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Abstract: The paper examines the surface functionalization of a new type of Ti-graphite composite, a
dental biomaterial prepared by vacuum low-temperature extrusion of hydrogenated-dehydrogenated
titanium powder mixed with graphite flakes. Two experimental surfaces were prepared by laser
micromachining applying different levels of incident energy of the fiber nanosecond laser working
at 1064 nm wavelength. The surface integrity of the machined surfaces was evaluated, including
surface roughness parameters measurement by contact profilometry and confocal laser scanning
microscopy. The chemical and phase composition were comprehensively evaluated by scanning
electron microscopy, energy-dispersive X-ray spectroscopy and X-ray diffraction analyses. Finally, the
in vitro tests using human mesenchymal stem cells were conducted to compare the influence of the
laser processing parameters used on the cell’s cultivation and osteo-differentiation. The bioactivity
results confirmed that the surface profile with positive kurtosis, platykurtic distribution curve and
higher value of peaks spacing exhibited better bioactivity compared to the surface profile with
negative kurtosis coefficient, leptokurtic distribution curve and lower peaks spacing.

Keywords: graphite–titanium composite; laser micromachining; surface morphology; biocompatibility;
osteo-differentiation; stem cell

1. Introduction

Biomaterials contribute to the life quality improvement of many patients by replacing
damaged tissues. The harmed hard tissues are generally replaced by ceramic or metallic
biomaterials. Titanium and its alloys, stainless steel and cobalt-chromium alloys are typical
representatives of metallic biocompatible materials [1]. The material properties essential
for medical purposes include biocompatibility, specific strength, corrosion resistance, high
mechanical resistance, low modulus of elasticity and stability [2–4]. The biocompatibility of
titanium and its alloys is associated with the ability to interact with human tissue without
adverse effects of the low ion and particle release into the organism [3,5,6].

The formation of a direct bond between the implant and the bone, called osseointegra-
tion, is a series of complex events that are triggered after the implant is inserted into the
body [7]. Osseointegration begins with wetting the implant surface, continues with the
protein absorption, and is followed by the cell’s adhesion, proliferation and differentiation.
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The initial state of osseointegration can affect the long-term success of implantation [4].
The final stage is related to the formation of a new bone by the mineralization of the bone
matrix on the bone-implant interface by osteoblasts [8,9]. The course of osseointegration
is influenced by the properties and reactions of the host tissue on the one hand, and, on
the other hand, by the properties of the implant material. In addition to the mechanical
properties of the implant material, the surface properties are also important [4]. The prop-
erties of implant surfaces that can positively influence the osseointegration process have
been investigated in surface engineering with the greatest emphasis on surface wettability,
topography, roughness and chemical composition [7–11]. Thus, through surface engineer-
ing, the bio-functionalities of implants, such as cells adhesion and growth, as well as tissue
regeneration, can be enhanced [5,8].

The surface roughness at the micrometer scale should enhance cell attachment, and
differentiation, and the roughness at the nanometer scale increases surface energy [12–14].
The roughness, Ra, of the currently applied implants ranges between 1 and 2 µm [9]. From
the topography point of view, a surface with grooves or depressions of the same size as
the cells (a specific type of cell) is more preferred for its colonization by these particular
cells [7]. This phenomenon can be applied in the modulation of the surface to attract the
particular cell type, e.g., the preferable attraction of osteoblasts instead of bacteria [15]
or gingival fibroblasts instead of oral bacterial strains [16], fibroblast versus osteoblast
colonization [17] and many others.

Surface properties leading to improved osseointegration conditions are achieved
through advanced manufacturing technologies. These can be divided into additive or
subtractive surface modification processes or can be grouped as chemical and physical
surface modification methods [12]. The additive surface treatments comprise biochemical
surface modifications when the organic molecules are incorporated onto the surface [11].
It includes plasma spraying [18,19], physical or chemical vapor deposition [20,21], dif-
ferent types of coatings, e.g., bioactive [22,23], antibacterial [24], bio-mimetic [25] and
nanostructured coatings [26]. The subtractive technologies include machining or micro-
machining [27], grit-blasting [28], acid etching [29], electrochemical machining [30] and
laser treatments [31]. When combining several methods at the same time, the advantages
of each of them are fully utilized. The grit-blasting followed by acid etching is the most
common combination of surface treatment methods [32,33].

