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Abstract
Adipose tissue (AT) is recognized as a complex organ involved in major home-
ostatic body functions, such as food intake, energy balance, immunomodulation, 
development and growth, and functioning of the reproductive organs. The role of 
AT in tissue and organ homeostasis, repair and regeneration is increasingly 
recognized. Different AT compartments (white AT, brown AT and bone marrow 
AT) and their interrelation with bone metabolism will be presented. AT-derived 
stem cell populations - adipose-derived mesenchymal stem cells and pluripotent-
like stem cells. Multilineage differentiating stress-enduring and dedifferentiated 
fat cells can be obtained in relatively high quantities compared to other sources. 
Their role in different strategies of bone and fracture healing tissue engineering 
and cell therapy will be described. The current use of AT- or AT-derived stem cell 
populations for fracture healing and bone regenerative strategies will be 
presented, as well as major challenges in furthering bone regenerative strategies 
to clinical settings.
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Core Tip: Adipose tissue (AT) is a multifunctional organ with intricate body functions. Different AT 
compartments have complex interrelations with bone metabolism, tissue maintenance and fracture healing. 
AT-derived stem cell populations are promising tools for bone regeneration. The current use of AT- or 
AT-derived stem cell populations for fracture healing and bone regenerative strategies will be presented, 
as well as major challenges in furthering bone regenerative strategies to clinical settings.
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INTRODUCTION
Adipose tissue (AT) has multiple roles in body energy balance, regulation of food intake, immunomod-
ulation and growth and functioning of the reproductive organs[1]. In recent years, the understanding of 
AT functioning has evolved from considering it a lipid storage, cushioning and thermal insulating mass 
to its recognition as the largest endocrine organ within the mammalian body[2]. AT-derived signaling 
molecules, adipokines and cytokines have a crucial role in local and systemic regulation by controlling 
energy expenditure, glucose homeostasis, insulin metabolism and immune cell function to support cell 
proliferation in normal and pathological states. AT has received increased attention in recent years 
mainly due to its abnormal expansion in obesity and metabolic syndrome. Normal AT has intricate roles 
in maintaining healthy body functioning. Not surprisingly, obesity is very often accompanied by many 
endocrine and metabolic disturbances, such as insulin resistance, type 2 diabetes mellitus (T2D), 
disorders in immune regulation and response to pathogens, and tumor occurrence, progression and 
metastasis[3]. The pathological lack of AT (congenital, human immunodeficiency virus - or age-related 
lipodystrophy) is linked to multiple metabolic and immune abnormalities, such as insulin resistance, 
liver steatosis and dyslipidaemia[4]. Given its multifaceted roles in controlling body homeostatic 
mechanisms, AT involvement in tissue and organ healing and regeneration is complex and only 
partially recognized. Understanding AT involvement in regeneration and repair is a relatively new 
concept. Consistent research in recent decades has focused on AT as a mesenchymal stem cell source. 
Pluripotent stem cells extracted from white AT (WAT) under special conditions together with transdif-
ferentiated adipocytes have the potential to accelerate progress in the field of bone engineering. AT, 
with its complex paracrine and endocrine signaling and angiogenetic potential, might also be used to 
support the bone regenerative niche. The types of AT - WAT, brown (and beige) AT (BAT) and bone 
marrow AT (BMAT) - will be very briefly introduced with emphasis on BMAT given its direct 
involvement in bone metabolism. Current strategies that employ AT or AT-derived cell populations for 
fracture healing or bone regeneration will be presented.

WAT IS A COMPLEX ENDOCRINE ORGAN
In humans, WAT is formed starting from the second semester of gestation and continues throughout 
life, even in adults[5]. In mice, WAT adipocytes are derived from mesenchymal progenitors within the 
somites or lateral plate mesoderm, which could be the case for humans[6], except for minor fat deposits 
of the skull derived from the ectodermal neural crest[7]. WAT therefore shares a developmental origin 
with all the components of connective tissue (muscle, bone, tendon and fascia). WAT is composed of 
mature cells (adipocytes) that contain unilocular deposits of lipids (triacylglycerol) occupying up to 90% 
of the cytoplasm. Only one-third of the tissue is represented by mature adipocytes, and other cellular 
components are preadipocytes, stromal cells, mesenchymal progenitors and immune components 
[monocytes and macrophages (Mcfs)]. WAT represents the major energy storage system of the body and 
is the main lipid deposit[8]. It has a mechanical role in thermal insulation, organ cushioning and 
protection from trauma. In humans, mature adipocytes store lipids synthetized in the liver and, to a 
minor extent, within AT itself by lipogenesis, an insulin-dependent enzymatic process. Fatty acid (FA) 
and triglycerides (TG) availability in other organs in the case of energy demand are dependent on the 
activity of AT lipolytic enzymes[9]. Two main compartments of WAT are described based on their 
anatomic location: Subcutaneous and visceral. Their characteristic distribution is sex hormone-
dependent with visceral compartment testosterone and subcutaneous oestrogen - controlled[10]. Mature 
adipocytes release bioactive molecules (commonly denominated adipokines) that exert paracrine and 
endocrine functions in maintaining body energetic metabolism, insulin sensitivity, food intake, immune 
modulation, haematopoiesis, bone metabolism, angiogenesis, coagulation and fibrinolysis. Adipokines 
are a set of cytokine (leptin, adiponectin visfatin) chemokine (nitric oxide, hydrogen peroxide) growth 
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factors, vascular endothelial growth factor (VEGF), hepatocyte growth factor (HGF), and colony-
stimulating factor 1 complement factors, such as adipsin, B, C, and C3[11]. It is beyond the scope of this 
paper to describe their role in body balance; however, it should be noted that numerous bioactive 
molecules released by normal mature adipocytes are among crucial factors implicated in all the stages of 
wound and bone healing.

WAT is a very dynamic tissue that largely fluctuates in quantity but also its functional qualities across 
growth, maturity and ageing, physiological stages and diseases. Obesity as a disease of excess and 
lipodystrophy as a sum of conditions where WAT does not form or becomes atrophic are both 
associated with important perturbations in adipocyte quality and functioning. In obesity, adipocytes 
increase in number (hyperplasia) and size (hypertrophy), while in lipodystrophy, de novo adipogenesis 
and lipid droplet formation are impaired. Obesity and lipodystrophy are accompanied by severe 
metabolic disorders, such as hypertriglyceridemia, insulin resistance, diabetes, and fatty liver, as well as 
by severe perturbation in adipokine release. Impaired metabolic status and abnormal WAT paracrine 
and endocrine signalling in diseases of lack and excess have consequently impaired wound and bone 
healing.

ROLE OF WAT IN TISSUE REGENERATION
WAT deposits and healthy functioning mature adipocytes are involved in homeostatic maintenance, 
turnover and repair of several organs and tissues, such as hair follicles, skin and mammary glands[12]. 
Bone morphogenetic protein (BMP) expression by mature adipocytes may be regulators of the quiescent 
stage of hair follicle stem cells and supportive of hair lineage specification and differentiation during 
hair growth[13]. Adipogenic progenitors (AP) within dermal WAT stimulate hair stem cell follicle 
activation. Intradermal AP injection was shown to increase the growth of hair cell follicles, while leptin 
expressed by mature adipocytes induced the activation of hair cell follicles and hair shaft growth[14]. 
Mature adipocytes are a major component of the dermis that supports the skin epithelial layer and 
keratinocytes. Dermal WAT was previously thought to exert a cushioning and insulating function; 
however, its role in supporting skin integrity and promoting wound healing is increasingly recognized 
and explored. Mature adipocyte-secreted adiponectin and leptin were shown to increase keratinocyte 
proliferation in vitro and to consistently increase wound re-epithelialization in mouse models[15], while 
adiponectin-deficient mice suffer from severely delayed wound epithelialization[16]. Adiponectin 
regulates local apoptosis, and its absence in diabetic subjects might explain hyperkeratosis and 
thickened wound margins characteristic of chronic ulcers[17]. Another adipokine, leptin, was shown to 
increase re-epithelialization, angiogenesis and wound contraction after injury[18]. Functional mature 
adipocytes are required for the third stage of wound healing and extracellular matrix (ECM) deposition 
by fibroblasts. Mouse strains that lack mature adipocytes have impaired fibroblast repopulation during 
wound healing, and incomplete ECM deposition leads to recurrent wounding in this model[19]. Mature 
adipocytes are required for the development of a functional mammary gland ductal tree. In lipodys-
trophic and inducible adipocyte loss mouse strains, mammary gland formation is impaired[20].

