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Abstract

Motivation: Biological molecules perform their functions through interactions with other molecules.

Structure alignment of interaction interfaces between biological complexes is an indispensable step

in detecting their structural similarities, which are keys to understanding their evolutionary histories

and functions. Although various structure alignment methods have been developed to successfully

access the similarities of protein structures or certain types of interaction interfaces, existing align-

ment tools cannot directly align arbitrary types of interfaces formed by protein, DNA or RNA mol-

ecules. Specifically, they require a ‘blackbox preprocessing’ to standardize interface types and chain

identifiers. Yet their performance is limited and sometimes unsatisfactory.

Results: Here we introduce a novel method, PROSTA-inter, that automatically determines and

aligns interaction interfaces between two arbitrary types of complex structures. Our method uses

sequentially remote fragments to search for the optimal superimposition. The optimal residue

matching problem is then formulated as a maximum weighted bipartite matching problem to

detect the optimal sequence order-independent alignment. Benchmark evaluation on all non-

redundant protein–DNA complexes in PDB shows significant performance improvement of our

method over TM-align and iAlign (with the ‘blackbox preprocessing’). Two case studies where our

method discovers, for the first time, structural similarities between two pairs of functionally related

protein–DNA complexes are presented. We further demonstrate the power of our method on

detecting structural similarities between a protein–protein complex and a protein–RNA complex,

which is biologically known as a protein–RNA mimicry case.

Availability and implementation: The PROSTA-inter web-server is publicly available at http://www.

cbrc.kaust.edu.sa/prosta/.

Contact: xin.gao@kaust.edu.sa

1 Introduction

Structure alignment refers to the process of aligning two or more

molecular structures based on their three-dimensional conform-

ations. Due to the correlation between the structure and the function

of molecules, structure alignment is an important step towards

understanding the evolutionary histories and the functions of the

molecules of interest, especially when only low sequence similarity

exists between molecules (Teichmann et al., 1999). With recent

experimental advances in solving complex structures composed of

multiple molecules, different types of interaction interfaces

have been extensively studied, including protein–protein interfaces

(Alam et al., 2014; Chen et al., 2013; Mukherjee and Zhang, 2009;

Pulim et al., 2008), protein–DNA interfaces (Siggers et al., 2005;

Wang et al., 2014) and protein–RNA interfaces (Jones et al., 2001).

Biological molecules perform their functions through interactions

with other molecules. Therefore, pairwise alignment of individual

molecules, without considering their interacting partners in biolo-

gical complexes, may not capture the comprehensive structural simi-

larities between two complexes.

Pairwise protein structure alignment, the most widely studied

task of structure alignment (Hasegawa and Holm, 2009; Kolodny

et al., 2005), has been addressed by a variety of methods (Holm and

Sander, 1993; Krissinel and Henrick, 2004; Ortiz et al., 2002;

Shindyalov and Bourne, 1998; Wang et al., 2013; Yang et al., 2012;

Zemla, 2003; Zhang and Skolnick, 2005). One limitation shared

among these methods is that the output alignment always obeys the

sequence order of the input complex structures. However, the

sequence order cannot be used safely in interface alignments because
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interfaces can contain amino acids/nucleotides that are sequentially

remote (possibly from different chains) but structurally close to each

other in the interaction interface. Although sequence order-

independent pairwise protein structure alignment methods have also

been developed and successfully applied in protein structure studies

(Dundas et al., 2007; Xie and Bourne, 2008; Yuan and Bystroff,

2005), they are designed for optimizing the global alignment, in-

stead of focusing on the interfaces of interests. Therefore, existing

pairwise protein structure alignment methods are not suitable for

studying structural similarities between interaction interfaces of

complex structures.

Pairwise protein–protein interaction interface alignment meth-

ods were thus developed to tackle these problems. CMAPi (Pulim

et al., 2008) determines the interaction interfaces in protein complex

structures automatically, and then uses a two-dimensional dynamic

programming algorithm to align the contact maps of the interfaces.

