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A B S T R A C T   

This study employs Machine Learning (ML) techniques to optimize the performance of Perovskite 
Solar Cells (PSCs) by identifying the ideal materials and properties for high Power Conversion 
Efficiency (PCE). Utilizing a dataset of 3000 PSC samples from previous experiments, the Random 
Forest (RF) technique classifies and predicts PCE as the target variable. The dataset includes 
various features encompassing cell architecture, substrate materials, electron transport layer 
(ETL) attributes, perovskite characteristics, hole transport layer (HTL) properties, back contact 
specifics, and encapsulation materials. ML-driven analysis reveals novel, highly efficient PSC 
configurations, such as Fe2O3/CsPbBrI2/NiO-mp/Carbon, CdS/FAMAPbI3/NiO–C/Au, and PCBM- 
60/Phen-NaDPO/MAPbI3/asy-PBTBDT/Ag. Additionally, the study investigates the impact of 
crucial parameters like perovskite bandgap, ETL thickness, thermal annealing temperature, and 
back contact thickness on device performance. The predictive model exhibits high accuracy (86.4 
% R2) and low mean square error (1.3 MSE). Notably, the ML-recommended structure, SnO2/ 
CsFAMAPbBrI/Spiro-OmeTAD/Au, achieves an impressive efficiency of around 23 %. Beyond 
performance improvements, the research explores the integration of ML into the manufacturing 
and quality control processes of PSCs. These findings hold promise for enhancing conversion 
yields, reducing defects, and ensuring consistent PSC performance, contributing to the 
advancement of this renewable energy technology.   

1. Introduction 

Machine learning (ML) has recently garnered significant attention from researchers, driven by remarkable advancements in both 
mathematical models and computing capabilities [1]. ML techniques leverage specialized algorithms to learn from data, enabling the 
analysis, classification, and prediction of various phenomena [2]. While ML has demonstrated impressive performance across diverse 
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scientific domains, its application in materials science is a relatively recent development. In the realm of renewable energy, perovskite 
materials have emerged as a subject of intense interest, holding the potential to revolutionize the solar energy sector [3–8]. Notably, 
the power conversion efficiency (PCE) of Perovskite solar cells (PSCs) has witnessed a dramatic increase, surging from 2.2 % in 2006 to 
an impressive 26 % in 2023 [9]. Consequently, research endeavors have increasingly intertwined the development of PSCs with ML 
techniques, driven by the extensive accumulation of both experimental and computational data and the maturation of ML method-
ologies [10–12]. These studies harness ML techniques to elucidate the influence of specific materials and properties on solar cell 
devices, thereby paving the way for anticipatory design and optimization. In previous work, Mammeri et al. [13] reported on the 
impact of diverse combinations of materials, deposition methods, and storage conditions on the stability and efficiency of PSCs, 
harnessing the power of machine learning techniques. In this current study, we employ the supervised ML technique of Random Forest 
(RF) to investigate the optimal materials and structures conducive to achieving high PSCs PCE, offering clear guidelines for enhancing 
device performance. Additionally, our research unveils the pivotal factors affecting PCE, including the materials and thickness of the 
electron transport layer (ETL) and the materials and bandgap of the perovskite active layer (PAL). The RF model was trained using an 
extensive dataset comprising 3000 experimental samples of PSCs, reinforcing the model’s reliability for providing actionable guidance 
in real-world experiments. However, the dataset collected for this study presents a challenge due to the presence of missing values and 
its high dimensionality, encompassing 35 distinct features. These features encompass various aspects of cell architecture, substrate 
materials, ETL (including materials, thickness, additives, deposition methods, and annealing temperature), perovskite (comprising 
composition of ions, materials, thickness, bandgap, annealing temperature, additives, deposition procedures, solvents, and 
anti-solvents), HTL (materials, thickness, additives, deposition), back contact (materials, deposition, thickness), and encapsulation 
materials. The dataset’s high dimensionality poses a trade-off between model accuracy and computational efficiency [14]. 