WAT presence within muscles is commonly associated with tissue degeneration. Muscle fatty 
atrophy is a frequent clinical correlation with insulin resistance and increased body max index (BMI). 
However, if mature adipocytes in muscle tissue are a witness of impaired muscle function, common 
adipogenic and fibroblast progenitor (FAP) multipotent muscle resident stromal cells are required for 
muscle wound healing and tissue growth. FAPs enhance the rate of differentiation of primary myogenic 
progenitors in vitro and expand during muscle injury. FAPs were shown to supply transient pro-differ-
entiation signals for proliferating myogenic progenitor cells after muscle injury in animal models[21]. 
Interestingly, when FAPs are transplanted within subcutaneous or dermal tissue, they differentiate into 
WAT, demonstrating the role of the environment in their activation and differentiation. FAPs are 
present in human skeletal muscle tissue and could be the source of fatty infiltration during muscle 
degeneration[22]. These progenitors have dual responsiveness to environmental cues, being able to 
generate either adipocytes or to support muscle hypertrophy. FAPs respond to metabolic stress during 
metabolic disorders by conversion to adipocyte lineage, as well as mechanical stress, during physical 
activity by fibrogenic conversion and contribution to satellite cell activation. This response might 
explain their opposite role in fatty infiltration and muscle healing and hypertrophy[23].

WAT IN BONE METABOLISM AND FRACTURE HEALING
WAT and bone metabolism are coordinated directly by the central nervous system through sympathetic 
and parasympathetic innervation and indirectly by circulating hormones. Sympathetic innervation 
controls WAT metabolism, while the parasympathetic role in this tissue is less agreed upon. Indirectly, 
sympathetic innervation of adrenal glands controls glucocorticoid release. Elevated levels of glucocor-
ticoids are clinically associated with bone loss and hypertrophic WAT expansion during obesity[24]. 
Ghrelin, a neuroendocrine hormone produced in the gastrointestinal tract, has a dual role in regulating 
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white adipocyte metabolism by increasing lipoprotein lipase and FA synthase and increasing 
peroxisome proliferator-activated receptor-β (PPAR-β), stimulating the synthesis of TG and their 
mobilization. Ghrelin was found to directly promote osteoblast proliferation and differentiation, 
resulting in increased bone mineral density (BMD) in animal models[25]. Several WAT-released 
adipocytes have dual roles in bone and adipose maintenance and turnover. Leptin is known to inhibit 
food intake, increase energy expenditure and reduce WAT by increasing lipolysis. Leptin has a direct 
effect in promoting bone marrow stem cell (BMSC) differentiation to osteoblasts and preventing their 
adypogenic conversion[26]. Leptin increases the expression of osteocalcin (OC), alkaline phosphatase 
and collagen I, which are required for osteoblast maturation[27]. Leptin is involved in controlling bone 
resorption by increasing osteoclast-inhibiting osteoprotegerin (OPG)[28]. Direct administration was 
found to increase BMD and femur length in leptin-deficient mice[29]. Adiponectin, the adipokine that is 
most commonly found in plasma, improves insulin sensitivity, increases the rate of FA oxidation and 
reduces inflammation and fatty muscle infiltration. Low levels of circulating adiponectin are found in 
obese and lipodystrophic mouse models[30], have been implicated in inducing insulin resistance in 
obese subjects and proposed as a serum biomarker for detecting metabolic syndrome[31]. Adiponectin 
was found to promote osteogenesis in BMSCs by indirectly increasing BMP2 expression[32], to increase 
alkaline phosphatase (ALP), collagen I and OC expression and to promote osteoblast proliferation and 
differentiation in a dose-dependent manner[33]. Similar to leptin, adiponectin inhibits osteoclast activity 
through distinct mechanisms. Adiponectin decreases the expression of cathepsin K and acid-resistant 
phosphatase, which are osteoclast regulators that increase osteoclast apoptosis[34]. Notably, the 
endocrine and paracrine roles of adipokines in bone metabolism are contradictory. The results from in 
vitro and in vivo studies are sometimes contradictory, and no direct correlation between increased levels 
of adipokines and supported bone metabolism could be clearly stated. Several factors could be involved, 
such as dosage, the timing of adipokine release and their effect in mediating inflammation[35]. It 
appears more likely that WAT and bone metabolism crosstalk is contextual. The presence of adipokine 
receptors on BMSCs and osteoblasts demonstrates that anabolic bone metabolism has a direct interre-
lation with WAT adipocytes. The WAT-bone catabolic interrelation is exerted through distinct pathways 
that regulate osteoclast formation or apoptosis.

WAT contains an important fraction of immune cells. Local AT-resident Mcfs (MATs) in normal/lean 
individuals display an anti-inflammatory phenotype described as the M2 (alternatively activated) 
phenotype, which supports WAT expansion during adaptation to a high-fat diet. Prolonged WAT 
inflammation, however, leads to fibrosis and ECM stiffness, hindering adipocyte expansion and lipid 
storage[36]. WAT expansion during obesity is associated with increased levels of macrophage chemoat-
tractant-1, which determines the accumulation of high levels of M1 (inflammatory) MATs that can 
induce insulin resistance[37]. Other local immune cells, regulatory T cells (Tregs), which are more 
abundant in lean but not obese WAT, have been shown to promote the M2 MAT phenotype, and their 
increase in obese WAT can improve insulin sensitivity[38].

Mcfs are present during the inflammatory phase of fracture healing in humans and animals. 
Compared to Mcf derived from blood monocytes, tissue-resident cells seem to have a more important 
role in fracture healing. Bone marrow and periosteal M1 phenotype Mcf-released cytokines [interleukin 
(IL)-1, IL-6 and tumor necrosis factor (TNF)] are present at the fracture site during the first days after 
injury in animal models and humans. M1 phenotype persistence during callus formation delays or 
compromises healing. Bone-specific Mcfs (osteomacs) have been involved in bone healing and 
remodelling; however, other Mcf tissues might also contribute[39]. Tissue-resident M1 and M2 MCfs are 
involved in de novo angiogenesis within the granulation tissue during fracture healing, as well as stem 
cell/progenitor cell recruitment to the fracture site and their differentiation. Oncostatin M, a cytokine of 
the IL-5 family produced by M1 Mcfs, was shown to induce osteoblast differentiation and matrix 
mineralization from human mesenchymal stem cells while inhibiting adipogenesis in vitro[40]. 
Furthermore, the number but most of all the Mcf phenotype required for fracture healing might be 
dependent on the type of callus formation (enchondral vs endosteal) and the type of fracture fixation. 
More detailed in vivo studies are required to decipher the origin of Mcf involved in fracture healing; 
however, these cells apparently need to switch phenotype upon environmental stimuli during the time 
course of bone healing. MAT involvement in bone remodeling and fracture healing needs further invest-
igation. Delayed fracture healing during obesity and metabolic syndrome might be[41], at least in part, 
explained by the presence of M1MAT, which prolongs the inflammatory stage and prevents callus 
maturation.