However, because of using a dynamic programming algorithm, the

alignment found by CMAPi obeys the sequence order within each

chain. iAlign (Gao and Skolnick, 2010), a dedicated method that

shares a similar idea with TM-align (Zhang and Skolnick, 2005)

and fr-TM-align (Pandit and Skolnick, 2008), was developed to ad-

dress this issue. It starts with three types of initial alignments, i.e.

secondary structure alignments, gap-less threading alignments and

fragment assembly alignments. An iterative dynamic programming

algorithm is then applied as a refinement process. Unlike TM-align

and fr-TM-align, iAlign uses a linear sum assignment solver to per-

form sequence order-independent alignments as an extra refinement

process. The drawback of this approach is that the quality of the

sequence order-independent alignment still depends on the quality

of the sequential alignments from previous steps. Although iAlign

accepts multiple chains as input, it treats interactions between differ-

ent pairs of chains separately. Thus, it is not suitable for modeling

(possibly multiple) interaction interfaces involving multiple chains.

Therefore, existing methods for pairwise interaction interface

alignment share the following bottlenecks. First, none of them is

generic enough to align interfaces formed by arbitrary types of com-

plex structures. For instance, to study protein–RNA mimicry, one

needs to align protein–protein interfaces with protein–RNA inter-

faces. The aforementioned methods require a ‘blackbox preprocess-

ing’ to accept the input structure data. Moreover, the quality of the

output alignment also depends on the chain order that is specified in

the ‘blackbox preprocessing’ (see Sections 3 and 4 for details).

Second, existing methods only model interactions involving two

chains. Subsequently, this design decision lacks the capability of

safely modeling protein–DNA interaction interfaces because the two

DNA chains may take turns to interact with protein chains (Wu et

al., 2010). Third, the sequence order-dependency is not completely

removed in the interface alignment process. This introduces a poten-

tial risk to miss the optimal alignment when aligning interfaces that

break the sequence order.

In this article, we introduce a novel method, called PROSTA-

inter, that automatically determines and aligns the interaction inter-

faces between two arbitrary types of complex structures, e.g.

protein–protein complexes, protein–DNA complexes and protein–

RNA complexes. Our method employs sequentially remote frag-

ments that potentially model remote interactions or structure topol-

ogies when searching for the optimal superimposition. Then, the

optimal residue matching problem is formulated as the maximum

weighted bipartite matching (MWBM) problem (Kuhn, 1955) to

find the optimal sequence order-independent alignment. Unlike

iAlign (Gao and Skolnick, 2010), the sequence order-dependency is

removed from the beginning of the alignment process. Moreover,

clustering is used to identify redundant alignments, and thus mul-

tiple non-redundant alignments are generated as output.

To demonstrate the performance of our interaction interface

alignment method, we first compare our method with two state-of-

the-art structure alignment methods, i.e. one sequence order-

dependent method, TM-align (Zhang and Skolnick, 2005), and one

sequence order-independent method, iAlign (Gao and Skolnick,

2010), on a benchmark set that consists of all the 312 non-redun-

dant protein–DNA complexes in the Protein Data Bank (PDB). Our

method outperforms both methods in different statistical evaluation

criteria. Two case studies where our method, for the first time, iden-

tifies structural similarities between interfaces of two pairs of func-

tionally related protein–DNA complexes are presented. We further

show how our method detects the similarity between the interface of

a protein–protein complex and that of a protein–RNA complex,

which is biologically known as protein–RNA mimicry.

2 Methods

In this section, we introduce the PROSTA-inter method to determine

and align the interaction interfaces between two arbitrary types of

complex structures. Our method can be divided into two steps. In

the first step, the interface residues are identified based on the dis-

tances between heavy atoms (Janin et al., 2008). In the second step,

the interface residues are aligned so that scoring functions (Gao and

Skolnick, 2010) specifically designed for interaction interface align-

ments can be optimized.

For each input complex structure that contains two components,

we first identify the interface between the two components using a

commonly used definition (Janin et al., 2008). Here, each compo-

nent could be either a protein structure, a DNA structure or an

RNA structure, and each structure could contain a single chain or

multiple chains. If residues A and B are located in different compo-

nents and at least one pair of the heavy atoms across the two resi-

dues is within 6:0 Å , both residues A and B are determined as

interface residues. Then, the Ca atoms of the selected amino acids

and the C30 atoms of the selected nucleotides are used as representa-

tive atoms for the interface alignment step. A similar procedure is

also used by iAlign (Gao and Skolnick, 2010).