Laser machining is a non-contact technology where the kinetic energy of emitted
photons is converted into thermal energy when interacting with a workpiece surface,
causing the melting and removal of material from the surface by vaporization, chipping
or other erosive processes [34]. Machined surfaces consist of remelted material, which is
formed into depressions and protrusions due to the pressure of vapors generated during the
evaporation of the material in the place of interaction with the laser beam. It is possible to
make functional features, regular textures, laser-induced periodic surface structures (LIPSS),
nanostructures, etc. [8]. The advantages are fast machining process, precision, accuracy,
versatility and non-contamination of the workpiece [12]. Certain roughness minimization
of the heat-affected area and elimination of the cracks on the surface can be achieved by
setting the input process parameters in a controlled way [35]. As a technology that provides
a suitable alternative to other surface treatment methods of biomaterials, thereby leading
to osseointegration improvement, the laser treatment of implants’ surfaces is an object of
interest for many researchers around the world [34,36,37]. Borcherding et al. [38] treated
a Ti6Al4V alloy with a TiO2 coating by laser. They found improved osteoblast adhesion
and viability on a surface treated as such. Dumas et al. [39] produced the biomimetic
micro and nano textures on the Ti6Al4V surface. They compared mesenchymal stem
cells growth and differentiation on textured and polished surfaces. The speed of the cells
spreading on the textured surfaces was higher. Moreover, micro-pits with nano-ripples
improved the osteogenic potential. Yoruç et al. [40] also focused on the laser treatment
of a Ti6Al4V alloy and its subsequent immersion in simulated body fluid. The laser
treatment of the surfaces significantly increased the hydroxyapatite precipitation, which
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was due to the increasing surface roughness contributing to the enhanced osseointegration.
Kuczyńska-Zemła et al. [41] used the direct laser interference lithography on the acid-etched
surfaces of the commercially pure (cp) titanium grade 2 to form uniform Ca-P coatings
on them. They found that osteoblasts preferred to grow along these obtained patterns.
Wedemeyer et al. [42] formed nanostructures by laser nanostructuring on the Ti6Al4V alloy
coated with titanium niobium nitride and titanium plasma spray. The treated samples
were implanted into rabbit femora, and all implants were found osseointegrated and well
anchored in the bone. However, the nanostructures had no further influence on the fixation
of the implants. A negative effect of the surface structure on osteoblast was described by
Babuska et al. [43], who investigated the proliferation of osteoblasts on the laser-treated
surfaces of cp Ti grade 2 and grade 4 of different microstructures. They observed that
materials with lower average grain sizes exhibited significantly higher wettability. Despite
the increased roughness after laser treatment, the proliferation of osteoblasts was worse
when compared to the surface without laser treatment.

The influence of laser energy on the machined surface morphology, roughness, and
chemistry of the Ti-graphite composite samples, prepared by pioneering a low-temperature
powder metallurgy technique, was investigated and evaluated recently [44,45]. The authors
illustrated that the amount of thermal energy incorporated in the working material had a
remarkable effect on the machined surface and identified the surface profiles that could
promote the osseointegration properties. In order to obtain a more complex picture of the
human mesenchymal stem cells bioactivity on these surfaces, extended research was carried
out using a number of analytical techniques. The research brought new findings that more
precisely determined which surface profile parameters of the laser-machined surface have
the most impact on the cell’s cultivation and osteo-differentiation. The research results are
described in the current paper.

2. Materials and Methods
2.1. Experimental Material

In the research, the Ti-graphite composite prepared by the low-temperature powder
metallurgy method was used as an experimental material. It consisted of the CP HDH
(hydrogenated-dehydrogenated) titanium powder particles with an average size below
32 µm in diameter (Kimet Special Metal Precision Casting Co., Ltd., Hengshui, China),
reinforced with 15 vol. % of graphite flakes with an average particle size of 16 µm with a
flake aspect ratio of 0.1 and a purity of 99.9%. The wet dispersion-based Fritsch Analysette
22 (FRITSCH GmbH—Milling and Sizing, Weimar, Germany) device for the range of
powder sizes 0.5–1500 µm was utilized to determine the powder size distribution. The
measured values for titanium powder and graphite flakes were as follows: d50 = 24.9
and 5.6 µm and d90 = 46.3 and 13.9 µm, respectively. First, the titanium powder with
the graphite flakes was dry mixed in a Turbula mixture for 30 min. In this case, a low-
temperature powder metallurgy method was used for powder mixture compacting. The
compaction started with a cold isostatic pressing at the pressure of 200 MPa. Then, the
green compacts were weighed, and the porosity was calculated as between 32–40%. Finally,
the green compacts were compacted using a hot vacuum press method at the working
temperature interval range from 450 to 470 ◦C and external pressure of 500 MPa. The
density of the samples was determined from weighing and volume measurement in the
range from 4.1 to 4.15 g·cm−3. The porosity of the finished material was 2.44% ± 0.15%.
The microstructure of the experimental material is given in Figure 1, where the black areas
are related to the presence of graphite flakes (high carbon content) and the brighter areas
are compacted grains of the HDH Ti powder.
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Figure 1. Structure of Ti-graphite composite with the composition of elements. The SEM image was
taken at 800× magnification.

2.2. Surface Modification Process

Within the experiment, the Ti-graphite composite samples were treated by a laser
beam in the Ar shielding atmosphere. Before laser beam machining, the sample was cut
on a Buehler IsoMet 1000 (Buehler Ltd., Lake Bluff, IL, USA) precision cutter. A weight
of 150 g was used, and the blade speed was set to 220 rpm. The cut samples were then
ground with P1200 (15.3 µm) Buehler CarbiMet emery paper and then ground with P1200
(15.3 µm) Buehler CarbiMet emery paper. The surfaces were prepared for laser beam
ablation after cutting and grinding the samples. Laser ablation of the experimental material
was performed on a Lasertec 80 Shape machine (DMG Mori GmbH., München, Germany)
equipped with a Yb-doped fiber laser system (Figure 2a). The constant parameters of the
experimental procedure are listed in Table 1.
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Figure 2. Experimental setup. (a) The main parts of the laser equipment; (b) scheme of pulse
mode. 1—lighting of the workspace, 2—exhaust, 3—laser scanner output, 4—Z-axis measure probe,
5—positioning CCD camera, 6—cooler, 7—fixture for sample placement, 8—inlet of shielding gas,
9—work table; D—laser beam diameter, DL—lateral pulse distance (µm), OL—lateral pulse overlap
(%), DT—transverse pulse distance (µm), OT—transverse pulse overlap (%).
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Table 1. Constant parameters of the experimental setup.

Parameter Value

Wavelength of laser radiation λ 1064 nm
Pulse duration τ 120 ns
Spot diameter D 50 µm

Transvers pulse distance (line-to-line distance) DT 10 µm
Transvers pulse overlap (line-to-line overlap) OT 80%

Ablated layers 2
Argon flow rate 10 L·min−1

Two different square-shaped surfaces (Surface A and Surface B) with a 5 mm side
length were ablated by cross-hatching strategy using different combinations of input
process parameters according to Table 2 and Figure 2b. In a cross-hatching strategy, the
laser beam passes the machined surface in two directions perpendicular to each other.