BAT
The typical BAT is located between the shoulder blades in smaller mammals. In newborn humans, the 
interscapular “BAT organ” contains adipocytes that are multilocular dispersed as lipid droplets within 
the cytoplasm and contain numerous mitochondria that express uncoupling protein-1 (UCP-1). Their 
main function is to metabolize FAs for thermogenesis, protecting the body from cold exposure through 
non-shivering thermogenesis[42]. Two forms of BAT are currently recognized to exist in humans: 
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Constitutional BAT (cBAT) formed during embryonic development and beige or brite (brown-in-white) 
BAT. The former is recruited postnatally from WAT and has been denominated recruited BAT (rBAT). 
cBAT of developmental origin seems to be mesoderm closer to skeletal muscle rather than to AT, while 
rBAT can be formed after birth by transdifferentiating mature white to brown adipocytes or by differen-
tiation from BAP[43]. Previously considered to be represented in humans only in newborns, recent 
positron emission tomography/computed tomography (PET/CT) studies based on imagistic detection 
of UCP-1-positive adipocytes have identified functional BAT in adults. BAT seems to be more frequent 
in women than in men and is inversely correlated with BMI, especially for elderly subjects[44].

The main function of BAT is thermal regulation. Recently, several studies in mice revealed the role of 
BAT as a negative regulator of obesity since UCP-1 depletion in mice induced increased cold sensitivity 
and obesity[45]. Apart from connections with energy metabolism and thermal regulation, recent studies 
correlated BAT with bone anabolism[46]. BAT detected around the neck in the supraclavicular region 
and paravertebrae using functional PET-CT correlated positively with BMD in women[47] but not in 
men[48]. This possible sex dependence of the positive effect of BAT on bone was not confirmed in a 
cross-sectional study correlating BAT volume with femoral cortical bone area and cross-sectional area in 
children and teenagers independent of sex[49]. The transcriptional regulator and tumor suppressor 
retinoblastoma-associated protein (pRb) have been identified as a possible connection between bone and 
BAT and bone turnover. pRB functions as the switch mechanism that directs mesenchymal progenitors 
to the osteoblastic lineage, while deletion of pRb in the respective precursors increased the amount of 
BAT in mouse models[50]. BMP overexpression in soft tissues after trauma seeks to recruit brown 
adipocytes and induce hypoxia-mediated chondrogenic differentiation of local progenitors. Subsequent 
ossification of chondrogenic nodules determines the formation of posttraumatic heterotopic ossification
[51].

BAT AND BONE METABOLISM
Consistent research is directed to finding methods of transforming white adipocytes into brown or 
“beige” phenotypes for the treatment of obesity and associated metabolic disorders. Overexpression of 
forkhead transcription factor C2 (FOXC2) in mouse WAT cells induced a BAT-like phenotype[52]. 
Genetically modified mice that overexpress FOXC2 were found to not only be protected against diet-
induced obesity and insulin resistance but also have increased trabecular bone mass and bone turnover
[53]. BAT-bone metabolism could be correlated through secreted paracrine factors. AT and BMAT 
overexpressing FOXC2 displayed increased gene expression of endocrine factors adiponectin, insulin 
growth factor receptor 3 (IGFR2) and IGF1, as well as paracrine factors BMP4, wingless-type MMTV 
integration site family member 10B and angiopoietin 2. Human endolymphatic sac epithelial factors 
were shown to exert a pro-osteoblastic effect in vitro and could represent the modality of BAT-bone 
communication and bone anabolic support[46].

BMAT - A UNIQUE TYPE OF AT
Bone marrow contains a fraction of AT that fluctuates during development, growth, ageing and 
pathological conditions. While this fact is common knowledge, the origin, role and functions of BMAT 
remain largely unknown. More closely resembling WAT, which shares several microstructural com-
monalities[54], BMAT has a particular molecular make-up that distinguishes it from WAT and BAT[55]. 
The unicity of BMAT seems to be related to not only its particular anatomic location and spatial 
constraints but also its involvement in body functioning as a whole[56]. BMAT-released adipokines, 
inflammatory cytokines and other possible bioactive molecules are thought to exert systemic regulatory 
effects. Recent years have witnessed a surge in experimental investigations that challenge the passive 
role of BMAT as a simple space filler within the bone marrow microenvironment. The onset and 
progression of postmenopausal osteoporosis in the context of oestrogen depletion[57], glucose 
homeostasis, energy metabolism[58], or adipocyte-osteoblast balance have been recently linked with 
BMAT reactivity[59]. These investigations point towards BMAT involvement in structural changes 
occurring within the skeleton with age during physiological and pathological situations and as a key 
player in the maintenance of body energetic expenditure.

STRUCTURE AND COMPOSITION OF BMAT
In healthy adults, BMAT represents approximately 10% of the total body AT. While the presence of 
adipocytes within the complexity of the bone marrow tissue environment was detected a century ago, 
only recently was their role as a local and systemic regulator explored[60]. The availability of methods 
for in vivo quantification and the use of reporter transgenic mice combined with experimental induction 
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of BMAT expansion have enabled recent insights into its function. The correlation of BMAT expansion 
with metabolic diseases, such as obesity, metabolic syndrome, diabetes and anorexia nervosa, is sought 
to point towards a role in systemic metabolic balance. Unlike any other form of AT, BMAT has physical 
vicinity at a cellular level with bone tissue. BMAT expansion is associated with decreased bone mass 
and osteoporosis experimentally, as well as in epidemiological studies[61]. Multiple factors are involved 
in this correlation, such as bone marrow mesenchymal stem cell adipogenic vs osteoblastic conversion, 
adipokine release or inflammation. BMAT is also involved in normal and pathological haematopoiesis 
through adipocyte cellular interaction with haematopoietic progenitors and local adipokine release[62]. 
BMAT adipocytes are responsive to producing and sustaining a local inflammatory environment that 
impacts de novo bone formation and favors malignant conversion of haematopoietic lineages or tumor 
metastasis to bone[63].

Considered to originate from bone marrow mesenchymal progenitors, BMAT adipocytes are 
unilocular similar to WAT and can be found within the bone marrow cavity of bones. In young 
individuals in humans and mice, bone marrow has a red appearance and contains predominately 
haematopoietic and osteoblast progenitors, as well as erythroid cells. Macroscopically, bone marrow 
becomes yellow with a fatty structure upon BMAT development. Using magnetic resonance imaging, in 
human subjects, progression of red to yellow marrow was observed in the long bones (the femur) first in 
the diaphysis (ages 1-10 years) and then in the distal metaphysis (ages 10-20 years), with an adult 
pattern seen by age 24 years[64]. BMAT first develops in the distal appendicular skeleton (femur, tibia) 
compared to the proximal and caudal vertebrae (tail bones) compared to the proximal (thoracic) 
vertebrae. In rats, differences were attributed to cold exposure, as well as strong erythropoietin stimuli, 
since retaining warm temperature, as well as induced haemolysis, prevented bone marrow “yellowing” 
in pre-weanling but not in mature animals. This led to the conclusion that BMAT once formed is a stable 
tissue[65]. Two developmental and regional distinct BMAT subtypes have been identified. The distal 
localized, first to develop, was denominated the constitutive (cBMAT), while the proximal placed 
(within proximal limbs, thoracic vertebrae, hips, ribs) later occurring and more scattered was 
denominated the regulated (rBMAT). cBMAT was found to contain predominately unsaturated lipids, 
while rBMAT contains saturated fats. It has been proposed that rBMAT can mature into the more stable 
cBMAT phenotype under certain conditions[57].

ROLE OF BMAT IN BONE METABOLISM AND FRACTURE HEALING
BMAT adipocytes are a major participant in the BM niche alongside BMSCs and hematopoietic stem 
cells. Their physical presence, as well as endocrine and paracrine function, impacts osteoblast and 
osteoclast differentiation and functioning[66]. Several mechanisms for BMAT adipocyte involvement in 
the maintenance of bone anabolic-catabolic balance have been proposed.

