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Abstract: Luzhou-flavor baijiu (LFB) is brewed by the combined action of various microorganisms,
and its flavor is affected by the microbial community and the genes they express, but which genes
are the key ones during LFB brewing is less clear. Based on our previous studies the genes ME2
and adhE were identified as key genes, but which role they play was also unknown. In this study
functional microorganisms were screened based on the key genes ME2 and adhE, and they were
identified to be Rummeliibacillus suwonensis, Clostridium tyrobutyricum and Lactobacillus buchneri. Then
simulated fermentation experiments were carried out with the functional microorganisms, and
during the fermentation process expression of the key genes and the amounts of the main flavors
were detected to analyze the role of the key genes. The results showed that the key gene ME2 was
significantly positively correlated with the contents of the main acids, however the key gene adhE
and the formation of the main esters in the LFB brewing process was a significant positive correlation.
This study verified the two key genes ME2 and adhE complement each other in the LFB brewing
process, playing an important role in promoting the formation of flavor substances, and are very
beneficial to improve the quality of LFB.

Keywords: Luzhou-flavor baijiu; gene ME2; gene adhE; functional microorganisms; flavors

1. Introduction

Luzhou-flavor baijiu (LFB) is one of the most popular baijiu products in China [1], due
to its rich and comforting aroma and flavor. In 2020, its production and sales volume
accounted for more than 50% of the total volume of baijiu. The main factors affecting the
flavor of LFB are the fermentation microorganisms in Daqu (fermentation starter), the pit
mud (mud attached to the underground cellar surface, which was used for Luzhou-flavor
baijiu fermentation) and zaopei (fermented grains mixture). Therefore, in recent years, an
increasing number of studies on LFB brewing have focused on the analysis of the microbial
community structure, gene expression and metabolic pathways in zaopei, Daqu, and pit
mud [2–6].

Key genes revealed to be important in the LFB brewing process were expressed by key
microorganisms. Screening and fermentation research on these key microorganisms is an
important method to analyze the mechanism of key genes. For a long time, researchers have
been screening beneficial microorganisms from pit mud [7], Daqu [8] and zaopei [9], and
some researchers even proposed the method of culturomics [10] to study the characteristics
of microorganisms in baijiu production. Most of these beneficial microbes were screened
based on some specific function (such as acid producing, saccharification, cellulose degra-
dation), which can be used to improve the LFB brewing process. This function-oriented
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screening method is beneficial to the application of microorganisms, but the traditional
screening method has some problems such as strong randomness and high screening inten-
sity. Recently, methods of screening microorganisms based on genetic information have
been gradually applied. Some studies have determined the microbial community informa-
tion of pit mud based on 16S rRNA gene information then designed corresponding media
for key microorganisms screening [10]. Also, there were studies on screening new species
from pit mud based on 16S rRNA gene information [11]. Even some studies according to
the prediction function of 16S rRNA gene diversity analysis predicted the species origin of
key genes, then GRPWREC tool of KOMODO database was used to predict the screening
medium based on the 16S rRNA gene information of microorganisms, and finally the key
gene expression strains were screened [12]. These screening methods based on microbial
genetic information are speedy and accurate.

Compared with genetic information on the DNA level, mRNA information can more
directly reflect the expression of functional genes. However, there were few reports on
targeted screening of functional microorganisms based on mRNA information, and es-
pecially in the production of LFB this has never been reported. In previous studies, our
team analyzed the differentially expressed genes between aged pit mud and degenerated
pit mud used for LFB brewing by metatranscriptomics [13], and the genes ME2 and adhE
were found to be the most differentially expressed functional genes, which may be related
to the flavor of LFB. The malate dehydrogenase expressed by gene ME2 is listed in the
Kyoto Encyclopedia of Genes and Genomes (KEGG) and mainly catalyzes two reactions
(Figure 1A), the product of these two reactions are pyruvate. Pyruvate has been proved
to be an important substrate for the synthesis of the “four dominant acids” (L-lactic acid,
acetate, butyrate and caproate) in previous studies [13], therefore, the expression of gene
ME2 may play an important role in promoting the formation of the “four dominant acids”.
Methanogenic archaea, A. fulgidus [14], Bacillus subtilis [15] and other common microorgan-
isms in the LFB brewing process have also been reported to be able to express malate
dehydrogenase. However, the role of the malate dehydrogenase gene (ME2) in the brewing
process of LFB is still unknown, and as a key gene found in previous studies, its influence
on the flavor of LFB needs further study. Acetaldehyde dehydrogenase gene (adhE) has
been reported to be related to the synthesis of ethanol and butanol (Figure 1B) [16,17],
and may lead to the reduction of the synthesis of acetic acid and butyric acid [18]. The
reduction of gene adhE expression will lead to the reduction of ethanol synthesis and
the increase of hydrogen production [19], due to the existence of “interspecific hydrogen
transfer”, hydrogen production can promote the production of caproic acid by caproic acid
bacteria [4]. However, the role of acetaldehyde dehydrogenase gene (adhE) in the brewing
process of LFB has not been reported, especially the influence of the formation of “four
dominant acids” and “four dominant esters” (ethyl lactate, ethyl acetate, ethyl butyrate
and ethyl caproate), which have great influence on the flavor of LFB, is also unknown.

In this study, the species origin was aligned according to the RNA sequence infor-
mation of the genes ME2 and adhE, then the optimal screening medium was predicted
by GRPWREC tool according to the 16S rRNA sequence information of the species, next,
the functional microorganisms containing genes ME2 and adhE were screened from the
aged pit mud. Finally, fermentation experiments were carried out to determine the ef-
fects of functional microorganisms on the formation of main flavor substances in the LFB
brewing process.
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Figure 1. (A) The two biochemical reactions catalyzed by malate dehydrogenase (enzyme expressed by gene ME2); (B) The two biochemical reactions catalyzed by
acetaldehyde dehydrogenase (enzyme expressed by gene adhE); (C) Agarose gel electrophoresis of the products of colony PCR based on gene ME2; (D) Agarose gel
electrophoresis of the products of colony PCR based on gene adhE; (E) Phylogenetic tree of the functional microorganisms based on 16S rDNA gene sequences.
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2. Materials and Methods
2.1. Sampling Procedure

Aged pit mud used for functional microorganisms screening was sampled from a
LFB manufacture located in Qionglai (Sichuan, China). About 500 g of aged pit mud was
collected from the bottom of the cellar, then it was sealed into a sterile bag and stored in ice
bags, next, it was transported to our laboratory and stored in the refrigerator at 4 ◦C for
further use.

2.2. Screening Media Prediction

The detected RNA sequences of gene ME2 and adhE by metatranscriptomics were
aligned to National Center for Biotechnology Information (NCBI) to identify the source
of microbial species, then 16S rRNA gene sequences of the species which contain gene
ME2 and adhE were searched in NCBI. Next, the 16S rRNA gene sequences were imported
into the GRPWREC tool of KOMODO (komodo.modelseed.org/growrec.htm, accessed
on 17 September 2020) to predict the screening media of the functional microorganisms.
According to the prediction results, the media with the highest score (DSMZ_330 and
DSMZ_614) were selected to execute the functional microorganisms screening.