Table 2. Parameters of laser treatment.

Surface Output
Power (W) f (Hz) vs (mm·s−1) DL (µm) OL (%) N (-) ET (mJ)

A 4 20 2000 100
no

overlapping 2.5 0.5
B 20 100 1000 10 80 25 5

Lateral pulse distance (pulse-to-pulse distance), DL, was calculated according to the
following formula:

DL =
vs

f
(1)

Subsequently, lateral pulse overlap (pulse-to-pulse overlap) OL was expressed as (2):

OL =

(
1 − DL

D

)
× 100 (2)

The summary of incident laser pulses in one place is marked as N. The total en-
ergy delivered to the irradiated area of the material in one machined layer (ET) was
calculated as (3):

ET = Ep × N (3)

The sample was placed in the fixture (position 7 in Figure 2a) before machining to
allow the use of an Ar shielding atmosphere.

2.3. Surface Characterization

The JEOL JSM 7600F (JEOL Ltd., Tokyo, Japan) high-resolution scanning electron
microscope (SEM) was utilized to observe the topography of laser-treated surfaces. The
treated surfaces were observed in a secondary electron imaging regime with the following
parameters: U = 15 keV, I = 1.0 nA and WD = 15 mm. The ablated surfaces were observed
at magnifications from 50 to 1500×.

The elemental composition was measured by an Oxford Instruments Inca X-Max
50 mm2 energy-dispersive X-ray spectroscope (Oxford Instruments, Oxford, UK) operated
at the same parameters as SEM. The elemental composition of the surface was measured
three times for each sample.

The surface roughness parameters (Ra, Rsk, Rku, RSm and Rmr) were measured using
a Mitutoyo SJ 210 (Mitutoyo Europe GmbH, Neuss, Germany) contact-gauge profilometer
according to ISO 4288:1997 Standard [46].

The area surface roughness parameters of the ablated surfaces were measured by the
ZEISS LSM 700 laser scanning confocal microscope (Carl Zeiss Microscopy GmbH, Jena,
Germany) according to ISO 25178 Standard. The microscope is equipped with a 405 nm
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wavelength laser. The achieved data were processed in ZEN 2009 software and then
evaluated in the form of 3D color topography maps using ConfoMap Premium 7.2 software.
All surfaces were scanned across the area with the dimensions of 454 × 454 µm2 at the
magnification of 200× by the EC “Epiplan-Neofluar” 20×/0.50 HD M27 objective (Carl
Zeiss Microscopy GmbH, Jena, Germany).

The phase composition of the laser-treated surfaces was studied using a Brucker D8
diffractometer (XRD) (Brucker, Billerica, MA, USA), with the Cu anode (λ = 1.5406 Å).
The following parameters were used during the measurements: U = 40 kV and I = 30 mA.
The analysis of diffractograms was carried out using Panalytical HighScore Plus software,
version 3.0e (Malvern Panalytical B. V., Almelo, The Netherland).

2.4. In Vitro Cellular Evaluation
2.4.1. Cell Culture

Human mesenchymal stem cells (hMSCs) were obtained from the bone marrow by
aspiration of the bone marrow from the posterior iliac crest after signed informed consent
and the approval of the Ethics Committee. Bone marrow mononuclear cells were isolated
by centrifugation in Ficoll-Histopaque (Sigma-Aldrich, St. Louis, MO, USA) and initially
expanded in α-MEM medium (Life Technologie, Carlsbad, CA, USA) with 10% non-heat
inactivated fetal bovine serum (FBS) (Termo Fisher Scientific, Waltham, MA, USA). hMSCs
from the initial expansion were once passaged and then stored frozen in liquid nitrogen
till their usage. Then the cells were incubated in a standard cultivation medium (α-MEM
medium supplemented with 10% heat-inactivated FBS, penicillin (20 U/mL; Sigma-Aldrich,
St. Louis, MO, USA) and streptomycin (20 mg/mL; Sigma-Aldrich, St. Louis, MO, USA).
In general, cells were cultivated in an incubator at 37 ◦C and 5% CO2 atmosphere. The
experiments were performed using hMSCs from healthy donors (n= 2) with a passage
number from four to five.

2.4.2. Metabolic Activity Determination

Cells were seeded on the Ti-graphite samples located on the bottom of 24-well plates
(TPP, Switzerland) at the concentration of 15,000 cells/cm2 in the standard cultivation
medium for 24 h. After this period, the samples with adhered cells were transferred to a
new 24-well plate and incubated for an additional 48 h. Then, the medium was aspirated,
and a staining solution for metabolic activity determination was added. A metabolic
activity test (Cell Titer 96 AQueous One Solution Cell Proliferation Assay, MTS, Promega,
Madison, WI, USA) was performed according to the standard protocol of the manufacturer
(the reduction of MTS reagent to a colored formazan product was induced by metabolically
active cells). The supernatants from the samples were transferred into 96-well plates, and
their absorbance was measured using a multi-detection microplate reader (Spark, Tecan,
Switzerland) at 490 nm and reference at 655 nm. The measured results were normalized to
the size of the sample and expressed relative to the control cells (set as 100%) cultivated on
the standard tissue culture-treated polystyrene (CTRL-PS) as a percentage.