Since osteoblasts and adipocytes share a common precursor, the most important factor in regulating 
bone formation is intrinsic BMSC “fate decision”. Lineage determination is controlled on one side by 
signalling pathways that promote expansion of one lineage vs another and on the other side by 
suppression of pathways promoting the competitive lineage. Bone formation occurs by inducing 
osteogenic key regulators runt-related transcription factor 2 (RUNX2) and osterix in MSCs while 
inhibiting adipogenic PPAR-γ and CCAAT/enhancer-binding protein α via a Wingless-type MMTV 
integration site family (Wnt) mechanism[67]. Conversely, adipogenesis requires concomitant induction 
of key adipogenic pathways and inhibition of osteogenic Wnt and Notch[68]. In BMSCs, intracellular 
accumulation of proteins that induce adipogenesis, such as transducing-like enhancer of split 3, 
increases the expression of PPAR-γ and suppresses Wnt-induced β catenin accumulation and RUNX by 
a histone deacetylase mechanism[69]. Increased BMSC adipogenic conversion and reduced osteoblast 
formation are considered the main culprits for compromised bone anabolism and BMAT accumulation
[70]. It is currently accepted that an increase in BMAT during ageing, osteoporosis, and T2D is 
associated with decreased bone quality and quantity (osteoporosis, osteopenia). However, this inverse 
correlation is not confirmed by all clinical situations. Epidemiological studies confirm increased BMAT 
in osteoporotic patients compared to age-matched controls in children, young adults and elderly 
individuals[71,72]. Increased BMAT was found to correlate with increased BMD in obese and T2D 
patients[73]. Furthermore, decreased BMD and increased BMAT content in anorexia nervosa are 
associated with decreased BMI in anorexia nervosa patients[74]. These findings suggest that BMD might 
not be the ultimate predictor of bone quality and that BMSC adipogenic and osteoblast conversion 
might not be mutually exclusive[75]. Lineage tracking of adult adipocyte BMAT is warranted to 
elucidate their origin, as well as potential competition with osteoblast differentiation and maturation.

The BMAT-bone relationship does not resume cell fate decisions. MAT-released adipocytes 
(especially leptin and adiponectin), inflammatory cytokines (which include TNF-α and the IL family) 
and mRNA-containing extracellular vesicles (EVs) form a complex signalling network involved in 
regulating osteogenesis[76]. It is worth mentioning that studies on AT-released factors and their 
influence on bone metabolism largely involve WAT adipocytes. Few studies specifically address the 
molecular mechanisms of BMAT adipocyte-secreted signalling molecules and their role in bone 



Labusca L. AT in bone regeneration

WJSC https://www.wjgnet.com 378 June 26, 2022 Volume 14 Issue 6

metabolism.
No direct evidence exists regarding the association between BMAT and fracture risk and fracture 

healing. Indirect observation is provided by studies on fracture healing in obese experimental models of 
human subjects that could have increased BMAT. Experimental studies on obese mice reported an 
increased incidence of delayed union associated with increased callus adiposity in obese T2D mice[77,
78]. A meta-analysis of eight epidemiologic studies including 39938 participants concluded that 
metabolic syndrome has no explicit effect on bone fractures[79]. In another study, obesity was not 
associated with an increased incidence of nonunion after ankle fractures[80], while yet another study 
reports a greater risk of complications in obese patients[81]. Multiple confounders, such as the 
association of alcohol consumption, T2D, and quality of fixation, can explain these contradictory results. 
Another possible indirect indication comes from the studies reporting increased fracture healing in 
patients with long bone fractures fixed with reamed intramedullary rods vs non-reamed patients. This 
finding can be explained by the stability of fixation, preservation of fracture haematoma that favors 
formation of periosteal callus or activation of MSC recruitment[82], rather than by mere removal of 
BMAT.

AT IN BONE REGENERATIVE MEDICINE
Regenerative medicine (RM) aims to completely restore functionality and anatomy in degenerating or 
ageing tissues or to replace tissues and organs lost to trauma, infection, tumor removal or congenitally 
absent[83]. RM makes use of cells, especially stem cells, bioactive molecules and supportive/functional 
ECM equivalents, to induce regeneration or engineer implantable bioequivalent structures. Recent 
decades have witnessed a surge in regenerative interventions for improving bone health, aiming to 
increase bone quality and prevent or treat failures in fracture healing. Several cell types of use for RM 
purposes can be obtained from AT, and adipose-derived mesenchymal stem cells (ADSCs) and adipose-
derived pluripotent stem cells will be briefly described in the following subchapters.

ADSCS
AT is considered a convenient source of mesenchymal stem cells because of its ease of procurement and 
abundance of colony-forming units. Compared to adult bone marrow, the frequency of ADSCs obtained 
per tissue unit can be up to 500-fold higher[84]. AT can be obtained by minimally invasive procedures 
(subcutaneous lipectomy) or as a byproduct of cosmetic liposuction procedures. ADSCs were first 
obtained from subcutaneous WAT lipoaspirate by enzymatic digestion and selection of plastic adherent 
cell populations[85]. Enzymatic digestion of lipoaspirate or WAT fragments obtained by lipectomy or 
mechanical cell extraction from the same sources derives the stromal vascular fraction (SVF). SVF is a 
cell mixture that contains preadipocytes, fibroblasts, vascular cells, blood cells and Mcfs that can be 
readily used for regenerative purposes. ADSCs are obtained from the SVF by further cultivation and 
selection of mesenchymal progenitors based on their adherence to tissue culture. The anatomic location 
of harvest (such as abdominal, brachial, inguinal) position (superficial subcutaneous vs deep 
hypodermic), age and sex of the donor influence the number of mononuclear cells extracted and the 
number of ADSCs obtained from subcutaneous WAT[86]. ADSCs meet the criteria established by the 
International Society for Cell Therapy for defining mesenchymal progenitors (plastic adherence, 
trilineage mesenchymal differentiation and surface marker phenotype)[87]. It has been reported that the 
SVF contains four different mesenchymal cells or progenitors or that the putative ADSCs are CD31-, 
CD34+/-, CD45-, CD90+, CD105-, CD117- and CD146-, the others being pericytes (CD146+/CD31-
/CD34-), mature endothelial cells (CD31+/CD34-), progenitor endothelial cells (CD31+CD34+), and 
preadipocytes as CD31-/CD34+ cells[88]. ADSCs were reported to differentiate under controlled 
conditions in vitro to mesenchymal lineages (adipocytes, chondrocytes, osteoblasts and cardiomyocytes
[89] and skeletal muscle[90]). Ectodermal (neurons, glia and Schwan cells) and endodermal (hepatocytes 
and pancreatic beta islet cells) ADSC conversion has been obtained[91]. A subset of ADSCs was shown 
to express markers of pluripotency (Sox2, Nanog, and OCT4) and to differentiate into mesodermal and 
extramesodermal lineages, especially when cultured in three-dimensional suspension culture[92]. An 
important feature of putative ADSCs is their growth factor and immunomodulatory cytokine release. 
ADSCs were found to express multiple growth factors, of which basic fibroblast growth factor (bFGF), 
VEGF, insulin-like growth factor 1, HGFs, and transforming growth factor (TGF)-β1 but as well β-nerve 
growth factor, stromal cell-derived factor-1α and growth factor receptors. Mass spectrometry analysis of 
the ADSC secretome revealed that ADSCs express 342 proteins under normoxic conditions. These 
proteins were found to be related to angiogenesis and blood vessel expansion, ECM formation, cell 
adhesion/migration, cell survival/death, and immune regulation with little variation after hypoxic 
preconditioning[93]. Importantly, the ADSC secretome varies upon stimulation. bFGF or epidermal 
growth factor (EGF) preconditioning significantly increases ADSC release of HGF, a cytokine involved 
in haematopoiesis, vasculogenesis, and mammary epithelial duct formation[94]. Neural growth factor 



Labusca L. AT in bone regeneration

WJSC https://www.wjgnet.com 379 June 26, 2022 Volume 14 Issue 6

preconditioning increased the axonal growth capability of a conditioned medium from ADSCs[95]. It 
has been proposed that preconditioning ADSCs using low oxygen content, generation of reactive 
oxygen species (ROS) and activation of platelet-derived growth factor (PDGF) receptor signalling can 
increase the regenerative proprieties of cultivated ADSCs by mimicking the in vivo regenerating niche
[96].