2.3. Enrichment and Screening of Functional Microorganisms in Pit Mud

DSMZ_330 and DSMZ_614 liquid media (the preparation method is hown in Table S1)
were prepared and 15 mL were subaliquoted into anaerobic culture tubes (ϕ16 × 125 mm),
then 1 g of aged pit mud was weighed and quickly put into the media and sealed for
microorganisms enrichment. The enrichment was performed at 37 ◦C for 10 days. Syringes
were used to pierce the sealant pad of anaerobic culture tube, from which 0.5 mL enriched
cultures was extracted, then they were quickly spread at DSMZ_330 and DSMZ_614
solid medium plates. The spread plates were placed in an anaerobic incubator, and an
AnaeroPack (Mitsubishi Gas Chemical Company, Tokyo, Japan) were placed in the same
anaerobic incubator to maintain the internal anaerobic state, cultured at 37 ◦C for 7 days
until colonies appeared.

2.4. Colony PCR

According to the sequence information of gene ME2 and adhE, the software Primer
Premier 5.0 (premier biosoft, San Francisco, CA, USA) was used to design specific primers
for colony PCR. The designed primers (shown in Table 1) were aligned to NCBI to verify
their specificity.

Colonies with bacterial characteristics grown on the plate were randomly selected
with a pipette tip, then dissolved in 10 µL sterile deoxidized double distilled water, 2 µL
bacterial solution was taken as a PCR amplification template. Colony PCR was carried out
in a MyCycler™ thermal cycler (Bio-Rad, Hercules, CA, USA) with corresponding primers
according to the procedure shown in Table 1. PCR products were detected by agarose
gel electrophoresis with a concentration of 1.2%. The bands with correct electrophoresis
positions were cut and purified, then sequenced by Tsingke Biotechnology Co., Ltd. (Beijing,
China), and the sequencing results were aligned in NCBI. The remaining 8 µL bacterial
solution was transferred to 2 mL anaerobic liquid media and cultured in an anaerobic
culture bag (Mitsubishi Gas Chemical Company) at 37 ◦C for 5 days.

2.5. Functional Strains Identification and Phylogenetic Tree Construction

The colonies which were verified by colony PCR were cultured, then their 16S rRNA
genes were paired-end sequenced at Tsingke Biotechnology Co., Ltd. The 16S rRNA gene
sequences were aligned to NCBI through BLASTN, then the species information of the
screened functional strains was determined according to homology sequences with the
highest similarity. Next, the 16S rRNA gene sequence of the strains with high similarity to
the screened functional strains were downloaded from NCBI, and the phylogenetic tree
was constructed by neighbor joining (NJ) method with MEGA-X [20].

komodo.modelseed.org/growrec.htm
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Table 1. Colony PCR reaction system and procedure.

Gene Reagent Volume of Addition Primer PCR Procedure

ME2

2 × T5 Super PCR Mix (Colony)
(Tsingke Biotechnology Co., Ltd.) 12.5 µL Forward Primer:(ME2-F):

5′-CTATTGCGAAGCACCTG-3′

Reverse Primer (ME2-R):
5′-AAACTCCCCTGTTTATGTT-3′

Product length: 148 bp

Initial denaturation at 98 ◦C for 180 s; followed by
32 cycles of denaturation at 98 ◦C for 10 s, annealing at

49 ◦C for 30 s and elongation at 72 ◦C for 30 s; then
final elongation at 72 ◦C for 120 s.

Forward Primer (ME2-F, 10 µM) 1 µL
Reverse Primer (ME2-R, 10 µM) 1 µL

Template 2 µL
ddH2O up to 25 µL

adhE

2 × T5 Super PCR Mix (Colony)
(Tsingke Biotechnology Co., Ltd.) 12.5 µL Forward Primer (adhE-F):

5-GATGCTTTGATTGCCCTTGG-3′

Reverse Primer (adhE-R):
5-AAACGGGTTGTTGTTGGTG-3′

Product length: 354 bp

Initial denaturation at 98 ◦C for 180 s; followed by
32 cycles of denaturation at 98 ◦C for 10 s, annealing at

58 ◦C for 30 s and elongation at 72 ◦C for 30 s; then
final elongation at 72 ◦C for 120 s.

Forward Primer (adhE-F, 10 µM) 1 µL
Reverse Primer (adhE-R, 10 µM) 1 µL

Template 2 µL
ddH2O up to 25 µL
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2.6. Fermentation Test of Functional Microorganisms

Solid fermentation medium: zaopei (a solid mixture of fermented grains include
sorghum, corn, wheat and rice, which can produce LFB after distillation) was used as
solid fermentation medium. The water, starch and reducing sugar contents of which was
61.2–62.5%, 10.6–11.2% and 0.48–0.52%, respectively, and its acidity was 0.38–0.40 mmol/g.
The zaopei was taken from a LFB manufacture located in Chengdu (Sichuan, China).

Preparation of liquid fermentation medium: the zaopei which was just finished fer-
menting and dug up from the fermentation cellar was mixed with boiled distilled water
at a mass ratio of 1:3. The mixture was extracted by ultrasonic in a 45 ◦C water bath for
120 min, then the supernatant was taken after centrifugation at 3000 rpm for 5 min. Finally,
supernatant was boiled with nitrogen for 30 min to deoxidization and then stored at 4 ◦C
for later use. Before use, it was mixed with seed media of different strains in equal volume
and autoclaved at 121 ◦C for 20 min.

DSMZ_330 or DSMZ_614 medium was used as seed medium, and 10% of the screened
functional microorganisms were inoculated in anaerobic culture tube for 5 days activation
culture at 37 ◦C. The activated functional microorganisms were inoculated into liquid
fermentation medium at a rate of 10% and fermented in an anaerobic culture flask at
37 ◦C for 27 days. The fermentation broth of just inoculated mixture (day 0), day 1, day 5,
day 13, day 23 and day 27 was taken to detect the expression quantity of key genes and
main flavor substances. The uninoculated sterile liquid fermentation medium was used as
blank control.

Zaopei (200 g) was charged to a 500 mL conical flask and pressed tightly. Then the
activated functional microorganisms were inoculated into zaopei at 5% and 10% inoculation
rates, respectively, and the flask sealed with one-way valves for 35 days of anaerobic
fermentation at 37 ◦C. The main flavor substances in fermented zaopei of day 0, day 2, day 6,
day 13, day 20 and day 35 were detected. Zaopei which was inoculated with sterile medium
were used as a control sample.

2.7. Quantify the Expression Quantity of Gene ME2 and adhE

Two mL of fermentation liquid was taken, centrifuged at 4 ◦C 10,000 rpm for 3 min,
and the precipitate was immediately extracted with TR205 total RNA rapid extraction
kit (Tianmo Biotech, Beijing, China) according to the method described in its instructions.
The extracted RNA was detected by agarose gel electrophoresis with a concentration of
1.0% to verify their integrity, then the RNA concentration were detected by Nanodrop
2000c ultramicro spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA). All
the checked RNA were used to synthesize cDNA by the kit 5X All-In-One RT MasterMix
with AccuRT (abmgoodchina Inc., ZhenJiang, China).

The method of real-time fluorescence quantitative PCR (RT-qPCR) was used to detect
the expression quantity of gene ME2 and adhE in a LightCycler® Nano System (Roche, Basel,
Switzerland). RT-qPCR were carried out in a total volume of 20 µL containing BlasTaqTM
2X qPCR MasterMix (abmgoodchina Inc.) 10 µL, forward and reverse primer (Table 2)
0.5 µL, respectively, cDNA template 2 µL, and RNase-free ddH2O 7 µL. The RT-qPCR
procedure was initial denaturation at 95 ◦C for 600 s; followed by 40 cycles of denaturation
at 95 ◦C for 15 s, annealing at 52 ◦C for 90s.

Table 2. Primers for qPCR of gene ME2 and adhE.