The interface alignment method can be further divided into two

iterative and interactive tasks: finding the optimal residue matching

given the superimposition of interface residues, and finding the opti-

mal superimposition between the matched residues. Here, the opti-

mality is defined by a scoring function. In this study, we used either

the iTM-score or the IS-score (Gao and Skolnick, 2010) to evaluate

the quality of the superimposition and the residue matching:

iTM-score ¼ 1

L0

XL

i

1

1þ d2
i =d

2
0

;

IS-score ¼
S0 þ

1

L0

XL

i

fi

1þ d2
i =d

2
0

S0 þ 1
;

where L0 is the number of interface residues, L is the number of

matched residue pairs, di is the distance between the ith matched

residue pair, d0 is a normalization distance that defines the distance

threshold of similar residue pairs, fi is a contact overlap factor (see

Gao and Skolnick, 2010) and S0 ¼ 0:18� 0:35=L0:3
0 .

It is worth mentioning that, by setting d0 ¼ 0:7ðL0 � 15Þ
1
3 � 0:1,

both the iTM-score and the IS-score are independent from L0 and L

(Gao and Skolnick, 2010). This is the desired feature inherited from
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the classic TM-score (Zhang and Skolnick, 2004). This is also the

main advantage of the iTM-score and the IS-score over the classic

root mean square deviation (RMSD). However, it can be seen that

d0 is undefined for L0 < 15 and d0 could be beyond the highest reso-

lution of current structure determination methods. To address these

problems, we suggest to use a minimal value of 1.0 for d0. Such d0

settings have no impact for L0�19 (satisfied in most cases in our

dataset). Defining a new scoring function is out of the scope of this

study.

Given the iTM-score scoring function (Gao and Skolnick,

2010) and the superimposed interface residues, we need to find the

optimal sequence order-independent residue matching that maxi-

mizes the scoring function. Here, we model the residue matching

problem as the MWBM problem. In the bipartite graph, each ver-

tex represents an interface residue, and each edge represents a

matched residue pair. The weight of each edge is simply set to

1=1þ ðd2
i =d

2
0Þ. In this case, it can be shown that the total weight of

a bipartite graph matching equals to the iTM-score of the repre-

sented residue matching multiplied by L0, which can be considered

as a constant during the residue matching process. This process

can be easily modified to optimize the IS-score (Gao and Skolnick,

2010) and the details are omitted here. Given the weighted bipart-

ite graph, we apply the Hungarian algorithm (Kuhn, 1955) to find

the optimal sequence order-independent residue matching between

the interfaces.

To find the optimal superimposition, the previously developed

PROSTA method (Cui et al., 2013) is adopted and improved. In

summary, the PROSTA method first samples the initial superimpos-

itions by employing not only local fragments but also remote frag-

ments; then clusters the superimpositions to select promising

superimpositions; and finally refines each promising superimpos-

ition iteratively. One advantage of the PROSTA method is to em-

ploy similar remote fragments that potentially model remote

interactions on the interface and the topology of the interface (as

shown in Fig. 1). Another advantage of the PROSTA method is to

use clustering to eliminate noise and select multiple non-redundant

promising superimpositions for the refinement process. In this pro-

posed method, the DBSCAN clustering algorithm (Ester et al.,

1996) is instead used to replace the star-like clustering algorithm. By

doing this, the new method is capable of finding arbitrarily shaped

clusters.

To sum up, our interaction interface alignment method works

as following. Initially, the superimpositions are sampled and clus-

tered to identify promising superimpositions. For each promising

superimposition, the Hungarian algorithm (Kuhn, 1955) is used to

find the optimal sequence order-independent residue pairs that

maximize the iTM-score or the IS-score (Gao and Skolnick, 2010).

Then, the highest scored alignment is selected from each cluster for

an iterative refinement process. During each iteration, the superim-

position is first refined while the residue matching remains fixed,

and then the residue matching is recalculated. This process repeats

iteratively until convergence. Finally, the top k interface align-

ments are kept as results and their scores are provided to the users.