Inflammatory cytokine release varies upon ADSC stimulation. Exposure to lipopolysaccharides 
induced the release of haematopoietic (granulocyte/monocyte, granulocyte, and macrophage colony-
stimulating factors, IL-7) and proinflammatory mediators (IL-6, IL-8, and IL-11, TNF-α)[97]. Under 
normal culture conditions, conditioned medium from ADSCs reduced the production of TNF-α, NO and 
prostaglandin E2, and the activation of nuclear factor-kappaB in blood-derived monocytes decreased 
their degranulation, phagocytic activity and migratory ability. Notably, using next-generation 
sequencing, cultivated ADSCs were found to have a more homogenous immunomodulatory gene 
expression profile than SVF in the natural state and upon TNF-α stimulation[98]. Trophic and 
immunomodulatory factors released by cultivated ADSCs are strongly influenced by a large variety of 
factors, such as WAT origin, donor age and health status, cell culture and preconditioning[99-101] (for a 
summary, see Table 1). While this influence opens large possibilities in manipulating cell therapeutic 
qualities, it calls for thorough characterization when an ADSC-based product is envisaged.

Given their phenotypic characteristics, ADSCs are intensively sought for their differentiation and 
tissue trophic and immunomodulatory potential. ADSCs can be used as building blocks for de novo 
bioengineered organs and are currently tested for the generation of musculoskeletal tissues[102,103]. 
Cell therapy using ADSCs has proven useful in preclinical settings for immunomodulation in 
autoimmune diseases (such as inflammatory bowel disease, multiple sclerosis, and rheumatoid arthritis)
[104]. With the recent coronavirus disease 2019 pandemic, ADSCs have been tested in emergency 
clinical trials for the prevention of severe “cytokine storm” and the installation of acute respiratory 
distress syndrome, septic shock, and/or multiple organ failure[105].

ADSCs have been intensively tested in vitro and in preclinical studies for their direct contribution by 
differentiation to the osteoblastic lineage, for their supportive effect in promoting osteogenesis and for 
accelerating fracture healing. Deriving from these distinct roles in RM, bone tissue engineering using 
ADSCs as cell sources and cell therapy for the treatment of problematic bone healing, bone pathology 
and systemic osteoporosis are possible therapeutic scenarios.

DIRECT EFFECT OF ADSC IN REGENERATION - OSTEOBLASTIC DIFFERENTIATION 
AND TISSUE-ENGINEERED BONE STRUCTURES
Numerous reports exist regarding the in vitro osteogenic potential of ADSCs under defined differen-
tiation media, and osteogenic conversion is assessed based on specific gene expression (OC, core-
binding factor subunit alpha-1, also known as RUNX2, AP, osteonectin, osteopontin, BMP-2, ALP 
activity and mineralized ECM deposition)[106]. Mechanical stimulation by dynamic compression or 
magnetic nanoparticle-induced remote actuation has also been reported to increase in vitro osteogenesis
[107,108]. To assess ADSC osteogenic potential in vivo, several methods have been validated starting 
from ectopic bone formation in small animal models (rat, mice) after intramuscular delivery of 
osteogenic-induced ADSCs[109]. More complex models consist of healing experimentally induced 
calvarial bone defects in rodents or long bone fractures[110,111]. Generally, in vivo testing of ADSC 
osteogenic potential requires the use of a supportive structure for cell implantation. This strategy 
realizes a tissue-engineered implantable structure with variable degrees of complexity and potential for 
clinical translation. The classical “tissue engineering triad” is based on the use of scaffolds, cells and 
bioactive molecules to generate implantable bioequivalent tissues or organs. For bone engineering, the 
biomaterial needs to fulfil the general requirements for a scaffold structure (biocompatibility, 
biodegradability, porosity and interconnectivity of the pores, not to generate inflammatory response in 
vivo). In addition, this material needs to be osteoconductive (to allow bone mineral and collagen 
deposition) and osteoinductive (to favor osteogenic differentiation). Three main types of biomaterials 
have been used for scaffolds in bone tissue engineering: Ceramics (such as tricalcium phosphate, 
hydroxyapatite and combinations) and synthetic polymers [such as polylactic acid, polyglycolic acid 
(PGA), and poly-DL-lactic-co-glycolic acid]. Natural polymers, such as collagen, hyaluronic acid, 
chitosan, fibrin, and elastin, have been used alone or in combination with synthetic polymers or with 
ceramics[112]. Alongside the osteoconductive and osteoinductive properties, biomaterial osteointeg-
ration is crucial for the stability of the engineered graft. Osteo integration is dependent on blood vessel 
colonization from the surrounding host tissue that allows for nutrient supply, waste removal and 
erasing of implant host interfaces that impede mechanical stability. Especially in the case of larger 
constructs, the biomaterial needs to be angioconductive and permissive to vascular in growth. Angioin-
duction, the ability of a biomaterial to actively induce and sustain the formation of new vessels, is 
another determinant of osteointegration accounting for adequate vascular supply and long-term 
stability of the engineered bone[113].
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Table 1 Factors that influence adipose-derived mesenchymal stem cells secretome content and release[99-101]

Donor Tissue Culture conditions Cell manipulation

Species Type (sWAT, vWAT) 2D vs 3D (spheroid culture, cell sheets), 
suspension culture

Preconditioning (IFN-γ, TNF-α, LPS)

Age Anatomic location (abdominal, 
brachial, mammary)

Hypoxia Differentiation (osteogenic, 
adipogenic)

BMD (obesity) Method of procurement (lipectomy, 
liposuction)

Plating density, co-culture Physical factors (electromagnetic 
fields, pulsed electromagnetic fields)

Disease (T2D, metabolic 
syndrome, lipodystrophy)

Methods of tissue processing, 
enzymatic digestion, mechanical 
trituration

Media formulation (serum containing 
versus serum free, growth factor 
addition)

T2D: Type 2 diabetes mellitus; sWAT: Subcutaneous white adipose tissue; vWAT: Visceral white adipose tissue; IFN-γ: Interferon gamma; TNF-α: Tumor 
necrosis factor alpha; LPS: Lipopolysaccharides; BMD: Bone mineral density.

Advanced nanostructured materials with remarkable properties are promising for revolutionizing the 
field of bone engineering. Graphene, with its high surface area, high mechanical strength, and high 
functionalization potential, can induce ADSC differentiation even in the absence of osteogenic media. 
The feasibility of generating mechanically stable graphene-based implantable bone grafts and the in vivo 
osteoinductive capabilities of these implants need to be further tested[114].

Bioactive molecules largely employed for bone tissue engineering are osteoinductive growth factors 
from the BMP family. BMP-2 was clinically approved by the Food and Drug Administration for spine 
fusion, and BMP-7 was given a device exemption for the treatment of nonunions. As a result, many 
studies began investigating BMP as a modality to enhance ADSC-based osteogenesis in vivo, envisaging 
smoother clinical translation. However, since activation of the BMP pathway in ADSCs induces 
osteogenesis and adipogenesis, the use of BMP alone cannot always account for the desired fate 
decision. To shift the balance towards osteogenesis, switches such as the Wnt and extracellular signal-
regulated kinase pathways and the ratio between BMP receptors bone morphogenetic protein type IA 
receptor (BMPR-IA)/BMPR-IB are at play. Controlling the sequential cascade of growth factor 
availability in vivo can prove to be technically challenging. Several methods, such as controlled release, 
scaffold-mediated release, gene transfer technologies or stimulation of endogenous BMP activation, 
have been proposed[115].