To mitigate this challenge, we introduce correlation matrix analysis and feature engineering, specifically importance scoring, to 
retain the most relevant features while reducing computational complexity. Our analysis of PCE incorporates diverse material layers 
and properties, revealing novel configurations generated through ML techniques, such as Fe2O3/CsPbBrI2/NiO-mp/Carbon, CdS/ 
FAMAPbI3/NiO–C/Au, and PCBM-60/Phen-NaDPO/MAPbI3/asy-PBTBDT/Ag. Furthermore, we investigate the impact of influential 
parameters, including perovskite bandgap, ETL thickness, thermal annealing temperature, and back contact thickness, on device 
performance. Our findings highlight the promising potential of the proposed SnO2/CsFAMAPbBrI/Spiro-OmeTAD/Au structure, 
boasting an impressive efficiency of 23 %. 

2. Material and method 

2.1. Dataset construction 

The experimental data from published studies addressing the PCE of perovskite-based solar cells was screened to form the dataset 
utilized in the ML analysis. The Perovskite Database project [15], as well as other publications and reviews, provide the backbone of 
this dataset [10,11]. Data were carefully gathered while adhering to a number of guidelines. For instance, removing data from situ-
ations when the temperature is high or the light is intense. 

2.2. Dataset description 

Data are transformed into useful, practical insights using supervised machine learning. It makes it possible for researchers to make 
use of data to comprehend, decrease, or improve the desired results for their target variable. Throughout the training phase in the 
growth of the machine learning model, labeled input and output data are required for supervised machine learning. The training data is 
usually labeled by a data scientist during the building stage before being used to train and test the model. The model can be used to 
categorize previously undiscovered datasets and forecast outcomes once it has determined how the input and output data are related. 
This technique is referred to as supervised machine learning since it includes human supervision in some capacity [16]. The majority of 
the data offered is unlabeled, unprocessed data. For data to be adequately labeled and suitable for supervised learning, human input is 
typically necessary. Obviously, since a huge array of precisely labeled training data is required, this can be a costly operation. 

The dataset used in this study contains 3000 samples of perovskite solar cells collected from different experimental studies. The 
utilized dataset is organized in Table 1. Each data relation with the cell component is organized as columns; for example, perovskite 

Table 1 
Data of Perovskite Solar cells used for Machine Learning training process.  

Features (35) ETL 
Materials 

ETL Thickness (nm) … Perovskite Bandgap (eV) PCE (%) 

Cells 

Cell 1 TiO2 40 … FAMAPbBrI 1.73 12.1 
Cell 2 SnO2 80 … MAPbI 1.61 8 
Cell 3 PCBM60+BCP 220 … MAPbI 1.61 13.06 
….….. ……. ….… … … ……. …. 
Cell 2998 PCBM-60 120 … CsAgBiBr 2.39 5.5 
Cell 2999 TiO2 70 … MAPbI 1.61 17 
Cell 3000 C60+BCP 80 … CsPbBrI 2.07 9.6  
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materials, layers thicknesses, annealing temperature, and cell architecture, with 35 different columns. These columns (features) were 
introduced to the machine learning algorithm(model) as descriptors to train the model where each cell sample is organized as a row. 
The PCE of the cells is considered as target(output). The features used are cell architecture, substrate materials, ETL(materials, 
thickness, additives, deposition, annealing temperature), perovskite(composition a ions, b ions, c ions, materials short form, thickness, 
bandgap, annealing temperature, additives, deposition procedure, solvents,anti-solvents), HTL(materials, thickness, additives, 
deposition), back-contact (materials, deposition, thickness), encapsulation materials. 

It is noticeable, that a number of the cell samples have one or more missing features. Instead of deleting these data points, two 
approaches are used to preserve the maximum of the data. For the categorical features (for example perovskite/ETL/HTL/BC materials 
….), the missing values were replaced by a new category called “Unknown_material”. For the numerical values (for example: bandgap, 
layer thickness …), a quite complicated approach was used, which can be summarized in Fig. 1. 

Initially, taking the numerical features that contain missing values in different datasets and making a correlation matrix (method of 
Pearson) between these features and the PCE (see Fig. 2). 