2.4.3. Osteogenic Differentiation of hMSCs

After the determination of their metabolic activity, the hMSCs were washed in PBS
(phosphate saline buffer), and the osteo-differentiation medium was added to them
for 14 days (standard α-MEM medium (Life Technologies, USA) with 10% heat non-
inactivated FBS (PAA, Austria), penicillin (20 U/mL; Sigma-Aldrich, USA) and strepto-
mycin (20 mg/mL; Sigma-Aldrich, USA) supplemented with 0.5 mM sodium L-ascorbate,
10 mM glycerol-phosphate and 0.1 µM dexamethasone, changed every 3 days for fresh sup-
plemented medium). Then, the cells were fluorescently stained using a specific antibody
against osteocalcin protein and visualized by fluorescence microscopy.
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2.4.4. Fluorescence Staining of Cells and Microscopy

The cells on Ti-C samples were fixed by 4% paraformaldehyde in PBS at room temper-
ature (RT) for 15 min, and permeabilized by 0.1% Triton X-100 in PBS (Sigma-Aldrich, USA)
at RT for 20 min. For morphology detection, actin filaments were stained with Alexa Fluor
488 Phalloidin (ThermoFisher Scientific, USA) for 45 min at 37 ◦C, and nuclei with DAPI
(Sigma-Aldrich, USA) for 15 min at 37 ◦C. For osteo-differentiation detection, after fixa-
tion and permeabilization, the samples were incubated with primary polyclonal antibody
against osteocalcin (Abcam, UK) (1 h at 37 ◦C), then with secondary fluorescently tagged
antibody (AlexaFluor555 goat anti-rabbit—Invitrogen, USA (1 h at 37 ◦C)). Images of the
cells were acquired using the Olympus IX71 microscope (Olympus, Hamburg, Germany)
equipped with a color-cooled camera DP74.

2.5. Statistical Analysis

Statistical evaluation of the evaluated parameters was performed using Minitab v.
17 software (Minitab, LLC, State College, PA, USA). The data were tested for normal
distribution, and a one-way ANOVA was applied. For the statistical tests, the levels of
significance were set at 95% (α = 0.05) and 99% (α = 0.01).

3. Results and Discussion
3.1. Scanning Electron Microscopy (SEM) Surface Observation

The surface morphologies of the as-received surface and the surfaces after laser
machining are shown in (Figure 3). Variously broken wavy formations of the remelted and
solidified material were observed on both machined surfaces. The texture of the surface
machined by applying a higher amount of energy transmitted to the material (ET = 5 mJ)
(Surface B) appears to be slightly finer.

The square-shaped texture resulting from the used cross-hatching strategy of laser
beam movement can be observed when the incident energy is higher. At higher magni-
fication (1500×), the cavities at the sizes ranging between 1 and 5 µm were detected in
both machined surfaces. These micro defects probably resulted from the interaction of
the melted material with the shielding gas flow. Such porosities are generally caused by
entrapped gases in the molten material owing to the high laser energy or unstable process
conditions. In our case, the final shape and dimension of the porosity resulted from the
original porosity of the machined material prepared by the powder metallurgy and the
porosity induced by the laser irradiation [47]. Using this combination, it is possible to man-
ufacture the surfaces and subsurface layers with interconnected pores, thereby promoting
cell growth in these areas.

3.2. Energy-Dispersive X-ray Spectrometry (EDS) Analysis

The mean values and standard deviations of the non-machined and machined surfaces
are given in Table 3. The representative EDS spectrum obtained from one point on Surface
A is shown in Figure 4. Titanium (Ti), carbon (C) and oxygen (O) were detected in all the
analyzed surfaces. It is noticeable that the minimal average weight percentage of oxygen
was observed on the as-received surface. The content of the oxygen increased with the
increasing amount of total energy transmitted to the material [48].

3.3. Surface Roughness Measurement Evaluation

The mean and standard deviation values of the average arithmetic value of roughness
(Ra), skewness (Rsk), kurtosis (Rku), mean width of the profile elements (RSm) and
material ratio of the surface profile (Rmr) with one-way ANOVA statistics are depicted in
Tables 4 and 5 and Figure 5. Color 3D maps of the machined surfaces with profiles in the
x-axis direction are shown in Figure 6.
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Table 3. Elemental composition of the as-received surface, Surface A and Surface B.

Element (wt. %) As-Received Surface Surface A Surface B

Ti 86.35 ± 0.06 84.32 ± 0.56 75.18 ± 0.56
C 8.15 ± 0.07 8.58 ± 0.22 9.52 ± 0.28
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Table 4. Surface roughness parameters measurements results.

Roughness Parameter Surface A Surface B

Ra (µm) 2.95 ± 0.16 2.85 ± 0.08
Rsk (-) 0.11 ± 0.08 −0.40 ± 0.21
Rku (-) 2.57 ± 0.13 3.34 ± 0.56

RSm (µm) 91.62 ± 4.39 81.78 ± 3.61
Rmr (%) 2.80 ± 1.45 8.80 ± 6.07

Table 5. One-way ANOVA (Fisher’s) comparison of measured parameters of Surface A and B.

Roughness
Parameter F-Value p-Value R2 Pooled SD

Ra 1.36 0.277 14.54 0.143
Rsk 22.17 0.002 ** 73.48 0.173
Rku 7.30 0.049 * 41.19 -
RSm 12.00 0.009 ** 60.01 4.49
Rmr 3.70 0.120 23.6 -

Note: * p < 0.05, ** p < 0.01.
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Figure 5. Evaluation of surface roughness parameters for Surface A and Surface B: (a) arithmetical
mean height Ra; (b) mean width of the profile elements RSm; (c) relative load length ratio Rmr;
(d) skewness Rsk; (e) kurtosis Rku; * statistically significant difference between means of roughness
parameters at the significance level of 0.05; ** statistically significant difference between means of
roughness parameters at the significance level of 0.01.