Gene Primer Sequence 5’-3’ Annealing Temperature Products Length

adhE
adhE-2F GTATTCCAAATGTCAGCG 48.6 ◦C 73 bp
adhE-2R TTGATTTCTTTACAGAGGGT 49.0 ◦C

ME2
ME2-F CTATTGCGAAGCACCTG 49.6 ◦C 148 bp
ME2-R AAACTCCCCTGTTTATGTT 48.6 ◦C
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Standard curve creation: Standard plasmids containing gene ME2 and adhE were con-
structed. After concentration determination, the plasmids were diluted by 10-fold gradient
to obtain plasmids with a concentration of 1012–107 copies/mL. Different concentrations
of plasmids were used as templates for qPCR, according to the logarithm of plasmids
concentration and the Ct value of qPCR amplification, the linear fitting was carried out to
draw the standard curve.

2.8. Detection of Volatile Flavor Substances

The volatile compounds in the fermentation samples were detected by gas
chromatography-mass spectrometry (GC-MS).

Sample treatment: The liquid fermented samples were centrifuged at 4 ◦C 10,000 rpm
for 3 min, 5 mL of supernatants were taken and put into an Agilent headspace injection
bottle (Agilent Technologies, Inc., Santa Clara, CA, USA), mixed with 3.0 g NaCl and 200 µL
n-octanol standard (0.55mg/L) and sealed. The solid fermentation samples were weighed
5.00 g and put into the Agilent headspace injection bottle, 8 mL ddH2O, 3.0 g NaCl and
200 µL n-octanol standard (0.55 mg/L) were added into the bottle, then sealed the bottle.
After sealing, the sample bottle was heated for balanced at 95 ◦C for 5 min in Agilent 7697A
headspace sampler (Agilent Technologies, Inc., Santa Clara, CA, USA), then the balanced
gas was extracted for injection.

Chromatography and mass spectrometry conditions: A GCMS-QP2010 SE system
(Shimadzu Co., Ltd., Kyoto, Japan) was used for GC-MS detection. The chromatographic
column was KB-5MS capillary column (30 m × 0.25 mm, 0.25 µm); Injector temperature:
250 ◦C; Carrier gas: helium (purity 99.9995%) with a flow rate of 1 mL/min, with no
splitting. The initial column temperature was 40 ◦C, maintained for 5 min, then increased
to 80 ◦C at a rate of 2 ◦C/min, next increased to 150 ◦C at a rate of 5 ◦C/min, and finally
increased to 250 ◦C at a rate of 10 ◦C/min, maintained for 5 min. Mass spectrometry
electron bombardment ion source (EI) temperature: 280 ◦C/Electron energy 70 eV; Scan
range: 30–450 amu.

Data processing: The collected mass spectrograms were searched in the NIST08 Mass
Spectral Library, and each chromatographic peak was semi-quantified by the internal
standard method.

2.9. Detection of “Four Dominant Acids”

The “four dominant acids” (L-lactic acid, acetate, butyrate and caproate) in fermen-
tation samples were detected by high performance liquid chromatography (HPLC) and
quantified by external standard method.

Sample treatment: The liquid fermented samples were centrifuged at 4 ◦C 10,000 rpm
for 3 min, supernatants were filtered with 0.22 µm membrane and sealed in the sample
bottle. The solid-state fermentation sample was weighed at 2.00 g and 8 mL of double
distilled water was added, after ultrasonic extraction for 60 min in 40 ◦C water bath, the
mixtures were centrifuged at 3000 rpm for 5 min, then the supernatants were collected and
filtered with 0.22 µm membrane before sealing in the sample bottle.

Chromatography conditions: An Agilent 1260 Infinity II instrument (Agilent Tech-
nologies, Inc., Santa Clara, CA, USA) was used for HPLC detection. The separation was
performed on a Poroshell 120 EC-C18 (4.6 mm × 150 mm, 4 µm) column using 0.5% (w/v)
NaH2PO4 as mobile phase. The injection volume was 20 µL; Flow rate was 0.25 mL/min for
0–10 min and 1 mL/min for 10–15 min; Column temperature was 40 ◦C and UV detection
wavelength was 210 nm.

2.10. Statistical Analysis

Significance analysis of RT-qPCR, GC-MS and HPLC datum were performed us-
ing SPSS (Version 24, IBM, Armonk, NY, USA) based on ANOVA test with LSD and
Waller-Duncan hypothesis (p < 0.05), the results were presented as the mean ± standard
deviation (S.D.). Redundancy analysis (RDA) was conducted and visualized by Canoco
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5.0 (Wageningen, The Netherlands). Principal co-ordinates analysis (PCoA) based on Bray-
Curtis distance were performed by MetaboAnalyst 5.0 (http://www.metaboanalyst.ca/,
accessed on 18 August 2021), and heatmap were performed using R 3.6.1 (Vienna, Austria).

3. Results
3.1. Screening Functional Microorganisms

By annotating the sequence information of gene ME2 in NCBI, Ruminococcaceae bac-
terium CPB6 which is prevalent in pit mud, especially in aged pit mud [4,21], has the highest
similarity. Its 16S rRNA sequence information was input into GRPWREC to predict the op-
timal screening medium, and the result showed that the optimal medium was DSMZ_330.
By species annotation of gene adhE in NCBI, Eubacterium limosum 81C1 has the highest
similarity, which together with Ruminococcaceae bacterium CPB6 both belong to the class
Clostrida, indicating that the gene expression of Clostrida is very active in the aged pit mud.
The predicted optimal medium for Eubacterium limosum 81C1 screening was DSMZ_614.

DSMZ_330 liquid medium was used for anaerobic enrichment and cultivation of the
gene ME2-containing microorganisms in aged pit mud. The enrichment cultures were
coated on DSMZ_330 solid plate medium for anaerobic cultivation until the colonies
were grown. Colonies (48) with morphological characteristics of bacterial colonies were
randomly selected and colony PCR was conducted, among them, eight colonies had
correct PCR amplification bands, and their serial numbers were 3, 4, 5, 7, 29, 30, 31 and
42, respectively. Their agarose gel electrophoresis images are shown in Figure 1C. The
amplification bands shown in Figure 1C were cut and purified, the result of paired-end
sequencing of the purified products were aligned in NCBI by BLASTN, and the results
showed that all the products were from genes ME2, indicating that these eight strains
were all gene ME2- containing strains. These eight strains were expansion cultured, then
the cells were collected by centrifugation at 4 ◦C and 10,000 rpm for 3 min, and their 16S
rRNA genes were sequenced for species identification. The results showed that strains 3,
4, 5, 7, 29 and 30 were not pure, while strains 31 and 42 were Rummeliibacillus suwonensis.
They were named Rummeliibacillus suwonensis M31(RsM31) and Rummeliibacillus suwonensis
M42(RsM42).

The same method was used to screen the gene adhE-containing microorganisms in
aged pit mud with DSMZ_614 medium. Similarly, 48 colonies were selected for PCR,
among which colonies 1, 2, 5, 6, 7, 8, 9 and 12 had correct amplification bands (Figure 1D).
The correct bands were cut, purified and sequenced, the results showed that all the products
were from adhE genes. Then these strains were expansion cultured, and their 16S rRNA
were sequenced, the results showed that strain 6 was Clostridium tyrobutyricum and strain
7 was Lactobacillus buchneri, they were named Clostridium tyrobutyricum A6 (CtA6) and
Lactobacillus buchneri A7 (LbA7). Other strains were not pure.