The features that have a relatively significant correlation with PCE to the original datasets are returned, and other features 
(irrelevant features) are deleted. One of these remaining features is selected as the target (it still contains missing values), and all rows 
(samples) that contain missing values of this target are deleted. The missing values (if any) of the other remaining numerical features 
are replaced by the mean value of the feature concerned. An evaluation of the accuracy is performed via training and testing the 
machine learning algorithm with this modification. It is noticeable that, if the accuracy is acceptable then predict the missing values of 
the deleted rows (in step 4), return these rows to the dataset, and restore the features that were replaced by the mean value to missing 
values. Finally, all the previous steps for each feature (perovskite bandgap, ETL thickness, ETL deposition thermal annealing tem-
perature, back contact thickness) are repeated until all the missing values are fulfilled with the predicted value. Table 2 presents the 
precision of the prediction of the missing values for each feature. 

2.3. Machine learning model construction 

The initial dataset contains 35 different features which is not suitable for the model performance. Therefore, a feature selection 
technique was used. By using feature importance from RandomForestRegressor, from 35 features only 15 features have a relatively 
significant importance score to the PCE, the other features were deleted. See the importance score of the remaining features in Fig. 3 
[17]. 

The accuracy of the model before the feature selection was 73.2 % using the R2 method(the ideal value is 100 %) [18]. The 
GridSearchCV library was used to optimize the ML model hyperparameters [19]. Besides, the categorical encoder was employed to 
convert the categorical data to numerical data for the ML model. The accuracy of the model after feature engineering was 86.4 % using 
the R2 method, and 1.3 using the mean square error (the ideal value is 0). 

3. Results and discussion 

To optimize the perovskite structure two approaches were used; first, optimizing the numerical values by predicting the PCE for 
different values in one feature while fixing the values of the other features (this operation has been done with 3 different proposed 
structures (Fe2O3/CsPbBrI2/NiO-mp/Carbon (device 1), CdS/FAMAPbI3/NiO–C/Au (device 2) and PCBM-60/Phen-NaDPO/MAPbI3/ 
asy-PBTBDT/Ag (device 3)). Second, optimizing the materials by predicting the PCE using all different materials under the same 
category and choosing the materials that recur in the highest PCE (these processes were applied to 3 different proposed structures). It is 
noticeable that we use existing materials in our data to form new PSC configurations to prevent the model overfitting of data [20]. The 
configurations used for the experience were generated using an algorithm that ensures no similarity with the training data, this 

Fig. 1. Machine learning process workflow.  

M. Mammeri et al.                                                                                                                                                                                                     



Heliyon 9 (2023) e21498

4

prevents the ML model from biases the predictions toward samples in the training data. Moreover, using 3 different structures for each 
prediction allows a better generalization of the results. Which gives more reliability to the results. 

The manufacture of perovskite solar cells uses a variety of experimental approaches, including vacuum deposition, fine inkjet 
printing, and solution-processed techniques including spin-coating, doctor-blade, and spray-coating. Perovskite materials may be 
deposited using several methods, each of which has unique benefits and allows for precise control over layer thickness. Perovskite solar 
cells are a viable choice for the production of clean and sustainable energy since researchers are constantly improving these methods to 
increase their stability and efficiency [21,22]. 

Fig. 2. Correlation matrix of numerical features.  

Table 2 
The accuracy of the predicted missing values.  

Features Number of the experimental values Number of the predicted values Accuracy of ML predictions 

Bandgap 2102 898 87.9 % 
ETL thickness 1268 1738 96 % 
ETL annealing temperature 232 2768 98.5 % 
BMC thickness 2472 528 98 %  

Fig. 3. The importance score of the remaining feature for the PCE.  
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3.1. Perovskite material bandgap 

The bandgap is a crucial characteristic of PV semiconductors, which describes what wavelengths of light the device can absorb and 
convert to electrical energy, it is obvious that a large band gap increases VOC by lowering reverse saturation current, but it also inhibits 
device absorption, which lowers current. Therefore, an optimum band gap that can balance the compromise between JSC and VOC is 
required. 