In this article, we set k ¼ 1 for the purpose of fair comparison with

other methods.

3 Benchmark on protein–DNA interaction
interfaces

In this experiment, we evaluate the proposed method on finding

similar interaction interfaces within a given dataset of protein–DNA

complex structures. We compared our PROSTA-inter method with

two widely used structure alignment methods, i.e. one sequence

order-dependent method, TM-align (Zhang and Skolnick, 2005)

and one sequence order-independent method, iAlign (Gao and

Skolnick, 2010). All three methods were used to align the same

interaction interface and to optimize the same alignment scoring

function, i.e. iTM-score (Gao and Skolnick, 2010) or IS-score (Gao

and Skolnick, 2010). By doing this, we focused on studying which

method is more reliable in finding the optimal alignment instead of

the performance of the interface definition and the scoring function.

Recall that the iTM-scores and the IS-scores are independent from

the number of interface residues/nucleotides, and thus a higher iTM-

score/IS-score implies a higher quality alignment.

To our knowledge, there is no existing alignment tool that can

align interaction interfaces containing both amino acids and nucleo-

tides. Thus, a ‘blackbox preprocessing’ is required for TM-align

(Zhang and Skolnick, 2005) and iAlign (Gao and Skolnick, 2010) as

following. First, we precomputed the contact interfaces (as defined in

Section 2), and removed the other residues/nucleotides from the com-

plex structure. Then, we masked all nucleotide C30 atom types as

amino acid Ca atom types and all nucleotide names as amino acid

names. Since iAlign assumes that there are only two chains involved in

the interface, all protein chains were masked as chain A and all DNA

chains were masked as chain B. Moreover, the sequence numbers were

masked in the order of atom appearance in the original PDB file.

To prepare the protein–DNA complex structure dataset, we

downloaded all protein–DNA complex structures in PDB as of

December 22, 2013. Then, the downloaded 2777 complex structures

were filtered with a protein sequence identity cutoff of 25% and a

resolution cutoff of 3 Å. Moreover, to avoid the effects of inconsistent

d0 (used for calculating the alignment scores), the complex structures

involving <30 representative Ca and C30 atoms on the interaction

interface were also removed. The final benchmark dataset thus con-

tains 312 protein–DNA complex structures, and selected statistics

and P-values (Zemla, 2003) of the benchmark dataset is provided in

Figure 2 and Table 1. In summary, most protein–DNA interaction

interfaces are small in terms of the number of residues and nucleo-

tides, and the protein–DNA interaction interfaces are mainly formed

by amino acid residues instead of nucleotides.

Before discussing the detailed results, we first demonstrate that it

is challenging to improve the alignment scores calculated by the

Fig. 1. Demonstration of interaction interface alignment (red-blue versus or-

ange-purple): (1) the optimal interface alignment does not obey the sequence

order because Y is in front of X in the red chain but X’ is in front of Y’ in the or-

ange chain; (2) remote fragments X and Y implicitly model the interface top-

ology; by superimposing them to remote fragments X’ and Y’, the interface

topology can be well aligned; (3) remote fragments Y and Z implicitly model

the interactions on the interface; by superimposing them to remote frag-

ments Y’ and Z’, most interactions on the interface can be well aligned
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state-of-the-art methods, such as iAlign (Gao and Skolnick, 2010),

and that our PROSTA-inter indeed achieves improvements. First,

for each pair of similar protein structures in the dataset (please see

Sections 3.1 and 3.2 for the definition of similarity), a simple

superimposition sampling method (that optimizes the RMSD of six

randomly sampled residue pairs) and the Needleman–Wunsch

algorithm (Needleman and Wunsch, 1970) are called N times to

randomly align the two protein structures. Here,

N ¼ max ð106; ðL1 þ L2Þ � 104Þ, where L1 and L2 are the numbers

of residues of the two protein structures to be aligned. Then, the

probability of observing an alignment score that is at least �-higher

than that of iAlign is calculated as shown in Table 2. The results

show that it is highly unlikely to improve the alignment scores by

chance, while PROSTA-inter achieves significant improvements.