Several growth factors relevant for osteogenesis, such as b-FGF or FGF-2, IGF-1, PDGF-BB, and 
VEGF, are contained in platelet-rich plasma (PRP), a blood-derived biologic that is easy to procure from 
autologous sources. PRP incorporated within composite hydrogel-ceramic scaffolds yielded increased 
osteogenic ADSC conversion in a rabbit calvarial model compared to non-PRP-treated implants[116]. 
Different strategies of PRP coating of synthetic electrospun scaffolds appear promising, awaiting further 
tests for in vivo validation of the procedure[117]. Alternatively, overexpression of different transcription 
factors in ADSCs (RUNX2, VEGF, sonic hedgehog, and LIM mineralization protein) was shown to 
increase osteogenic differentiation and could prove an efficient strategy for inducing bone formation in 
vivo[118].

Another strategy of GF delivery could be in vitro cell preconditioning with osteoinductive molecules. 
FGF2-pretreated human ADSCs showed enhanced in vivo osteogenic potential in an ectopic bone model 
and increased osteoid formation in a dose-dependent manner[119]. Exosomes are EVs of endosomal 
origin, ranging from 50-200 nm in diameter, that function as intracellular communication tools. MSCs, 
especially ADSC EVs, contain cell-specific proteins (cytoskeletal proteins, transmembrane proteins, and 
heat shock proteins), nucleic acids [DNA, mRNA, micro RNA (miRNA), long and short noncoding 
RNA], lipids, and enzymes. EVs are recognized as bioactive cargoes with importance for cell 
recruitment, migration, proliferation, and de novo vascularization and have an important impact on 
tissue regeneration[120]. ADSC-derived EVs have been investigated as potential tools for inducing 
osteogenic differentiation. The PLDA/PGA matrix slowly released EVs from osteogenic-induced 
ADSCs and was shown to promote osteogenesis of BMSCs in vitro. Furthermore, cell-free PLDA/PGA-
EV increased osteogenesis in a mouse calvarial model compared to the PLDA/PGA matrix only[121]. 
EVs from osteogenic-induced ADSCs could promote osteogenesis in undifferentiated ADSCs. 
Remarkably, ADSCs could incorporate EVs faster than BMSCs (6 h compared to 48 h), which could be of 
importance for therapeutic applications. Even though the study was not validated in vivo, the authors 
performed microarray gene expression and bioinformatics analyses, revealing that the differentially 
expressed exosomal miRNAs from osteogenic-induced ADSCs compared to undifferentiated ADSCs are 
involved in the osteogenetic process (the MAPK, Wnt, and TGF-β signalling pathways). The expression 
levels of miR-130a-3p, which blocks SIRT7, an antagonist of the Wnt pathway, were found to be 
significantly higher in EVs from osteogenic ADSCs. MiR-130a-p ultimately upregulates the Wnt 
pathway, possibly acting as the molecular mechanism of increased ADSC osteogenic induction by EVs
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[122].
Given their increasingly recognized role in modulating osteogenesis, miRNAs or inhibitors have been 

tested for inducing ADSC differentiation. Scaffold-mediated release to ADSCs or virus-transfected miR-
148b, miR-26a, miR-135, or miR-130a-3p was found to increase bone formation in vitro and in vivo[123,
124]. Other miRNAs, such as miR146a, miR-17, miR-23a, and miR-31, were found to inhibit BMP2-
induced osteogenesis, suppressing downstream factors in BMP-2-induced osteogenesis (such as 
RUNX2, Osterix, and SMAD1/4). Antisense inhibition of these miRNAs in ADSCs seeded on a β-
tricalcium phosphate scaffold was found to increase bone volume and BMD and to decrease scaffold 
residue persistence in critical size bone defects in rats[125].

Mechanical stimulation is crucial for obtaining bioengineered structures, especially in the case of 
musculoskeletal components. Functional tissue engineering is set to obtain robust bioequivalents that 
readily restore the morphology and load-bearing and motion capabilities of bone. A variety of 
mechanical loading procedures that apply cyclic hydrostatic pressure or tensile strain in dynamic 
culture conditions have been used to increase ADSC osteogenesis[126]. Magnetomechanical stimulation 
using magnetic nanoparticles internalized by ADSCs and magnetic field exposure during the first 
phases of osteogenesis has been reported as a modality to deliver remote controlled and device-free 
mechanical stimulation[108] (Figure 1).

A consistent number of preclinical studies have reported the use of various combinations of 
supportive structures, bioactive molecules and/or functional loading for testing ADSC osteogenic 
capability in vivo. Reports about the successful use of ADSC-based tissue-engineered bone are abundant 
in the literature[56]. Despite these encouraging results, translation to clinical settings has proven more 
difficult. The first report of clinical use was made in 2004 and involved ADSC use in a paediatric patient. 
A large calvarial posttraumatic bone defect was treated with autologous ADSCs and iliac crest 
cancellous bone autografts, fibrin glue and resorbable macroporous sheets[127]. In the years to follow, 
several case reports emerged regarding the use of autologous ADSCs and clinically approved bone 
substitutes with or without BMPs for grafting of craniofacial bone defects (mandibular and maxillary 
bone)[128-130]. The combination of autologous ADSCs expanded in good manufacturing practice 
facilities and ceramic bone substitutes resulted in uneventful healing of bone defects. Cranioplasty of 
large calvarial defects using autologous ADSCs and β-transmission control protocol was reported as a 
useful method to replace massive bone loss[131]. Remarkably, all clinical reports regarding ADSC use 
involve the reconstruction of craniofacial bone defects. To our knowledge, recent years have not added 
to the reported clinical studies in this field. A list of current clinical trials registered on clinicaltrials.gov 
is available in Table 2.

THE SUPPORTIVE ROLE OF ADSC - CELL THERAPY FOR BONE DISEASES AND FOR 
AUGMENTING FRACTURE HEALING
The trophic role of ADSCs in tissue has been investigated for the treatment of metabolic bone diseases, 
such as osteoporosis. As a multifactorial disorder, osteoporosis has external and intrinsic determinants 
and is commonly associated with postmenopausal hormone depletion, ageing or long-term use of 
corticosteroid medication[132]. Local or systemic delivery of ADSC suspensions as cell therapy is sought 
to modulate bone resorption, increase bone formation and enhance BMD. The procedure relies less on 
the capability of infused cells to differentiate into osteoblastic lineages but rather on cytokine and 
growth factor release. This paracrine activity is expected to increase osteoprogenitor cell recruitment, 
proliferation, differentiation, ECM formation and mineralization[133]. Several preclinical studies report 
on the efficiency of autologous locally delivered ADSCs in improving bone strength in ovariectomized 
rats or in senescent mice[134,135]. Systemic human ADSC delivery in ovariectomized nude mice was as 
effective as oestrogen therapy in protecting trabecular bone loss, without evidence of ADSC engra-
ftment[136].

Osteonecrosis of the femoral head (ONFH) is considered to be produced by apoptosis of mature 
osteocytes mainly due to impaired blood supply. ONFH affects a younger population, leading to 
collapse of the femoral head, a situation that requires total joint replacement. Unlike other forms of cell 
therapy, in ONFH, the use of stem cells started in clinics with the use of bone marrow aspirate 
concentrate as a modality to deliver progenitor cells locally after core decompression[137]. Most studies 
regarding the use of cultured MSCs for ONFH involve BMSCs; however, coculture with ADSCs was 
reported to have a synergistic effect mainly due to ADSC angiogenic potential[138]. Stem cells are 
commonly delivered within a supportive structure, such as fibrin gel or bone substitute for retaining the 
cells, as well as a modality to support or to prevent the collapse of the femoral head. Implanted cell 
contribution is probably rather paracrine because the local environment is not favorable for cell survival 
and differentiation after transplantation. ADSCs have been tested as a modality to locally deliver 
angiogenic factors. VEGF-transfected ADSCs in coculture with BMSCs were effective in inducing 
osteogenesis and angiogenesis in vitro and in vivo; however, this role needs to be further tested in ONFH 
animal models[139].
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Table 2 Clinical trials using adipose-derived mesenchymal stem cells for bone regeneration registered on clinicaltrials.gov (June 2021)