The results show that, although the amplitude parameter (Ra) and the parameter
which expresses the bearing length ratio (Rmr) are not statistically different, the skewness
(Rsk) and spacing parameter (RSm) are statistically different at the statistical level of 0.01.
The statistically significant difference between means at the significance level of 0.05 was
observed for the kurtosis (Rku).

The mean value of the skewness for Surface A is positive; on the other hand, it is
negative for Surface B. That means that neither Surface A nor Surface B exhibit symmetrical
height distribution. It can be concluded that the surface with positive Rsk (Surface A) is
more porous, while the surface with negative Rsk (Surface B) is rougher. These results
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correspond with the findings of Tavakoli et al. [49], who observed positive Rsk for the
Ti6Al4V laser irradiated surfaces with low energies; however, when using higher laser
energies, the Rsk was negative.
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According to the results of the roughness measurement, the distribution curve of the
Surface A profile is platykurtic (Rku <3; the profile consists of relatively few flat peaks and
valleys), while the distribution curve of Surface B profile is leptokurtic (Rku >3; the profile
consists of relatively many sharp peaks and valleys).

Finally, the difference between the mean values of the profile peaks spacing values
(RSm) is approximately 10 µm, with a higher value in the case of Surface A.

Although we did not find significant differences between roughness parameters, Ra,
Rmr, there are significant differences between surface profiles parameters, Rsk, RSm and
Rku, that have higher relevance at a cellular level in the osseointegration process. The more
preferable profiles with flat and large interfacial areas [50] were obtained by applying a
lower level of the transferred energy, controlled by applying low output laser power, lower
pulse frequency and higher scanning speed.

Not only the surface roughness (Ra, Sa) impacts the adhesion and proliferation of mes-
enchymal stem cells, Sdr and Sku should also be used as evaluation indicators. Especially
as stem cells have a higher rate of proliferation on the flat and large interfacial area.

The 3D surface maps indicate that the areas above the mean line in Surface A are
double the size of those in Surface B (785 versus 345 µm2, respectively); and, similarly,
the areas under the mean line are larger for Surface A compared to those for Surface B
(922 versus 403 µm2, respectively).

3.4. X-ray Diffraction (XRD) Observation Results

The XRD patterns of Surface A, Surface B and the as-received surface are depicted
in Figure 7. They confirm the formation of two types of oxides (TiO and Ti2O3) on the
laser machined surfaces. There was no XRD peak confirmed at around 25.3◦, which could
correspond to the thermodynamically most-stable TiO2 (rutil or anatase). The much lower
intensity of oxide peaks of the Surface B treated at higher energy (ET = 5 mJ) can be
related to lower thicknesses of the grown oxidic films. Contrary to the results of EDS
evaluation where the presence of carbon up to ~9.5 wt. % was observed, no diffraction
peaks corresponding to carbon were detected. This suggests that carbon could be present



Materials 2021, 14, 6067 11 of 17

on the surface of laser-treated samples in the form of amorphous graphite undetectable by
XRD observation.
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The results correlate with the findings in [48,51], where the authors claim that the top
layer of the film produced on titanium was not a pure TiO2, and it also can be supposed
that TiO2 was probably contained in the amorphous structure that is formed due to the
extremely fast heating/cooling rates and non-isothermal features, and therefore, no diffrac-
tion peaks were detected. The difference between the XRD patterns of Surface A and B
were insignificant.

These experimental XRD patterns match well with the International Centre for Diffrac-
tion Data (ICDD) reference cards n◦ 03-065-9622 (titanium), n◦ 00-002-1196 (TiO) and n◦

01-071-1047 (Ti2O3).

3.5. Biocompatibility and Osteoinductivity Evaluation

The two prepared and characterized laser machine surfaces A and B were tested
in vitro using human mesenchymal stem cells (hMSCs) to determine their biocompatibility
and osteoinductivity. hMSCs were cultivated on the experimental surfaces, as well as on a
control tissue-culture-treated plastic (CTRL-PS), and their metabolic activity/cell number
was determined after 72 h of incubation (Figure 8). The cells on Surface A grew more than
those on Surface B in individual experiments (cell batches); however, the summarized
data did not reveal any significance due to the high standard deviation. In comparison to
the control plastics, metabolically produced color reaction by active cells on both surfaces
tested significantly decreased to 40% of the control one, which may indicate the reduced
cell number and/or metabolism on the prepared surfaces. The reduced metabolism of
hMSC on structured surfaces versus flat ones was already described [52]; however, in our
case, it is most probably related to the reduced initial cell adhesion to the surface rather
than to the decreased cell metabolism, as the cell morphology (Figure 9) corresponds with
the alive and proliferating cells.
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Figure 8. Metabolic activity/cell number of hMSCs cultivated for 72 h on Ti-graphite samples with
Surface A and Surface B (activity/cm2 related in percentage to cell activity on control sample (CTRL-
PS)). No statistically significant difference between Surface A and Surface B was observed at the
significance level of 0.05.
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Figure 9. Fluorescent images of hMSCs cultivated for 72 h on graphite-Ti samples. Staining of actin
by PhalloidinAlexaFluor 488 (green) and of the nucleus by DAPI (blue); (a) Surface A, (b) Surface B,
(c) surface of the control tissue-culture treated PS sample (CTRL—PS).
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Images from fluorescence microscopy (Figure 9) support this result, showing that
the number of cells on both tested surfaces was smaller than the number of cells on the
control plastic. Moreover, the hMSCs morphology of individually tested surfaces, as
well as that of the reference surface, differed. The most widely spread cells appeared on
the flat plastic surface, which was specially treated for tissue-culture cultivation by the
manufacturer, while the cells on the machined surface were spread just according to their
specific profile. More widely spread and mutually interconnected cells grew on Surface
A, which is characterized as the surface with “wide valleys” (Figure 6a) (valley area is
comparable to the cell size [53]). On the other hand, smaller and isolated cells could be
found on Surface B, where rather sharp peaks alternated with relatively narrow valleys that
were smaller than the regular cell size. Thus, the particular material has a slight influence
on the initial cell growth while causing an apparent change in the cell morphology. The
cells tried to fit into the provided space; thus, their behavior was directly related to it.
Many existing studies show that different surface properties attract different cell types,
thus tuning the material surface to the particular desired cell type can be attracted to it,
and, on the other hand, can work as a repellent for other cell types [16,17].