Fig. 4 shows the variation of the PCE against the perovskite absorber layer band gap for three structures. In this study, the domain of 
the bandgap variation is between 1.1eV and 3eV with a step of 0.01eV and the obtained optimum bandgap is between 1.55eV and 
1.60eV. Additionally, numerous experimental findings demonstrate similar band gap ranges for optimum PCE. For instance, a PSC 
device including an active layer of CsFAMAPbI with a 1.6 eV band gap has recorded a high PCE of 22.77 % [23]. By using FAMAPbBrI | 
(C6H13NH3)PbI with a band gap of 1.56 eV, J. Yoo et al. reached a high PCE of 22.6 % [24]. Interestingly, Fig. 3 shows that the 
importance score of the bandgap is 15.8 % which is considered the highest importance score among all the 35 features used in this 
work. Which demonstrates the importance of the band gap for maximizing the device PCE. 

3.1.1. ETL thickness 
In perovskite solar cells (PSCs), the charge extraction function of electron transport layers (ETLs) is essential. The deposition of 

ETLs at low temperatures, even at room temperature, is particularly attractive for the production of flexible solar cells on polymer 
substrates. 

The impacts of a high ETL thickness (>200 nm) include: (1) limiting electron transit to FTO; (2) increasing the recombination rate, 
which lowers VOC; and (3) adding series resistance to the device’s structure, which reduces the fill factor and cell efficiency. 

Fig. 5 depicts the PCE variation against ETL material thickness for three structures. Herein, the ETL thickness domain is considered 
to be between 20 nm and 120000 nm with a 10 nm step. The obtained optimum ETL thickness via ML is between 140 nm and 170 nm 
which is suitable for efficient solar cells considering the aforementioned effect caused by thick ETL. 

3.2. ETL thermal annealing temperature 

ETLs for perovskite solar cells have been prepared using a variety of methods, including electro-deposition, sol-gel, and solution- 
processing of nanoparticles [21–25]. The solution approach is appealing in order to take benefit of the highly efficient production 
processes because the electro-deposition method is difficult. Owing to the considerable decomposition temperature of the precursor, 
the most popular solution processing ETL sol-gel technique necessitates thermal annealing at an elevated temperature, often above 
200 ◦C, which prohibits the production of flexible solar cells. A lower manufacturing temperature remains desirable for flexible solar 
cells [26]. Fig. 6 depicts the PCE variation as a function of ETL thermal annealing temperature for three structures. For the ML 
calculation procedure, the thermal annealing temperature domain is taken between 25C and 550C with 5C as a step. The obtained 
results show that thermal annealing temperature doesn’t follow any pattern, it seems like every material has its own optimum 
annealing temperature. 

3.3. Back contact thickness 

After illumination, the perovskite layer of typical perovskite solar cells produces electron-hole pairs. The cathode and anode, which 
are where the electron transport material (ETM) and the hole transport material (HTM), respectively, gather the electrons and holes, 

Fig. 4. PCE variation against perovskite material band gap.  
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respectively. According to certain studies [27,28], all processes are affected by the contacts’ characteristics. The solar cell’s ability to 
produce its own internal electric field and the contact cathode/ETM and anode/HTM’s ohmic or rectifying activity are both responsible 
for this result. In order to optimize the device performance the back contact domain is taken between 1 nm and 150,000 nm with a step 
of 50 nm. Fig. 7 presents the variation of PCE as a function of BMC thickness for three structures. From this figure, the optimum BMC 
thickness value is less than 50 nm. 