Phylogenetic trees were constructed by neighbor joining (NJ) based on the 16S rRNA
gene information of each strain (Figure 1E). It could be seen that the three species screened
from aged pit mud were not close in terms of genetic relationship. The two gene adhE
contained strains, CtA6 and LbA7, had a distant genetic relationship, in addition, they were
remotely related to Eubacterium limosum, which was the species aligned in NCBI according
to the sequence of gene adhE, suggesting that different microorganisms in LFB brewing
microbial community may have common functions. Similarly, the screened strain Rummeli-
ibacillus suwonensis which containing gene ME2 also has a distant genetic relationship with
the strain Ruminococcaceae bacterium CPB6 which was the species aligned in NCBI according
to the sequence of gene ME2.

3.2. Liquid Fermentation of Functional Microorganisms

Functional microorganisms RsM31, RsM42, CtA6 and LbA7 were inoculated into
liquid fermentation medium for simulated fermentation. Firstly, the trends of the change of
expression quantities of the key genes (ME2 and adhE) during fermentation was analyzed
(Table 3). As the fermentation progressed, the expression quantities of genes ME2 in RsM31

http://www.metaboanalyst.ca/
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and RsM42 decreased gradually, and the changes at each stage were significant (p < 0.05),
but there were differences in the decrease range and rate of key gene expression quantities
between the two functional strains during the whole fermentation period. The gene ME2
expression quantity in RsM31 decreased by 38.9% from day 0 to day 27, and its decrease
range at each fermentation stage was greater than that in RsM42, the expression quantity
of gene ME2 in RsM42 decreased only 7.2% from day 0 to day 27, indicating that there
was a great difference of gene ME2 expression quantity between the two strains during
liquid fermentation. Strains CtA6 and LbA7 also showed a similar trend of expression
quantities changes of key gene during the liquid fermentation process. The expression
quantities of gene adhE decreased in general during the fermentation process, especially the
expression changes from day 0 to day 13 were significant (p < 0.05), the quantities of gene
adhE expression were basically stable on the 13th day of fermentation, and there was no
significant change during the followong fermentation (p > 0.05). In terms of the range and
rate of the decrease of gene adhE expression quantities, during the fermentation process,
strains CtA6 and LbA7 showed similar performance, indicating that there was basically no
difference in the expression quantity of key genes during the liquid fermentation process.

Table 3. Expression quantities of key genes of functional strains in different liquid fermentation stages.

Genes Strains
Key Genes Expression Quantities (log10 Copies/mL)

0 d 1 d 5 d 13 d 20 d 27 d

ME2
RsM31 5.96 ± 0.02 f 5.50 ± 0.02 g 4.58 ± 0.02 h 4.13 ± 0.02 i 3.84 ± 0.02 j 3.64 ± 0.01 k

RsM42 6.90 ± 0.01 a 6.86 ± 0.01 ab 6.81 ± 0.01 b 6.72 ± 0.01 c 6.64 ± 0.01 d 6.50 ± 0.01 e

adhE
CtA6 12.30 ± 0.03 a 11.44 ± 0.02 b 11.33 ± 0.01 c 11.22 ± 0.02 d 11.21 ± 0.01 d 11.20 ± 0.01 d

LbA7 11.48 ± 0.01 b 11.09 ± 0.01 e 10.99 ± 0.01 f 10.93 ± 0.01 g 10.91 ± 0.01 g 10.91 ± 0.01 g

Note: Different letters behind the figures indicated significant differences (p < 0.05).

During the liquid fermentation process of the four functional microorganisms, a total
of 42 flavor substances were identified, among which esters were the main substances,
followed by alcohols, aldehydes, acids and a small amount of heterocyclic compounds, and
the main flavors were analyzed (Tables S2 and S3 and Figure 2). As shown in Figure 2A,
during the liquid fermentation process of RsM31, from day 1 the three main organic acids
generally presented the trend of rising during the early stage and falling during the late
stage of fermentation. From day 1 to day 13 the gene ME2 expression quantity was still
at a high level and the corresponding enzyme quantity is also relatively sufficient, which
may be the reason why the organic acid content increased, while the possible reason for the
decrease of organic acid content in the late stage was that the gene ME2 expressed by RsM31
decreased and the corresponding enzyme decreased with the extension of fermentation
time. During the fermentation process of RsM31, the contents of the “four dominant esters”
gradually decreased, and the decline rate was relatively faster during the first 13 days, and
after 13 days of fermentation, the contents of the four major esters were basically in balance,
which was consistent with the changes of gene ME2 expression quantities analyzed above.
In the early stage, due to the high expression level of gene ME2 and the corresponding
enzyme, the content of the “four dominant esters” decreased rapidly, in the later stage, due
to the gradual decline of gene ME2 and the corresponding enzyme, the content of the “four
dominant esters” tended to be stable. According to Figure 2B, the change trend of organic
acids and the “four dominant esters” in the liquid fermentation of RsM42 was similar to
that in the fermentation process of RsM31.
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Figure 2. Effects of functional microorganisms on major flavor substances during liquid fermentation. (A–D) were changes of key flavor substances 
during liquid fermentation after RsM31, RsM42, CtA6 and LbA7 inoculation, respectively. (E) was redundancy analysis of gene ME2, adhE and main 
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Figure 2. Effects of functional microorganisms on major flavor substances during liquid fermentation. (A–D) were changes of key flavor substances during liquid
fermentation after RsM31, RsM42, CtA6 and LbA7 inoculation, respectively. (E) was redundancy analysis of gene ME2, adhE and main flavor substances.
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Next, the effects of gene adhE-containing functional microorganisms CtA6 and LbA7
on organic acids and “four dominant esters” during liquid fermentation were analyzed.
As can be seen from Figure 2C, the variation trends of the three organic acids in liquid
fermentation of CtA6 were different to some extent. Acetate content decreased rapidly
after inoculation, then gradually increased after the 5th day of fermentation, and leveled
off after the 13th day of fermentation. In the early fermentation stage, a large quantity of
gene adhE was expressed and the corresponding enzyme is sufficient, maybe leading to the
decreased acetate content, in the middle stage, the expression quantity of gene adhE and the
corresponding enzyme decreased, the acetate content began to increase. In the late stage,
the expression of gene adhE and the corresponding enzyme tended to be stable, the acetate
content also reached a balance. The contents of butyrate and lactate increased rapidly
after inoculation, then gradually decreased from the 13th day and finally stabilized. These
trends were quite different from the influence of gene ME2. In CtA6 fermentation process,
the content of ethyl acetate and ethyl lactate gradually declined and finally leveled off,
which was consistent with the change trend of gene adhE expression quantity during the
fermentation process. The contents of ethyl butyrate and ethyl lactate increased after CtA6
inoculation, and then gradually decreased from day 1 and finally stabilized. Although
LbA7 and CtA6 were both functional microorganisms screened based on gene adhE, but
they are different species, so their effects on flavor substances in fermentation were different
to some extent. From the variation trend of organic acids in the LbA7 fermentation process
(Figure 2D), after a slow decline in the early and middle stages, the contents of the three
organic acids all showed a significant increase in the late fermentation period. From the
content changes of the “four dominant esters” (Figure 2D), after LbA7 inoculation, all four
esters decreased rapidly, and then increased rapidly from the first day to the 15th day of
fermentation, then gradually decreased and finally stabilized. This was basically consistent
with the change trend of gene adhE expression quantity of LbA7 during fermentation.