Interestingly, despite alike behavior after 72 h of incubation, the cells cultivated for
14 days in an osteo-differentiating medium on the different surfaces revealed different
osteoinductive/conductive abilities (Figure 10). The highest fluorescence signal from the
detection of osteogenic marker osteocalcin was documented in the cells cultivated on
Surface A. This signal is even higher than the signal on the control plastics, which indicates
enhanced osteoinductive properties of Surface A. The graphs in Figure 6a indicate that
the curve (profile) of Surface A is more ragged than that of Surface B, thus providing
not only micro-topography but also submicro- or nano-topography. The more structured
surface can thus better mimic the original bone structure, thereby positively influencing
the osteoinduction of hMSCs, as has been previously reported many times [54,55].

Materials 2021, 14, x FOR PEER REVIEW 14 of 18 
 

 

Images from fluorescence microscopy (Figure 9) support this result, showing that the 
number of cells on both tested surfaces was smaller than the number of cells on the control 
plastic. Moreover, the hMSCs morphology of individually tested surfaces, as well as that 
of the reference surface, differed. The most widely spread cells appeared on the flat plastic 
surface, which was specially treated for tissue-culture cultivation by the manufacturer, 
while the cells on the machined surface were spread just according to their specific profile. 
More widely spread and mutually interconnected cells grew on Surface A, which is char-
acterized as the surface with “wide valleys” (Figure 6a) (valley area is comparable to the 
cell size [53]). On the other hand, smaller and isolated cells could be found on Surface B, 
where rather sharp peaks alternated with relatively narrow valleys that were smaller than 
the regular cell size. Thus, the particular material has a slight influence on the initial cell 
growth while causing an apparent change in the cell morphology. The cells tried to fit into 
the provided space; thus, their behavior was directly related to it. Many existing studies 
show that different surface properties attract different cell types, thus tuning the material 
surface to the particular desired cell type can be attracted to it, and, on the other hand, can 
work as a repellent for other cell types [16,17]. 

Interestingly, despite alike behavior after 72 h of incubation, the cells cultivated for 
14 days in an osteo-differentiating medium on the different surfaces revealed different 
osteoinductive/conductive abilities (Figure 10). The highest fluorescence signal from the 
detection of osteogenic marker osteocalcin was documented in the cells cultivated on Sur-
face A. This signal is even higher than the signal on the control plastics, which indicates 
enhanced osteoinductive properties of Surface A. The graphs in Figure 6a indicate that 
the curve (profile) of Surface A is more ragged than that of Surface B, thus providing not 
only micro-topography but also submicro- or nano-topography. The more structured sur-
face can thus better mimic the original bone structure, thereby positively influencing the 
osteoinduction of hMSCs, as has been previously reported many times [54,55]. 

 
Figure 10. Osteo-differentiation of hMSCs—black and white images of hMSCs cultivated for 14 days 
in osteo-differentiation medium. Staining of antibody against osteo-marker osteocalcin; (a) Surface 
A; (b) Surface B; (c) surface of the control sample (CTRL—PS). 

It is well known that surfaces with microscale irregularities along with surface chem-
istry promote bone cell attachment, new bone integration and adhesion between the bone 
tissue and implant [56], but a more accurate quantitative characterization is still not en-
tirely sufficient. This study, following previous studies of the authors, enhances the 
knowledge on the significance of the surface micro profile parameters Rsk, Rku and RSm, 
through which cell attachment and proliferation can be modulated. As modern trends in 

Figure 10. Osteo-differentiation of hMSCs—black and white images of hMSCs cultivated for 14 days
in osteo-differentiation medium. Staining of antibody against osteo-marker osteocalcin; (a) Surface
A; (b) Surface B; (c) surface of the control sample (CTRL—PS).

It is well known that surfaces with microscale irregularities along with surface chem-
istry promote bone cell attachment, new bone integration and adhesion between the bone
tissue and implant [56], but a more accurate quantitative characterization is still not entirely
sufficient. This study, following previous studies of the authors, enhances the knowledge
on the significance of the surface micro profile parameters Rsk, Rku and RSm, through
which cell attachment and proliferation can be modulated. As modern trends in the re-
search of biomedical materials surface modification prefer the need to develop surfaces
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that not only improve the bio-activeness but also improve the antibacterial effect [57], the
quantification of surface profile parameters on the micrometer and nanometer-scale is
necessary for providing effective results.

Each surface has specific properties that can affect cells in different ways. Although the
results of this study revealed there was a difference in the specific surface properties that led
to the cell behavior in a different way, one important limitation needs to be considered. The
cell’s activity on the treated surface is a result of a complex interaction of many variables,
and not all of them could be evaluated within this study; therefore, further research is
needed on the reason for these results. The influence of the surface profile, together with
the surface chemistry and surface energy on the hMSCs growth and osteo-differentiation,
need to be observed in further research.