Moreover, the paired t-test is performed on all pairs of protein struc-

tures in the dataset, and the results suggest that the alignment scores

calculated by iAlign and PROSTA-inter are significantly different.

3.1 Overall performance on iTM-score
Using TM-align (Zhang and Skolnick, 2005), iAlign (Gao and

Skolnick, 2010) and our method, we performed pairwise interaction

interface alignments between each pair of the 312 protein–DNA

complex structures of the dataset. In this experiment, all three meth-

ods are used to find the optimal interface alignment that maximizes

the iTM-score (Gao and Skolnick, 2010). In order to optimize the

iTM-score instead of the classic TM-score (Zhang and Skolnick,

2004), the Cþþ version of the TM-align is modified in this experi-

ment. Since biologists tend to be more interested in the similar inter-

faces than the dissimilar ones, we focus on the 483 similar

interaction interfaces in this study, which are defined as: for each

pair of interfaces, the highest iTM-score among the three methods is

presumed to be the optimal iTM-score, and the interface pairs with

optimal iTM-scores >0.5 are presumed to be similar (see Table 1).

The iTM-scores (Gao and Skolnick, 2010) of the interaction

interface alignments found by TM-align (Zhang and Skolnick,

2005) are compared with those found by our method in Figure 3a.

On average, the iTM-scores are improved by 0.12 if our method is

used instead of TM-align. For the highly similar cases found by TM-

align (with iTM-scores >0.6), 9% of the iTM-scores found by our

method are significantly higher (by at least 0.1, see Table 1). This in-

dicates that even for highly similar interaction interfaces, sequential

methods could miss the optimal alignment. Moreover, the missing

rate increases significantly for the less similar cases found by

TM-align (with iTM-scores <0.6). In such cases, 66% of the

iTM-scores found by our method are significantly higher. As a re-

sult, TM-align misses 75% of the similar interface pairs, while our

method misses 0.2% of the similar interface pairs. Therefore, classic

structure alignment methods are not suitable for the interaction

interface alignment problem even with the ‘blackbox preprocessing’

due to the strong sequence order-dependency.

Similarly, the iTM-scores (Gao and Skolnick, 2010) found by

iAlign (Gao and Skolnick, 2010) are compared with those found by

our method in Figure 3b. In general, the iTM-scores tended to in-

crease or remained similar if our method is used instead of iAlign.

Among the 483 pairs of similar interfaces, iAlign finds 389 pairs

with iTM-scores >0.5, while our method finds 482 pairs with

iTM-scores >0.5. This means that one can find 24% more similar

interfaces if our method is used to optimize the iTM-score. For the

similar interface pairs not found by iAlign, our method improves the

iTM-scores by 0.03 on average and 0.13 in the best case. For

the similar interface pairs found by iAlign (which should be con-

sidered to be hard to be improved), our method is capable of im-

proving the iTM-scores by at least 0.01 for 9% of the cases.

Interestingly, there is one case where the iTM-score found by iAlign

is higher than 0.8, while our method still archives a considerable

iTM-score improvement. These observations demonstrate that al-

though the initial sequential alignments and the dynamic program-

ming algorithm could be used to speed up the alignment process (as

iAlign does in the first two phases), they also increase the probability

of missing the optimal alignment.

To demonstrate the importance of using remote fragments and

the MWBM algorithm (Kuhn, 1955) to avoid the sequence order-

dependency in the initial alignment process, we repeated the

interaction interface alignments with different initial alignment

processes. We first compared our method using only remote frag-

ments with that using only local fragments in Figure 4a. Consistent

with previous observations (Cui et al., 2013), both remote fragments

and local fragments have contributions on finding the optimal align-

ment. However, for interface alignments with iTM-scores (Gao and

Skolnick, 2010) <0.7, remote fragments are more likely to yield the

optimal alignment than local fragments are. In such cases, 8% of the

iTM-scores are improved by at least 0.01 and the iTM-score is im-

proved by 0.27 in the best case if remote fragments are used instead

of local fragments.