Redundancy analysis (RDA) was used to further analyze the correlation between key
genes ME2/adhE and major flavor substances during liquid fermentation of functional
microorganisms (RsM31, RsM42, CtA6 and LbA7). As shown in Figure 2E, the gene ME2
was positively correlated with butyrate, acetate, lactate, as well as higher fatty acid levels,
which further confirmed that the role of gene ME2 in LFB production was to promote
the synthesis of organic acids and ethyl fatty acids. Gene ME2 also had a certain positive
correlation with the important esters in LFB, such as ethyl caproate, ethyl butyrate and
ethyl lactate, but the correlation is not as strong as that of organic acids. There was a strong
positive correlation between the gene adhE and ethyl caproate, ethyl valerate and ethyl
acetate, indicating that gene adhE-containing strains may promote the synthesis of ethyl
caproate and so on, which are important flavor compounds in LFB, so it is beneficial to
improve the quality of LFB. Gene adhE was negatively correlated with organic acids such as
butyrate, lactate and acetate, which might be because gene adhE was positively correlated
with esters synthesis, while organic acids are substrates of ester synthesis, so there was
a significant negative correlation between gene adhE and organic aicds. Taken together,
RsM31 and RsM42 could promote the synthesis of organic acids, and organic acid as the
substrate under the action of CtA6 and LbA7 could synthesis esters, especially the “four
dominant esters” in LFB, therefore the cooperation of the two kinds of microorganisms
plays an important role in improving the quality of LFB.

3.3. Solid Fermentation of Functional Microorganisms

The effect of microorganisms containing genes ME2 and adhE were found through
liquid fermentation. However, LFB was produced through solid fermentation, in order
to study the role of functional microorganisms RsM31, RsM42, CtA6 and LbA7 in solid
fermentation, they were inoculated into zaopei at different inoculum sizes, and simulated
fermentation were carried out under laboratory conditions to analyze the composition
structure change trend of major flavor substances.
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Firstly, principal co-ordinates analysis (PCoA) was used to analyze the structure
difference of flavor compounds composition in the zaopei fermented by four functional
microorganisms. As shown in Figure 3A, the compositional structure of flavor substances of
RsM31 and RsM42-fermented zaopei were significantly different, and after inoculation with
RsM31, the samples were distributed on the left side of the central axis during the whole
fermentation process, while the samples inoculated with RsM42 were basically distributed
on the right side of the central axis, indicating that the two strains had significant differences
in fermentation. In terms of the effect of inoculation amount, there were some differences
between the two strains, and the inoculation amount had a more obvious effect on RsM42,
especially in the middle and late fermentation stage (day 13, day 20 and day 35). The
samples inoculated with 10% amount of RsM42 were all concentrated in the lower right
part of the axis, far away from the group. From the perspective of whether or not the
zaopei were inoculated, it could be seen that they were differences, and the difference
increased with the extension of fermentation time, indicating that both inoculated RsM31
and RsM42 had significant changes in the composition structure of flavor substances
during fermentation.

The effects of CtA6 and LbA7 for zaopei fermentation showed that the samples of
uninoculated zaopei at each fermentation stage were concentrated around the center of the
coordinate axis, while the samples after inoculation were distributed around the center,
indicating that strains CtA6 and LbA7 had significant influence on the composition struc-
ture of flavor substances in zaopei (Figure 3B). There were also some differences between
strains CtA6 and LbA7 in the fermentation process. Most of the samples fermented by
CtA6 were distributed on the left side of the central axis, while most of the samples after
fermentation of LbA7 were distributed on the right side, indicating that these two strains
had different effects on the fermentation process of zaopei. From the effects of inoculation
amount on fermentation, the samples inoculated with 5% LbA7 were closer to the center
of the axis, while the samples inoculated with 10% LbA7 were further dispersed, this
indicated that when the inoculation amount of LbA7 was small there was little difference to
uninoculated zaopei, and increasing the inoculation amount would increase the difference
in the fermentation process, however, when the fermentation time reached to 35 days the
difference in inoculation amount is no longer significant. Moreover, there was also a great
difference between inoculated CtA6 at 5% and 10% during fermentation, and the difference
was no longer obvious after fermentation time reached to 35 days. The results showed that
no matter how much inoculated the two strains were, there might be differences in the
fermentation process, but when the fermentation time was long enough, there was little
difference in the composition structure of the final flavor substances.
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Figure 3. Effect of functional microorganisms on major flavor substances during liquid fermentation. Figure (A,B) were principal co-ordinates analysis of RsM31,
RsM42, CtA6 and LbA7 fermented in zaopei, in the figures J represent zaopei without inoculation; “5 and 10” meant 5% and 10% inoculation amount during
fermentation; “D0, D2, D6, D13, D20, D35” represent fermented days. Figure (C,D) were heat map of flavor substances in solid fermentation of functional
microorganisms inoculated zaopei, in the figures the redder the boxes, the higher the substances content, and the bluer the boxes, the lower the substances content.
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In order to further analyze the difference of main flavor substances during the fer-
mentation of functional microorganisms, the content of flavor substances in different
fermentation stages were displayed by heat map. From the changes of main flavor sub-
stances caused by RsM31 and RsM42 inoculation (Figure 3C), after RsM31 inoculation, the
contents of the main acids decreased in the early fermentation period compared with the
uninoculated zaopei, but the contents of acetic acid increased in the late fermentation period,
while the contents of other three organic acids had no difference with uninoculated zaopei.
After RsM42 inoculation, the contents of the main acids in zaopei increased significantly
compared with those in the zaopei without inoculation, especially when the inoculation
amount reached 10%. This change fully indicated that the functional microorganisms
screened based on gene ME2, especially RsM42, has a significant role in promoting the syn-
thesis of organic acids. From the perspective of the changes of the “four dominant esters”,
after inoculation of RsM31, the quantities of synthesized ethyl acetate, ethyl butyrate and
ethyl caproate increased significantly relative to the uninoculated zaopei, especially in the
early stage of the fermentation, while the change trend of ethyl lactate was the opposite,
and it obviously decreased relative to uninoculated zaopei, so inoculation of RsM31 was
beneficial to the quality of LFB, and the larger the amount of RsM31 inoculation, the more
the relative range of “four dominant esters” changed. The changes of the “four dominant
esters” in zaopei after RsM42 inoculation were not obvious compared with those in zaopei
without inoculation. Only in zaopei inoculated with 5% RsM42, the synthesis of ethyl lactate
increased slightly during the late fermentation period. Therefore, in general, RsM31 was
more conducive to the synthesis of esters in zaopei, while RsM42 was more conducive to
the synthesis of organic acids.

From the content changes of the “four dominant acids” (Figure 3D), it is shown
that after CtA6 inoculation the contents of the main acids increased significantly during
the later fermentation period compared with the uninoculated zaopei, and the higher the
amount of CtA6 inoculation, the more contents of the main acids increased. In the zaopei
inoculated with LbA7, the contents of the “four dominant acids” were lower than those
in the uninoculated zaopei at the early stage of fermentation, and basically equal to those
in the uninoculated zaopei at the late stage of fermentation. In general, the contents of the
“four dominant acids” in the zaopei inoculated with larger LbA7 inoculation were slightly
higher. Analyzing the changes of the “four dominant esters”, it was showed that after
inoculation of CtA6 relative to uninoculated zaopei, the content of ethyl acetate during
the late fermentation fell slightly, ethyl butyrate and ethyl lactate relatively rose during
the early stage of the fermentation and fell slightly during the late stage, and the ethyl
caproate content changed little. In general, the “four dominant esters” contents rose with
the increase of the inoculation amount of CtA6. The yield of the “four dominant esters” in
zaopei inoculated with LbA7 was higher than in that inoculated with CtA6. The contents
of ethyl acetate, ethyl butyrate and ethyl caproate were higher than those of uninoculated
zaopei during the whole fermentation process, while the contents of ethyl lactate displayed
little change, and even decreased during the late fermentation stage. This change trend
was also beneficial to the improvement of LFB quality.