4. Conclusions

In this study, the surfaces of the powder metallurgy-processed Ti-graphite composite
were machined by applying different laser beam energies delivered to the material in
the same location, and the surface integrity parameters were studied concerning the
in vitro bioactivity. Based on the conducted experiments, the following considerations
can be drawn:

(1) The obtained results confirmed that the energy directly influences the surface chem-
istry, morphology and roughness parameters, which determine their biocompatibility
and osteoinductivity.

(2) It was indicated that the introduction of a lower energy amount (ET = 0.5 mJ) into the
workpiece material resulted in a surface profile with a few wide and high peaks with
rugged surface and a few low and wide valleys and higher peaks—Surface A.

(3) The profile that consists of relatively a lot of narrow (sharp) peaks and low valleys,
with the valleys dominating over the peaks, was documented when a higher level of
energy was used (ET = 5 mJ)—Surface B.

(4) The in vitro analysis using hMSCs revealed that the surface produced by applying
the lower level of incident energy promotes cells’ growth and osteo-differentiation,
when compared with the surface machined using higher energy level.

(5) It was confirmed that skewness, kurtosis and width of the surface profile elements
are important variables influencing hMSCs growth and osteo-differentiation.

(6) The adhesion and proliferation behavior of cells on the surface is the result of a
complex interaction of many variables, and therefore, the surface energy of the laser-
modified surfaces, in relation to surface profiles and chemistry, will be investigated in
more detail in further studies.

Author Contributions: Conceptualization and methodology, P.Š. and M.H.K.; investigation, B.L.,
M.H.K., M.S. and J.K.; data curation, P.Š., B.L. and J.Š.; writing—original draft preparation and review
and editing, P.Š., B.L., M.H.K. and J.Š. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was supported by the VEGA 2/0135/20 and KEGA No. 022STU-4/2019
research projects provided by the Ministry of Education, Science, Research and Sport of the Slovak
republic and the PROGRES Q26 project provided by the Charles University, Czech Republic.

Institutional Review Board Statement: The study was conducted according to the guidelines of
the Declaration of Helsinki, and approved by the Institutional Ethics Committee of the General
University Hospital, Prague, Czech Republic (77/14, 24 July 2014)).

Informed Consent Statement: Informed consent was obtained from all subjects in-volved in the study.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Acknowledgments: The authors express their sincere thanks for financial contribution to the Ministry
of Education, Science, Research and Sport of the Slovak republic. The authors would also like to grate-



Materials 2021, 14, 6067 15 of 17

fully acknowledge Peter Švec of the Slovak Academy of Sciences, the Institute of Physics for his assis-
tance with XRD analysis. Special thanks to Blanka Bilkova for her advanced cell technical assistance.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

References
1. Bauer, S.; Schmuki, P.; von der Mark, K.; Park, J. Engineering biocompatible implant surfaces: Part I: Materials and surfaces. Prog.

Mater. Sci. 2013, 58, 261–326. [CrossRef]
2. Lukaszewska-Kuska, M.; Wirstlein, P.; Majchrowski, R.; Dorocka-Bobkowska, B. Osteoblastic cell behaviour on modified titanium

surfaces. Micron 2018, 105, 55–63. [CrossRef]
3. Shimabukuro, M.; Ito, H.; Tsutsumi, Y.; Nozaki, K.; Chen, P.; Yamada, R.; Ashida, M.; Nagai, A.; Hanawa, T. The Effects of Various

Metallic Surfaces on Cellular and Bacterial Adhesion. Metals 2019, 9, 1145. [CrossRef]
4. Velasco-Ortega, E.; Ortiz-García, I.; Jiménez-Guerra, A.; Monsalve-Guil, L.; Muñoz-Guzón, F.; Perez, R.A.; Gil, F.J. Comparison

between sandblasted acid-etched and oxidized titanium dental implants: In vivo study. Int. J. Mol. Sci. 2019, 20, 3267. [CrossRef]
[PubMed]

5. Devgan, S.; Sidhu, S.S. Evolution of surface modification trends in bone related biomaterials: A review. Mater. Chem. Phys.
2019, 233, 68–78. [CrossRef]

6. Kaur, M.; Singh, K. Review on titanium and titanium based alloys as biomaterials for orthopaedic applications. Mater. Sci. Eng. C
2019, 102, 844–862. [CrossRef]

7. Gnilitskyi, I.; Pogorielov, M.; Viter, R.; Ferraria, A.M.; Carapeto, A.P.; Oleshko, O.; Orazi, L.; Mishchenko, O. Cell and tissue
response to nanotextured Ti6Al4V and Zr implants using high-speed femtosecond laser-induced periodic surface structures.
Nanomed. Nanotechnol. Biol. Med. 2019, 21, 102036. [CrossRef]

8. Klos, A.; Sedao, X.; Itina, T.E.; Helfenstein-Didier, C.; Donnet, C.; Peyroche, S.; Vico, L.; Guignandon, A.; Dumas, V. Ultrafast
Laser Processing of Nanostructured Patterns for the Control of Cell Adhesion and Migration on Titanium Alloy. Nanomaterials
2020, 10, 864. [CrossRef] [PubMed]

9. Nicolas-Silvente, A.I.; Velasco-Ortega, E.; Ortiz-Garcia, I.; Monsalve-Guil, L.; Gil, J.; Jimenez-Guerra, A. Influence of the Titanium
Implant Surface Treatment on the Surface Roughness and Chemical Composition. Materials 2020, 13, 314. [CrossRef]