Trial 
registration Ref. Study design Group/cohort Intervention Location Status

NCT01218945 Calcagni
[168]

Observational/prospective Overweight, 
non-metabolic 
disease, 17-80 yr

To pre-engineer large synthetic 
bone grafts and study the vascular-
ization process in vivo

University of 
Zurich, 
Switzerland

Completed 
December 2012

NCT01532076 Saxer 
and 
Jakob
[169]

Allocation: Randomized. 
Intervention model: Parallel 
assignment. Masking: Single 
(outcomes assessor). Primary 
purpose: Treatment

Patients with 
osteoporotic 
fractures, age 18-
70 yr

Cellularized composite graft 
augmentation liposuction, cell 
isolation, embedding of SVF cells 
in fibrin gel, wrapping around 
hydroxyapatite granules compared 
to acellular grafts

University 
Hospital, 
Basel, 
Switzerland

Terminated/slow 
recruitment 
rate/last update 17 
September 2014

NCT01643655 Yoon
[170]

Allocation: N/A. Intervention 
model: Single group assignment. 
Masking: None (open label). 
Primary purpose: Treatment

Avascular 
necrosis femoral 
head Steinberg I-
III/pre-collapse, 
age 17-70 yr

Autologous adipose tissue-derived 
MSCs transplantation into the 
femoral head/infusion of 
autologous adipose-derived 
mesenchymal stem cells. Dose: 1 × 
108 cells/3 mL

R-Bio SMG-
SNU 
Boramae 
Medical 
Center

Recruitment 
completed/last 
update 31 August 
2017

NCT02140528 Gourabi 
et al[171]

Allocation: Randomized. 
Intervention model: Parallel 
assignment. Masking: Double 
(participant, investigator). 
Primary purpose: Treatment

Closed shaft 
tibial fracture, 
age 18-65 yr

Injection of adipose-derived 
mesenchymal stem cell in the site 
of tibia fracture. Other name: Stem 
cell transplantation compared to 
Placebo

Royan 
Institute 
Tehran, Iran

Completed/last 
update 27 April 
2017

NCT03269409 Sierra
[172]

Interventional, allocation: 
Randomized. Intervention 
model: Parallel assignment. 
Masking: Quadruple 
(participant, care provider, 
investigator, outcomes assessor). 
Primary purpose: Treatment

Patients with 
ONFH pre-
collapse, non-
posttraumatic, 
22-70 yr of age

Adipose-derived regenerative cells 
harvested through autologous 
liposuction processed using the 
Celution 800/GP System (Cytori 
Therapeutics) transplanted into the 
femoral head after standard of care 
hip decompression compared to 
standard decompression and 
Ringer solution

Mayo Clinic, 
United 
States

Suspended 
(updating study 
protocol, consent 
form and study 
SOP protocol) 
March 2021

NCT02307435 Dilogo
[173]

Allocation: N/A. Intervention 
model: Single group assignment. 
Masking: None (open label). 
Primary purpose: Treatment

Fracture 
nonunion 
metaphyseal 
fibrous defect, 
age 19-30 yr

Experimental: Implantation group 
implantation group will receive 
ADSC/UCMASC/BMSCs and HA-
CaSO4. Intervention: Biological: 
MSC

University of 
Indonesia, 
Jakarta

Unknown/last 
update 4 December 
2014

NCT03678831 Pasquier
[174]

Observational, case-control 
prospective

Arthritic post-
menopausal 
patients with 
knee prosthetic 
replacement

Adipocyte isolation from distal 
femoral epiphysis and 
subcutaneous adipose tissue at the 
surgery site; classical piece removal 
during prosthetic replacement of 
the knee

University 
Hospital, 
Lille, France

Recruiting/April 
2021

NCT04377880 Fodzo
[175]

Observational study Osteoporotic 
patients 
undergoing total 
joint arthroplasty

Osteoblastic response to medullary 
adipocytes of commercial origin 
analysed by gene expression and 
correlation with clinical data 
regarding osteoporosis and 
microtomography

University 
Hospital, 
Lille

May 2021

ADSC: Adipose-derived mesenchymal stem cells; UCMASC: Umbilical cord mesenchymal stem cell; BMSC: Bone marrow stem cell; MSC: Marrow stem 
cell; ONFH: Osteonecrosis of the femoral head; SOP: Standard operating procedures; SVF: Stromal vascular fraction.

Delayed or impaired fracture healing can complicate up to 10% of total fracture cases[140]. Local risk 
factors can affect the quality and speed of bone healing, such as the severity of bone and soft tissue 
injury and the coexistence of multiple fractures or other associated trauma. Systemic factors, such as 
diabetes, obesity, malnutrition, smoking, and advanced age, are also known to represent a high risk for 
bone healing. ADSCs have been tested as a method for increasing the quality and decreasing the time of 
bone healing in animal models. Human ADSCs and their conditioned medium embedded in human 
blood plasma hydrogel were shown to increase fracture healing in surgically induced rat jaw fracture, 
demonstrating their paracrine effect in promoting bone union[141]. Local ADSC injection in healthy and 
diabetic rat femoral nonunions induced significant bone healing, as assessed by histology, compared to 
nontreated groups independent of RANK, RANKL, or OPG gene expression[142]. A combination of 
human ADSCs, cancellous bone grafts and chitosan gel consistently improved healing of the surgically 
induced nonunion of the femoral bone in rats, as confirmed by biomechanical and histological studies. 
ADSC presence was correlated with increased expression of VEGF and BMPs in the treated groups
[143]. Autologous ADSCs delivered by local injection in atrophic nonunions in rat tibia resulted in 
significantly increased callus and solid bone union[144]. The report represents proof of concept of ADSC 
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Figure 1 Adipose-derived mesenchymal stem cell osteogenesis under magnetomechanical stimulation. A: Osteogenesis of adipose-derived 
mesenchymal stem cells (ADSCs) loaded with micronutrient powders (MNPs) exposed to alternating MFs; B: Osteogenesis of ADSCs without MNPs exposed to MFs 
assessed with OsteoImage® Lonza showing green fluorescence for the deposited calcified extracellular matrix.

regenerative capabilities even in this difficult-to-treat variety of impaired fracture healing. The clinical 
use of ADSCs as a cell therapy for enhancing fracture healing has not yet been reported.

WAT-DERIVED PLURIPOTENT CELL POPULATIONS: MULTILINEAGE DIFFERENTIATING 
STRESS-ENDURING CELLS AND DEDIFFERENTIATED FAT
WAT is the source of two cell populations with tripoblastic differentiation potential and expression 
surface markers of pluripotency. Multilineage differentiating stress-enduring (MUSE) cells were initially 
obtained from dermal fibroblasts and BMSCs as stress-resistant populations[145]. WAT was soon 
identified as a plentiful source of MUSE cells that could be obtained by means of positive immune 
separation for mesenchymal surface antigen CD105 and pluripotency marker stage-specific embryonic 
antigen 1 (SSEA-1)[146]. A remarkable characteristic of these cells is their ability to grow in adherent 
and suspension culture conditions. When MUSE cells are cultured in a single-cell suspension, they form 
so-called “M clusters” with morphological resemblance to ESC or induced pluripotent stem cell (IPSC) 
embryoid bodies formed from embryonic stem cells (ESCs) or IPSCs. Since MUSE cells do not generate 
tumors after in vivo injection into severe combined immunodeficient (SCID) mice, they are considered 
safer than ESCs or IPSCs. MUSE cells are a small percentage of tissue-derived MSCs and are considered 
to be responsive to the regenerative potential of these populations. Their ability to migrate to damaged 
tissue and to spontaneously differentiate into cells that pertain to damaged tissue is regarded as having 
important potential in RM since unlikely ESC or IPSC preinduction to the respective lineage is not 
necessary[147]. MUSE cells have been tested in animal models for cardiovascular rescue (myocardial 
infarction) ischaemic stroke, lung injuries, kidney diseases and skin repair[148]. Their use in bone 
regeneration has not yet been tested; however, good results obtained in treating experimental patellar 
osteochondral defects might indicate a possible future application[149].