4. Discussion

The sequence of gene ME2 was annotated in NCBI, and the most similar species was
Ruminococcaceae bacterium CPB6, which has the function of synthesizing caproic acid using
lactic acid as substrate [3,22], a function that is beneficial to the quality of LFB. Therefore, it
was speculated that the gene ME2 may be related to the function of increasing caproic acid
and decreasing lactic acid. However, the two strains containing gene ME2 we have screened
were Rummeliibacillus suwonensis, which has been reported screened from soil [23] and
vinegar grains [24], it was reported that Rummeliibacillus suwonensis was thermophilic and
simultaneous anaerobic, and could tolerate higher concentrations of ethanol (8%, vol) and
salt (13%, wt/vol) [24], therefore, the bacterium was suitable for survival in the relatively
harsh LFB fermentation environment. This study confirmed that not only Ruminococcaceae
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bacterium CPB6 but also Rummeliibacillus contained gene ME2 in the microbial community
of LFB fermentation. The most similar species annotated by sequence of gene adhE in NCBI
was Eubacterium limosum, which has the ability to change acetic acid into butyric acid [25].
The gene adhE was an important functional gene expressed by Eubacterium limosum, and
it has been confirmed that the gene adhE was related to butyric acid metabolism [18],
therefore, the gene adhE may have an important influence on the formation of butyric
acid in LFB brewing process, and further affect the composition and structure of flavor
substances in LFB. However, the two strains containing gene adhE we have screened were
Clostridium tyrobutyricum and Lactobacillus buchneri. Clostridium tyrobutyricum has been
isolated from the fermentation products such as milk [26], silage [27] and cheese [28], and
like Eubacterium limosum both of them belong to Clostridia [29], and also have the ability to
synthesize butyric acid [30], indicating that these two strains may have similar functions.
Therefore, Clostridium tyrobutyricum may have an important impact on LFB production.
Lactobacillus buchneri also have been isolated from silage [31] and fermented food [32].
This bacterium had a good tolerance to ethanol [33], indicating that it was suitable for
playing its role in the LFB brewing environment. Studies have reported that lactic acid
content will decrease and the contents of acetic acid, ethanol and ethyl acetate will increase
after the fermentation of Lactobacillus buchneri [32], which will have an important impact
on the flavor of LFB. Therefore, Lactobacillus buchneri was also an important functional
microorganism in the fermentation process of LFB. This study confirmed that the key genes
in LFB fermentation process were expressed by different microorganisms, and the function
of brewing microbial community was not completed by some single microorganisms, but
by the joint action of many microorganisms.

In order to verify whether the selected functional microorganisms with high expression
of key genes were effective in the fermentation process of LFB, in this study, strains RsM31
and RsM42 screened based on gene ME2, and strains CtA6 and LbA7 screened based on
gene adhE were used to simulate LFB brewing by the liquid culture method. Then the
changes of expression levels of the two key genes and the composition and structure of
flavor substances were explored to investigate the effect mechanism of genes ME2 and adhE.
With the progress of fermentation, the expression levels of the two key genes decreased
to varying degrees, indicating that the changes in the composition of the medium in the
fermentation process may inhibit the expression of the two key genes. From the regularity
of flavor component changes in fermentation process, the expression of gene ME2 in strains
RsM31 and RsM42 was positively correlated with the contents of the main acids, which
fully proved that the expression of gene ME2 could promote the synthesis of acids. It can
be seen from Figure 1A that the expression of gene ME2 can catalyze the production of
pyruvate from malic acid and oxaloacetic acid, and we have proved that pyruvate was
an important substrate for the synthesis of the “four dominant acids” [13], which may
be an important reason why the expression of gene ME2 can promote the synthesis of
the main acids. The effects of strains CtA6 and LbA7 on the main acids were different
from RsM31 and RsM42, the expression level of gene adhE was negatively correlated with
the contents of the main acids. Studies have confirmed that the expression level of gene
adhE can promote the acetyl-CoA and butanoyl-CoA to synthesize ethanol, butanol and
other alcohols, thus reducing the probability of organic acid synthesis [18]. This can also
be confirmed by the correlation analysis between gene adhE expression level and butanol
content in this study, therefore, the expression of gene adhE in strains CtA6 and LbA7
resulted in the decrease of organic acid content in liquid simulated fermentation. From
the perspective of the changes of the “four dominant esters”, gene adhE was significantly
positively correlated with the contents of the “four dominant esters”, while the correlation
with gene ME2 was not strong. The results of liquid fermentation research indicated that
the two key genes played different roles in LFB brewing process, the high expression of
gene ME2 could promote the production of the main acids, and under the action of gene
adhE, the main acids can be used as substrates to produce the “four dominant esters”. The
two key genes complement each other, which played an important role in promoting the
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formation of key flavor substances in LFB and was very beneficial to improve the quality
of LFB.

In order to further verify the roles of the two key genes during LFB brewing, the
functional microorganisms were inoculated into zaopei and fermented with a method closer
to the actual production of LFB, then their effects on the composition and structure of
major flavor substances were analyzed. The contents of the “four dominant acids” in
zaopei increased significantly after the inoculation of RsM31 and RsM42, suggesting that
the mechanism of action of gene ME2 discovered through liquid fermentation was also
applicable in the solid fermentation process. During the fermentation of RsM31 and RsM42
inoculated zaopei the contents of the “four dominant esters” relatively increased except
for ethyl lactate, so in general, the two functional strains screened based on gene ME2 not
only can promote the synthesis of the “four dominant acids” and had the ability to use
the “four dominant acids” as substrates to promote the beneficial esters synthesis. This
is in conformity with the law of LFB brewing, and during fermentation, ethyl caproate,
ethyl butyrate and ethyl acetate increased more obviously, the ethyl lactate was slightly
down, that was great for the quality of LFB, which fully showed that RsM31 and RsM42
strengthening of LFB brewing had the vital significance, can obviously improve the quality
of LFB. The fermentation of strains CtA6 and LbA7 screened based on gene adhE in zaopei
had different effects on the contents of the “four dominant acids”. The fermentation of CtA6
in zaopei promoted the generation of the main acids, especially during the late fermentation
period. While the fermentation of LbA7 in zaopei had little effect on the contents of the “four
dominant acids”, in the early fermentation stage, the contents of “four dominant acids”
were even lower than those of uninoculated zaopei. By and large, the effects of the two
functional strains on the “four dominant esters” were that same, as both could promote the
generation of ethyl caproate, ethyl butyrate and ethyl acetate, which also confirmed the
promotion effect of gene adhE on ester production, and it was also beneficial to the quality
of LFB.

5. Conclusions

In this study, two functional strains Rummeliibacillus suwonensis (RsM31 and RsM42)
were screened based on information of gene ME2, and the functional microorganisms
Clostridium tyrobutyricum (CtA6) and Lactobacillus Buchneri (LbA7) were screened based on
information of gene adhE. Then it was confirmed that the function of microbial community
in LFB brewing was not accomplished by a single microorganism, but rather due to a
combination of microbes. The mechanism of action of the two key genes was quite different,
the key gene ME2 was significant positive correlate the contents of the main acids in LFB
brewing process, however the key gene adhE and the formation of the main esters in LFB
brewing process was a significant positive correlation. The two key genes complement
each other in LFB brewing process playing an important role in promoting the formation of
flavor substances, and are very beneficial to improving the quality of LFB.
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different liquid fermentation stages.