Table 3 summarizes different layers and deposition Materials that appear frequently in top PCE cells by using ML techniques. From 
this table, we can notice that SnO2 is frequently used in perovskite solar cells with a percentage of 33 % more than other materials this 
fact is due to its superior properties in terms of conductivity, transparency, and suitable band alignment. For the absorber layer, it is 
found that CsFAMAPbBrI outperforms other candidates like MAPbI and FAMAPbBrI. Because it has a high glass transition temperature 
(Tg), morphological stability, and is simple to produce while preserving strong electrical characteristics, Spiro-MeOTAD, which has a 
20 % efficiency, surpasses materials like NiOx and PTAA. Finally, Au as BMC shows 30 % and outperforms other metals like Ag. It is 
worth noticing that sometimes the sum of percentage in one layer is more than 100, because some materials appeared as the second 
layer, for example, PCBM-60 as ETL and C60 as the second layer. In other words, the number of material compositions (samples) is 
bigger than the number of materials. Therefore, the percentage only helps in ranking the best materials. Table 4 provides a comparison 
between our findings and the top experimental devices in our dataset. 

The consensus of this ML model outcomes with a large amount of experimental data provides a good indication of the potential for 
advancement. Table 3 establishes favorable and clear guidance for experiments involving PCE improvement, reducing the large variety 
of different candidate materials. 

Fig. 5. PCE variation against ETL material thickness.  

Fig. 6. PCE variation as a function of ETL thermal annealing temperature.  

M. Mammeri et al.                                                                                                                                                                                                     



Heliyon 9 (2023) e21498

7

4. Conclusion 

In this work, an optimization strategy via Machine learning technique was adopted to boost the performance of perovskite solar 
cells. By using the Random Forest technique, 3000 samples of perovskite solar cells samples collected from previous experimental 
studies were examined and classified. The PCE of the solar cells was considered as the target (output). New perovskite solar cell 

Fig. 7. Presents the variation of PCE as a function of BMC thickness.  

Table 3 
Different layer/deposition Materials that appear frequently in top PCE cells by using techniques.  

Layers/deposition materials Materials Percentage Total materials 

ETL SnO2 33 % 262 
PCBM-60 27 % 
BCP 25 % 
C60 23 % 
TiO2 23 % 

Perovskite CsFAMAPbBrI 22 % 120 
MAPbI 15 % 
FAMAPbBrI 11 % 

HTL Spiro-MeOTAD 20 % 385 
NiOx 10 % 
PTAA 10 % 

Back Contact Au 30 % 65 
Ag 26 % 
Cu 26 % 
MoO3 21 % 
Ti 17 % 

Deposition Materials DMF + DMSO (+other) 60 % 67 
DMSO + GBL  

Deposition quenching media Chlorobenzee 58 % 30 
Ether 30 % 
Toluene 29 % 

Materials: the material component of this layer in high-efficiency PSCs. 
Percentage: the number of current materials in top efficiency cells divided by the total materials in top cells. 
Total materials: the number of different materials compositions predicted by machine learning. 

Table 4 
Comparison between our findings with previous experimental works in our dataset.  

ETL Perovskite HTL Back 
Contact 

Deposition 
Materials 

Deposition 
Solvent 

PCE 
(%) 

Ref. 

SnO2 CsFAMAPbBrI Spiro-MeOTAD Au DMF + DMSO Chlorobenzene 23 This 
SnO2+In2O3 FAMAPbIs Spiro-MeOTAD Au DMF + DMSO +

IPA 
Unknown 23.07 [29] 

TiO2 + TiO2-mp + PCBM-60+ PMMA 
+ BAI 

CsFAMAPbBrI BAI + Spiro- 
MeOTAD 

Au DMF + DMSO Chlorobenzene 22.77 [23]  
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configurations were generated by the ML model. Fe2O3/CsPbBrI2/NiO-mp/Carbon, CdS/FAMAPbI3/NiO–C/Au and PCBM-60/Phen- 
NaDPO/MAPbI3/asy-PBTBDT/Ag were the best new configurations with PCE exceeding 20 %. In addition, a thorough investigation of 
the impact of important parameters like perovskite bandgap, ETL thickness, thermal annealing temperature, and back contact 
thickness on device performance was performed. Our findings show that the optimized structure SnO2/CsFAMAPbBrI/Spiro-Ome-
TAD/Au presents an efficiency of 23 %. Our primary emphasis in a subsequent study will be to decrease the time required and increase 
the capabilities of this approach while taking into account vast amounts of perovskite solar cell data that also contain extra envi-
ronmental parameters. 
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