Mature cell dedifferentiation has been reported as a source of a pluripotent-like cell population. 
Mature adipocytes from WAT dedifferentiated in vitro by ceiling culture were found to revert to an 
undifferentiated phenotype and gain proliferative and differentiation capabilities[150]. Dedifferentiated 
fat (DFAT) cells have triploblastic differentiation potential in vitro and do not generate teratomas when 
injected into SCID mice[151]. DFAT cells are more homogenous than ADSCs and display mesenchymal 
surface markers and SSEA-3. DFAT was found to differentiate multiple cell lineages, including 
adipogenic, osteogenic, chondrogenic, myogenic, angiogenic and neurogenic lineages, and was tested in 
preclinical models of spinal cord injury rehabilitation of cardiac tissue after infarction[152,153]. DFAT 
cells were found to possess osteogenic capabilities when cocultured with periodontal ligament stem 
cells and might be a suitable cell source for periodontal regeneration[154]. DFAT cells display better 
differentiation capabilities, including osteogenic capabilities, than ADSCs from the same source. WAT-
derived pluripotent cell populations are more homogenous than ADSCs and possess multilineage 
differentiation potential. Their prospective use for bone regeneration strategies is appealing and 
warrants more investigation.

FAT GRAFTING AND BONE HEALING
Not only cells but also WAT as a whole have been used in plastic and cosmetic surgery for aesthetic 
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reasons but also for supporting wound healing and skin support[155]. WAT has only recently been 
tested for its possible effect in supporting bone healing. Fragmented autologous WAT was shown to 
significantly increase mineralized matrix deposition in calvarial defects in rabbits compared to blood 
clot-treated and nontreated controls[156]. Fragmented WAT is investigated, as well as an autologous 
biomaterial that could be genetically modified to induce bone healing. In an in vitro study, genetically 
modified fragmented WAT overexpressing BMP-2 was shown to undergo mineralization in osteoin-
ductive conditions[157]. The same team reported that the homodimer BMP-2 induced increased 
mineralization at lower doses compared to heterodimer BMP-2/6 or BMP-2/7; however, these findings 
need to be confirmed by in vivo studies[158]. WAT has been considered a modality to deliver micro-
vascular grafts to healing bone defects to prevent atrophic nonunions. A thermoresponsive hydrogel 
(TRH) was used as a delivery system for WAT microfragments. However, local delivery of fragmented 
WAT-loaded TRH impaired bone formation in a murine model of bone defects, even though vascular-
ization was improved. This undesirable outcome was thought to be produced by reduced VEGF 
expression in early phase bone healing, stressing the need for stage-specific delivery of bioactive factors
[159].

CONCLUSION
Despite consistent research in recent decades, few clinical trials have tested the use of AT- or AT-
derived cells for bone regeneration. To date, no clinically approved engineered product or cell therapy 
exists for treating impaired fracture healing, osteoporosis or ONFH. Particular challenges regarding cell 
heterogeneity and the type of cell used for different bone regenerative strategies are adding to the 
general challenges encountered by the development and approval of any advanced therapeutic 
medicinal product (ATMP). ADSC stemness characteristics are donor-dependent. The age of the donor 
has been thought to influence the quantity and quality of mesenchymal progenitors derived from WAT; 
however, conflicting reports exist in this respect. A decreased yield of SVF and ADSC colony-forming 
units per tissue, increased mitochondrial ROS production and impaired migratory and differentiation 
potential were reported for elderly donors in some studies[160,161]. Other studies, however, report 
similar characteristics of ADSCs derived from donors ranging from 8-62 years of age confirmed in a 
clinical case series where ADSCs were used for treating bone nonunions in combination with osteocon-
ductive grafts[162]. The differences might be explained by the fact that studies reporting impaired 
ADSC characteristics in elderly individuals do not elucidate their possible coexisting diseases (such as 
diabetes, metabolic syndrome, and obesity) ADSCs derived from T2D patients were found to possess 
reduced viability and proliferative potential, exhibiting mitochondrial dysfunction and a senescence 
phenotype due to excessive mitochondrial ROS accumulation[163]. The T2D ADSC secretome was also 
modified with reduced VEGF, adiponectin, and chemokine (C-X-C motif) ligand-12 secretion and 
overproduction of leptin[164]. ADSCs derived from obese donors displayed reduced proliferative and 
differentiation potential compared to ADSCs from normal BMI donors. Obese ADSCs were shown to 
induce a proinflammatory phenotype in murine Mcfs and microglia, increasing the expression of 
proinflammatory genes and nitric oxide pathway activity while impairing their phagocytosis and 
migration[165]. Metabolic syndrome and T2D ADSCs have increased susceptibility to apoptosis and 
senescence with increased expression of senescence-associated β-galactosidase, a high level of anti-
apoptotic protein B cell lymphoma-2 and decreased expression of the marker of proliferation Ki-67. 
These changes result in decreased proliferation, morphological changes with enlarged cellular bodies 
and nuclei and increased apoptosis of ADSC factors that affect the stemness of ADSCs derived from 
these donors[166]. WAT status obesity and weight loss, age and disease-related lipotrophy affect the 
quantity and quality of SVF and ADSCs that can be derived from autologous sources.

These findings underscore the need for thorough characterization of cells before their use for certain 
prospected clinical applications. Genomic and proteomic profiling of the ADSC phenotype, as well as 
their secretome, could identify biomarkers for selecting the appropriate cell source for a particular 
application in bone healing. This would result in possible test panels for determining whether 
autologous or allogenic cell sources are the best choice for the desired outcome. Modelling the desired 
profile for a specific application in bone healing (such as osteogenic potential and trophic and/or anti-
inflammatory effects) would help select the cell phenotype that is more suitable for bone tissue 
engineering or cell therapy for fracture healing or other bone-specific diseases. Cell profiling for a 
projected ATMP would positively impact product characterization, standardized manufacturing and 
quality control.

Expanding the use of pluripotent cells from WAT, MUSE and DFAT cells, which are less donor-
dependent and have increased osteogenic potential, could increase the chance for successful bone 
engineering strategies. Given the capability of MUSE cells to traffic, home and differentiate at the site of 
injury, a combined acellular scaffold with systemic or local MUSE delivery could represent a convenient 
modality for bone grafting and fracture healing. An important gap of knowledge still exists regarding 
the mutual interrelation between different AT types and bone in its normal and pathological states. Not 
only AT but also bone metabolism, fracture and the modality of fracture treatment can influence AT 
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locally and systemically. BMP-2 treatment of long bone fractures in high- and low-fat diet-fed mice was 
shown to display increased vessel parameters and femoral adipocyte numbers irrespective of diet. Local 
BMP-2 delivery was shown to exert a diet-dependent effect on lung endothelial and bone marrow 
endothelial cells, influencing gene expression and in vitro tube formation capabilities[167]. These 
findings point out the necessity to investigate the complex interrelation between AT and bone from a 
systemic perspective. The role of BMAT in orchestrating local and systemic bone metabolism and bone 
healing and its interrelation with WAT and BAT need further investigation. Two recently registered 
clinical trials are salutary in this respect, as they are poised to compare WAT and BMAT characteristics 
in postmenopausal and osteoarthritic subjects (NCT03678831), as well as to model the complex interre-
lation between BMAT adipocytes and osteoblasts derived from osteoporotic patients (NCT04377880) 
(Table 2).

Multiple omics profiling of various cell populations and modelling their interactions in silico and in 
vitro will increase the understanding of intricate factors that govern AT and bone balance. The increased 
availability of organoids and organs on chip technologies that enable high-throughput experiments will 
enable the validation of computer models. These models will derive improved therapeutic targets for 
treating bone diseases and impaired fracture healing, as well as methods for using preventive measures 
for maintaining health in both compartments.
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