Author Contributions: Methodology, W.Z. (Wen Zhou) and Y.X.; data curation, W.Z. (Wen Zhou)
and Y.W.; writing—original draft preparation, W.Z. (Wen Zhou); writing—review and editing, W.Z.
(Wen Zhou); visualization, W.Z. (Wen Zhou) and Y.Z.; supervision, Z.W.; project administration, W.Z.
(Wenxue Zhang) and T.S. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by National Natural Science Foundation of P.R. China (No. 31571824)
and Science and technology project of Sichuan Province (No. 2021YJ0276).

Institutional Review Board Statement: Not applicable.

https://www.mdpi.com/article/10.3390/foods11050700/s1
https://www.mdpi.com/article/10.3390/foods11050700/s1


Foods 2022, 11, 700 17 of 18

Informed Consent Statement: Not applicable.

Data Availability Statement: The data that support the findings of this study are available on
request from the corresponding author. The data are not publicly available due to privacy or
ethical restrictions.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zhang, W.X.; Wu, Z.Y.; Zhang, Q.S.; Wang, R.; Li, H. Combination of newly developed high quality Fuqu with traditional Daqu

for Luzhou-flavor liquor brewing. World J. Microbiol. Biotechnol. 2009, 25, 1721–1726. [CrossRef]
2. Zhang, Q.Y.; Yuan, Y.J.; Luo, W.; Zeng, L.Y.; Wu, Z.Y.; Zhang, W.X. Characterization of Prokaryotic Community Diversity in New

and Aged Pit Muds from Chinese Luzhou-flavor Liquor Distillery. Food Sci. Technol. Res. 2017, 23, 213–220. [CrossRef]
3. Wang, Y.; Li, B.; Dong, H.; Huang, X.; Chen, R.; Chen, X.; Yang, L.; Peng, B.; Xie, G.; Cheng, W.; et al. Complete Genome Sequence

of Clostridium kluyveri JZZ Applied in Chinese Strong-Flavor Liquor Production. Curr. Microbiol. 2018, 75, 1429–1433. [CrossRef]
[PubMed]

4. Tao, Y.; Wang, X.; Li, X.Z.; Wei, N.; Jin, H. The functional potential and active populations of the pit mud microbiome for the
production of Chinese strong-flavor liquor. Microb. Biotechnol. 2017, 10, 1603–1615. [CrossRef] [PubMed]

5. Wang, B.W.; Wu, Q.; Xu, Y.; Sun, B.G. Specific Volumetric Weight-Driven Shift in Microbiota Compositions with Saccharifying
Activity Change in Starter for Chinese Baijiu Fermentation. Front. Microbiol. 2018, 9, 2349. [CrossRef]

6. Sun, W.N.; Xiao, H.Z.; Peng, Q.; Zhang, Q.; Li, X.; Han, Y. Analysis of bacterial diversity of Chinese Luzhou-flavor liquor brewed
in different seasons by Illumina Miseq sequencing. Ann. Microbiol. 2016, 66, 1293–1301. [CrossRef]

7. Zhao, C.Q.; Yan, X.L.; Yang, S.T.; Chen, F.F. Screening of Bacillus strains from Luzhou-flavor liquor making for high-yield ethyl
hexanoate and low-yield propanol. LWT Food Sci. Technol. 2017, 77, 60–66. [CrossRef]

8. Huang, X.N.; Fan, Y.; Meng, J.; Sun, S.; Han, B.Z. Laboratory-scale fermentation and multidimensional screening of lactic acid
bacteria from Daqu. Food Biosci. 2021, 40, 100853. [CrossRef]

9. Guo, J.H.; Jia, S.R. Effect of Cellulase-Producing Bacteria on Enzyme Activity and Ester Production in Fermented Grains of
Chinese Liquor. J. Am. Soc. Brew Chem. 2015, 73, 130–136. [CrossRef]

10. Xu, J.L.; Sun, L.P.; Xing, X.; Sun, Z.; Ren, Q. Culturing Bacteria from Fermentation Pit Muds of Baijiu with Culturomics and
Amplicon-Based Metagenomic Approaches. Front. Microbiol. 2020, 11, 1223. [CrossRef] [PubMed]

11. Liu, C.L.; Huang, D.; Zhang, W.X. Combining culture-dependent and culture- independent molecular methods for the isolation
and purification of a potentially novel anaerobic species from pit mud in a Chinese liquor distillery. J. Brew. 2016, 122, 754–762.
[CrossRef]

12. Chai, L.J.; Lu, Z.M.; Zhang, X.J.; Ma, J. Zooming in on Butyrate-Producing Clostridial Consortia in the Fermented Grains of Baijiu
via Gene Sequence-Guided Microbial Isolation. Front. Microbiol. 2019, 10, 1397. [CrossRef] [PubMed]

13. Zhou, W.; Liao, Z.M.; Wu, Z.Y.; Taikei, S.; Zhang, W.X. Analysis of the difference between aged and degenerated pit mud
microbiome in fermentation cellars for Chinese Luzhou-flavor baijiu by metatranscriptomics. J. Sci. Food Agric. 2021, 101,
4621–4631. [CrossRef]

14. Thompsom, H.; Tersteegen, A.; Thauer, R.K.; Hedderich, R. Two malate dehydrogenases in Methanobacterium thermoautotroph-
icum. Arch Microbiol. 1998, 170, 38–42. [CrossRef] [PubMed]

15. Bartholomae, M.; Meyer, F.M.; Commichau, F.M.; Burkovski, A.; Hillen, W. Complex formation between malate dehydrogenase
and isocitrate dehydrogenase from Bacillussubtilis is regulated by tricarboxylic acid cycle metabolites. FEBS J. 2014, 281, 132–1143.
[CrossRef] [PubMed]

16. Keller, M.W.; Lipscomb, G.L.; Nguyen, D.M.; Crowley, A.T.; Schut, G.T.; Scott, I.; Kelly, R.M.; Adams, M.W. Ethanol production by
the hyperthermophilic archaeon Pyrococcus furiosus by expression of bacterial bifunctional alcohol dehydrogenases. Microb.
Biotechnol. 2017, 6, 1535–1545. [CrossRef] [PubMed]

17. Tanaka, Y.; Kasahara, K.; Hirose, Y.; Morimoto, Y.; Izawa, M.; Ochi, K. Enhancement of butanol production by sequential
introduction of mutations conferring butanol tolerance and streptomycin resistance. J. Biosci. Bioeng. 2017, 4, 400–407. [CrossRef]
[PubMed]

18. Zhang, J.; Zong, W.M.; Hong, W.; Zhang, Z.T.; Wang, Y. Exploiting endogenous CRISPR-Cas system for multiplex genome editing
in Clostridium tyrobutyricum and engineer the strain for high-level butanol production. Metab. Eng. 2018, 47, 49–59. [CrossRef]

19. Zhu, J.B.; Long, M.N.; Xu, F.C.; Wu, X.B.; Xu, H.J. Enhanced hydrogen production by insertional inactivation of adhE gene in
Klebsiella oxytoca HP1. Chin. Sci. Bull. 2007, 52, 492–496. [CrossRef]

20. Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing
Platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [CrossRef]

21. Li, J.W.; He, H.K.; Cao, R.J.; Li, A.J.; Zhang, Z.Z. Significant difference of the culturable anaerobic microbial species in Gu-
jingTribute pitmud with different ages. In Proceedings of the 5th International Conference on Advanced Composite Materials
and Manufacturing Engineering, Xishuangbanna, China, 16–17 June 2018; Volume 394, p. 022025.