10. Velasco-Ortega, E.; Alfonso-Rodríguez, C.A.; Monsalve-Guil, L.; España-López, A.; Jiménez-Guerra, A.; Garzón, I.; Alaminos,
M.; Gil, F.J. Relevant aspects in the surface properties in titanium dental implants for the cellular viability. Mater. Sci. Eng. C
2016, 64, 1–10. [CrossRef] [PubMed]

11. Ehrenfest, D.M.D.; Coelho, P.G.; Kang, B.S.; Sul, Y.T.; Albrektsson, T. Classification of osseointegrated implant surfaces: Materials,
chemistry and topography. Trends Biotechnol. 2010, 28, 198–206. [CrossRef]

12. Rodríguez, Á.; Trueba, P.; Amado, J.M.; Tobar, M.J.; Giner, M.; Amigó, V.; Torres, Y. Surface Modification of Porous Titanium
Discs Using Femtosecond Laser Structuring. Metals 2020, 10, 748. [CrossRef]

13. Wennerberg, A.; Albrektsson, T. Effects of titanium surface topography on bone integration: A systematic review. Clin. Oral
Implant. Res. 2009, 20, 172–184. [CrossRef]

14. Kalbacova, M.; Rezek, B.; Baresova, V.; Wolf-Brandstetter, C.; Kromka, A. Nanoscale topography of nanocrystalline diamonds
promotes differentiation of osteoblasts. Acta Biomater. 2009, 5, 3076–3085. [CrossRef] [PubMed]

15. Pacha-Olivenza, M.Á.; Tejero, R.; Fernández-Calderón, M.C.; Anitua, E.; Troya, M.; González-Martín, M.L. Relevance of
Topographic Parameters on the Adhesion and Proliferation of Human Gingival Fibroblasts and Oral Bacterial Strains. BioMed Res.
Int. 2019, 2019, 8456342. [CrossRef]

16. Kunzler, T.P.; Drobek, T.; Schuler, M.; Spencer, N.D. Systematic study of osteoblast and fibroblast response to roughness by means
of surface-morphology gradients. Biomaterials 2007, 28, 2175–2182. [CrossRef] [PubMed]

17. Wu, J.; Yitelli, J.P.; TenHuisen, K.S.; Zu, X.; Libera, M.R. Differential response of Staphylococci and osteoblasts to varying titanium
surface roughness. Biomaterials 2011, 32, 951–960. [CrossRef]

18. Grishina, I.P.; Telegin, S.V.; Lyasnikova, A.V.; Markelova, O.A.; Dudareva, O.A. Development of the Combined Technology
of Modification of the Surface of Titanium Implants by Laser Radiation with Subsequent Plasma Spraying of Biocompatible
Coatings. Metallurgist 2019, 63, 215–220. [CrossRef]

19. Koshuro, V.; Fomin, A.; Rodionov, I. Composition, structure and mechanical properties of metal oxide coatings produced on
titanium using plasma spraying and modified by micro-arc oxidation. Ceram. Int. 2018, 44, 12593–12599. [CrossRef]

20. Uddin, G.M.; Jawad, M.; Ghufran, M.; Saleem, M.W.; Raza, M.A.; Rehman, Z.U.; Arafat, S.M.; Irfan, M.; Waseem, B. Experimental
investigation of tribo-mechanical and chemical properties of TiN PVD coating on titanium substrate for biomedical implants
manufacturing. Int. J. Adv. Manuf. Technol. 2019, 102, 1391–1404. [CrossRef]

21. Szili, E.J.; Kumar, S.; Smart, R.S.C.; Voelcker, N.H. Generation of a stable surface concentration of amino groups on silica coated
onto titanium substrates by the plasma enhanced chemical vapour deposition method. Appl. Surf. Sci. 2009, 255, 6846–6850.
[CrossRef]

22. Kulkarni, A.A.; Pushalkar, S.; Zhao, M.; LeGeros, R.Z.; Zhang, Y.; Saxena, D. Antibacterial and bioactive coatings on titanium
implant surfaces. J. Biomed. Mater. Res. Part A 2017, 105, 2218–2227. [CrossRef]

http://doi.org/10.1016/j.pmatsci.2012.09.001
http://doi.org/10.1016/j.micron.2017.11.010
http://doi.org/10.3390/met9111145
http://doi.org/10.3390/ijms20133267
http://www.ncbi.nlm.nih.gov/pubmed/31277204
http://doi.org/10.1016/j.matchemphys.2019.05.039
http://doi.org/10.1016/j.msec.2019.04.064
http://doi.org/10.1016/j.nano.2019.102036
http://doi.org/10.3390/nano10050864
http://www.ncbi.nlm.nih.gov/pubmed/32365835
http://doi.org/10.3390/ma13020314
http://doi.org/10.1016/j.msec.2016.03.049
http://www.ncbi.nlm.nih.gov/pubmed/27127022
http://doi.org/10.1016/j.tibtech.2009.12.003
http://doi.org/10.3390/met10060748
http://doi.org/10.1111/j.1600-0501.2009.01775.x
http://doi.org/10.1016/j.actbio.2009.04.020
http://www.ncbi.nlm.nih.gov/pubmed/19433140
http://doi.org/10.1155/2019/8456342
http://doi.org/10.1016/j.biomaterials.2007.01.019
http://www.ncbi.nlm.nih.gov/pubmed/17275082
http://doi.org/10.1016/j.biomaterials.2010.10.001
http://doi.org/10.1007/s11015-019-00812-z
http://doi.org/10.1016/j.ceramint.2018.04.056
http://doi.org/10.1007/s00170-018-03244-2
http://doi.org/10.1016/j.apsusc.2009.02.092
http://doi.org/10.1002/jbm.a.36081


Materials 2021, 14, 6067 16 of 17
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