the activation kinetics of the subthreshold current; in
other words, the second threshold becomes important only if
the stimulus-induced depolarization is so short that the second
threshold must be reached without the help of the subthreshold
inward current; under those stimulus conditions, the neuron is
not exploiting its integrating capacity in the first place. In the
differentiator, both thresholds come into play insofar as depo-
larization must not only be rapid, but must also be sufficient in
amplitude for a spike to occur. The first thresholding mechanism
shapes the voltage trajectory before that voltage hits the second
threshold, at which point a spike becomes truly inevitable.

The explanations of spike initiation provided here differ from
previous descriptions (Rinzel and Ermentrout, 1989; Borisyuk
and Rinzel, 2005; Izhikevich, 2007; Prescott et al., 2008a) and
arguably provide deeper insights into the biophysical underpin-
nings of that process. This hinges on our use of a conductance-
based model that is still low-dimensional yet slightly more
complex than the simplest models upon which most nonlin-
ear dynamical analysis has been applied. That said, our neuron
models are still extremely simple compared with real neurons,
which leads one to suspect that spatially complex neurons that
express diverse ion channels with inhomogeneous densities may
have multiple thresholding mechanisms that somehow combine
to give a global threshold (Ashida et al., 2007; Brette, 2013). That
said, the same neuron may combine thresholds in subtly differ-
ent ways depending on the stimulus statistics, implying that the
threshold may change, quantitatively at least, depending on the
stimulus (Famulare and Fairhall, 2010) (see below). Qualitative
differences exist between neurons, as exemplified here by our
comparison of tonic- and single-spiking neurons in the spinal
dorsal horn. Moreover, intrinsic neuronal properties are subject
to modulation, which means the threshold can change (Prescott
et al., 2008b; Hong et al., 2012).

The above discussion has emphasized neuronal properties and
a neuron-centric definition of operating mode. Previous discus-
sions of operating mode have most often emphasized the effects
of stimulus properties (Mainen and Sejnowski, 1995; Nowak
et al., 1997; Azouz and Gray, 2000, 2003; Rudolph and Destexhe,
2003; Axmacher and Miles, 2004). Both are important. This is
illustrated by the responses to noisy stimuli (see Figure 6): The
integrator responded to both slow- and fast-fluctuating input
with STAs whose difference is entirely attributable to the differ-
ence in stimulus autocorrelation time; however, the integrator
and differentiator neurons responded to the same fast-fluctuating
stimulus with STAs whose difference is entirely attributable to
difference in neuronal properties, namely their subthreshold cur-
rent. Indeed, as illustrated in Figure 6E, the two cell types do not
necessarily respond to the same stimulus events. This does not
change the fact that integrators are sensitive to stimulus fluctua-
tions; they are simply less selective for those fluctuations than are
differentiators (Ratté et al., 2013), consistent with the observation

that differentiators do not respond at all to slow-fluctuating stim-
uli whereas integrators do. In short, differences in subthreshold
voltage trajectory and spike initiation confer differences in tun-
ing that are directly reflected in the spike-triggered average and
covariance (Aguera y Arcas and Fairhall, 2003; Gutkin et al., 2005;
Fairhall et al., 2006; Ermentrout et al., 2007; Hong et al., 2007;
Arthur et al., 2013). The present study extends the effort to link
neuronal coding properties with spike initiation properties and,
further, with biophysical properties.

Although we have emphasized the effects of different sub-
threshold currents, one must appreciate that thresholds arise
from the nonlinear interaction between currents; therefore, sub-
threshold currents must be considered in the context of other
currents expressed by the cell. To illustrate, consider that a weak
slow-activating potassium current would pose little competition
to a fast-activating sodium current that is particularly strong
and would thus fail to confer differentiator traits to that neu-
ron; however, if the sodium channel density was reduced, the
same potassium channel density could prevent repetitive spik-
ing and implement differentiator traits (Lundstrom et al., 2008).
Likewise, cumulative sodium channel inactivation can reduce
the availability of sodium channels (Fernandez et al., 2011) and
increased leak conductance can increase perithreshold outward
current (Zsiros and Hestrin, 2005; Prescott et al., 2006; Broicher
et al., 2012), both with much the same effect as decreasing sodium
channel density or increasing slow-activating potassium chan-
nel density. Indeed, simulations in Figure 4 demonstrated that
sodium channel inactivation and potassium channel activation
(with equivalent kinetics and voltage-dependency) can imple-
ment the same negative feedback and thereby confer the same
differentiator traits. Lundstrom et al. (2009) modeled negative
feedback as a combination of the two processes. But like canon-
ical differentiators in the auditory midbrain (Reyes et al., 1996;
Slee et al., 2005; Mathews et al., 2010; Higgs and Spain, 2011), cer-
tain pyramidal neurons in the neocortex (Guan et al., 2007), and
dorsal root ganglion neurons (Ratté et al., 2014), differentiators
in the spinal dorsal horn rely on a Kv1 current for their response
properties (Prescott et al., 2008a). Similarly, integrator traits can
be conveyed by either inactivation of potassium current (Connor
and Stevens, 1971; Cudmore et al., 2010; Barreiro et al., 2012) or
by activation of sodium or calcium currents (Fricker and Miles,
2000; Gonzalez-Burgos and Barrionuevo, 2001; Vervaeke et al.,
2006; Carter et al., 2012). The latter occur in tonic-spiking spinal
neurons (Prescott and De Koninck, 2005; Prescott et al., 2008a).

To summarize, the spike initiation process is a critical com-
ponent of neural coding. Spikes are not instantaneously initiated
when voltage crosses a preordained threshold; on the contrary,
spikes can be initiated through qualitatively distinct mechanisms
that depend on the nonlinear interaction between contributing
membrane currents. When slow-activating subthreshold cur-
rent is inward, it will cooperate with the fast-activating current.
Under those conditions, spike initiation relies on cumulative
depolarization reaching a threshold—represented by the SNIC
bifurcation—whereupon positive feedback activation of the slow
inward current can guarantee activation of the fast current. When
slow-activating subthreshold current is outward, it will com-
pete with the fast-activating current. Under those conditions,
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spike initiation relies on depolarization activating the fast cur-
rent quickly enough that the slow current cannot catch up, which
is represented by the quasi-separatrix-crossing. In both cases,
a stimulus must be of sufficient intensity to elicit a spike, but
its interaction with the subthreshold current will control the
preferred stimulus waveform: Integrators are tuned to slow depo-
larizing input—the sort of input that gives subthreshold inward
current time to facilitate spiking—whereas differentiators are
tuned to fast depolarizing input—the sort of input that gives
subthreshold outward current too little time to prevent spik-
ing. Thus, integration and differentiation arise from oppositely
directed membrane currents and are implemented as part of the
spike initiation process.
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