22. Lu, S.W.; Jin, H.; Wang, Y.; Tao, Y. Genome-wide transcriptomic analysis of n-caproic acid production in Ruminococcaceae
bacterium CPB6 with lactate supplementation. J. Microbiol. Biotechnol. 2021, 31, 1533–1544. [CrossRef] [PubMed]

http://doi.org/10.1007/s11274-009-0067-6
http://doi.org/10.3136/fstr.23.213
http://doi.org/10.1007/s00284-018-1539-4
http://www.ncbi.nlm.nih.gov/pubmed/30030563
http://doi.org/10.1111/1751-7915.12729
http://www.ncbi.nlm.nih.gov/pubmed/28703874
http://doi.org/10.3389/fmicb.2018.02349
http://doi.org/10.1007/s13213-016-1223-5
http://doi.org/10.1016/j.lwt.2016.11.035
http://doi.org/10.1016/j.fbio.2020.100853
http://doi.org/10.1094/ASBCJ-2015-0330-01
http://doi.org/10.3389/fmicb.2020.01223
http://www.ncbi.nlm.nih.gov/pubmed/32714285
http://doi.org/10.1002/jib.380
http://doi.org/10.3389/fmicb.2019.01397
http://www.ncbi.nlm.nih.gov/pubmed/31316481
http://doi.org/10.1002/jsfa.11105
http://doi.org/10.1007/s002030050612
http://www.ncbi.nlm.nih.gov/pubmed/9639601
http://doi.org/10.1111/febs.12679
http://www.ncbi.nlm.nih.gov/pubmed/24325460
http://doi.org/10.1111/1751-7915.12486
http://www.ncbi.nlm.nih.gov/pubmed/28194879
http://doi.org/10.1016/j.jbiosc.2017.05.003
http://www.ncbi.nlm.nih.gov/pubmed/28566234
http://doi.org/10.1016/j.ymben.2018.03.007
http://doi.org/10.1007/s11434-007-0071-x
http://doi.org/10.1093/molbev/msy096
http://doi.org/10.4014/jmb.2107.07009
http://www.ncbi.nlm.nih.gov/pubmed/34489376


Foods 2022, 11, 700 18 of 18

23. Her, J.; Kim, J. Rummeliibacillus suwonensis sp nov. Isolated from Soil Collected in a Mountain Area of South Korea. J. Microbiol.
2013, 51, 268–272. [CrossRef]

24. Li, M.; Li, Y.; Fan, X.J.; Qin, Y.H.; Lv, Y.K. Draft Genome Sequence of Rummeliibacillus sp. Strain TYF005, a Physiologically
Recalcitrant Bacterium with High Ethanol and Salt Tolerance Isolated from Spoilage Vinegar. Microbiol. Resour. Announc. 2019, 8,
e00244-19. [CrossRef] [PubMed]

25. Park, S.; Yasin, M.; Jeong, J.; Cha, M.; Kang, H.; Jang, N.; Choi, I.G.; Chang, I.S. Acetate-assisted increase of butyrate production
by Eubacterium limosum KIST612 during carbon monoxide fermentation. Bioresour. Technol. 2017, 245, 560–566. [CrossRef]
[PubMed]

26. Komori, K.; Ohkubo, Y.; Katano, N.; Motoshima, H. One year investigation of the prevalence and diversity of clostridial spores in
raw milk from the Tokachi area of Hokkaido. Anim. Sci. J. 2019, 90, 135–139. [CrossRef]

27. Li, R.R.; Jiang, D.; Zheng, M.L.; Xu, C. Microbial community dynamics during alfalfa silage with or without clostridial fermenta-
tion. Sci. Rep. 2020, 10, 17782. [CrossRef] [PubMed]

28. Podrzaj, L.; Burtscher, J.; Domig, K.J. Draft Genome Sequences of 12 Clostridium tyrobutyricum Strains Isolated from Raw Milk
and Cheese. Microbiol. Resour. Announc. 2021, 10, e0073521. [CrossRef] [PubMed]

29. Cheng, C.; Lin, M.; Jiang, W.Y.; Zhao, J.B.; Li, W.M.; Yang, S.T. Development of an in vivo fluorescence based gene expression
reporter system for Clostridium tyrobutyricum. J. Biotechnol. 2019, 305, 18–22. [CrossRef] [PubMed]

30. He, F.F.; Qin, S.W.; Yang, Z.; Bai, X.H.; Sun, Y.K.; Wang, J.F. Butyric acid production from spent coffee grounds by engineered
Clostridium tyrobutyricum overexpressing galactose catabolism genes. Bioresour. Technol. 2020, 34, 122977. [CrossRef]

31. Rabelo, C.H.S.; Harter, C.J.; Avila, C.L.D.; Reis, R.A. Meta-analysis of the effects of Lactobacillus plantarum and Lactobacillus
buchneri on fermentation, chemical composition and aerobic stability of sugarcane silage. Grassl. Sci. 2019, 65, 3–12. [CrossRef]

32. Cheon, M.J.; Lim, S.M.; Lee, N.K.; Paik, H.D. Probiotic Properties and Neuroprotective Effects of Lactobacillus buchneri KU200793
Isolated from Korean Fermented Foods. Int. J. Mol. Sci. 2020, 21, 1227. [CrossRef] [PubMed]

33. Liu, S.Q.; Skory, C.; Qureshi, N. Ethanol tolerance assessment in recombinant E. coli of ethanol responsive genes from Lactobacillus
buchneri NRRL B-30929. World J. Microb. Biot. 2020, 36, 179. [CrossRef] [PubMed]

http://doi.org/10.1007/s12275-013-3126-5
http://doi.org/10.1128/MRA.00244-19
http://www.ncbi.nlm.nih.gov/pubmed/31371531
http://doi.org/10.1016/j.biortech.2017.08.132
http://www.ncbi.nlm.nih.gov/pubmed/28898856
http://doi.org/10.1111/asj.13135
http://doi.org/10.1038/s41598-020-74958-1
http://www.ncbi.nlm.nih.gov/pubmed/33082504
http://doi.org/10.1128/MRA.00735-21
http://www.ncbi.nlm.nih.gov/pubmed/34591680
http://doi.org/10.1016/j.jbiotec.2019.08.019
http://www.ncbi.nlm.nih.gov/pubmed/31472166
http://doi.org/10.1016/j.biortech.2020.122977
http://doi.org/10.1111/grs.12215
http://doi.org/10.3390/ijms21041227
http://www.ncbi.nlm.nih.gov/pubmed/32059401
http://doi.org/10.1007/s11274-020-02953-9
http://www.ncbi.nlm.nih.gov/pubmed/33155123

	Introduction 
	Materials and Methods 
	Sampling Procedure 
	Screening Media Prediction 
	Enrichment and Screening of Functional Microorganisms in Pit Mud 
	Colony PCR 
	Functional Strains Identification and Phylogenetic Tree Construction 
	Fermentation Test of Functional Microorganisms 
	Quantify the Expression Quantity of Gene ME2 and adhE 
	Detection of Volatile Flavor Substances 
	Detection of “Four Dominant Acids” 
	Statistical Analysis 

	Results 
	Screening Functional Microorganisms 
	Liquid Fermentation of Functional Microorganisms 
	Solid Fermentation of Functional Microorganisms 

	Discussion 
	Conclusions 
	References