We also compared the interaction interface alignments with dif-

ferent initial alignment processes incorporating the sequence order-

independent MWBM algorithm (Kuhn, 1955) and the sequential

Needleman–Wunsch dynamic programming (NWDP) algorithm

Fig. 2. Statistics of the 312 protein–DNA interaction interfaces used in this ex-

periment: (a) the average number of residues and nucleotides is 109; 25% of

the interfaces contain 54 or less residues and nucleotides; 25% of the inter-

faces contain 131 or more residues and nucleotides; (b) the average log-ratio

between residues and nucleotides is 1.42; only two interfaces have negative

log-ratios; and 25% of the interfaces have log-ratios of 1.86 or higher

Table 1. Probabilities to observe higher alignment scores (P-values) from the 312 protein–DNA interaction interfaces used in this experi-

ment: the interaction interface pairs with iTM-scores >0.5 or IS-scores >0.4 are presumed to be similar because the P-values are <0.01 for

such alignment scores; if the iTM-score or the IS-score of a similar interaction interface pair is improved by 0.1, the improvement should be

considered significant because the P-values are reduced by a percentage between 36 and 83%

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

iTM-score 0.967165 0.542522 0.117446 0.009955 0.001670 0.000742 0.000474 0.000165

IS-score 0.819853 0.132678 0.008121 0.001834 0.000886 0.000474 0.000206 0.000062
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(Needleman and Wunsch, 1970) (as iAlign does in the first two

phases) in Figure 4b. Either way, both local and remote fragments

are used in the initial alignment process, and the MWBM algorithm

is used in the refinement process (as iAlign does in the third phase).

It can be seen that, for interface alignments with iTM-scores (Gao

and Skolnick, 2010) <0.6, the MWBM algorithm is more likely to

improve the iTM-scores over the NWDP algorithm. Specifically,

8% of the iTM-scores are improved by at least 0.01 and the

iTM-score is improved by 0.09 in the best case if the MWBM

algorithm is used instead of the NWDP algorithm in the initial align-

ment process.

In summary, we demonstrated the importance of the alignment

searching algorithm. By using our PROSTA-inter alignment

searching algorithm to optimize the iTM-score (Gao and Skolnick,

2010), the interaction interface alignment quality could be

improved significantly over the existing methods, TM-align (Zhang

and Skolnick, 2005) and iAlign (Gao and Skolnick, 2010).

Incorporating remote fragments and the sequence order-

independent alignments in the initial alignment process is the key to

the success of our method.

3.2 Overall performance on IS-score
In addition to the iTM-score (Gao and Skolnick, 2010), we also

used the IS-score (Gao and Skolnick, 2010) to perform another

performance analysis, and the observations are consistent with our

analysis in Section 3.1. TM-align was not designed to optimize the

IS-score of sequence order-independent alignment, and thus for fair

comparison, we did not compare with TM-align in this experiment.

Specifically, using iAlign (Gao and Skolnick, 2010) and PROSTA-

inter, we performed pairwise interaction interface alignments

between each pair of the 312 protein–DNA complex structures of

the dataset. Again, only the 394 pairs of similar interfaces are

Fig. 3. Comparison of the iTM-scores found by TM-align, iAlign and PROSTA-

inter (the dissimilar interaction interfaces and the similar interaction inter-

faces with iTM-score differences <0.01 are masked): from the 483 pairs of

similar interfaces, the numbers of pairs with iTM-scores >0.5 found by

TM-align, iAlign and PROSTA-inter are 123, 389 and 482, respectively; and

therefore, when the iTM-score of 0.5 is used as the similarity threshold,

PROSTA-inter is significantly more reliable to detect similar interfaces

Fig. 4. Comparison of the iTM-scores found by our method with different ini-

tial alignment processes (the dissimilar interaction interfaces and the similar

interaction interfaces with iTM-score differences <0.01 are masked): from the

483 pairs of similar interfaces, (a) there are 34 cases where the iTM-scores are

considerably higher if remote fragments are used instead of local fragments;

(b) there are 34 cases where the iTM-scores are considerably higher if the

weighted bipartite matching algorithm is used instead of the NWDP algo-

rithm; and therefore, incorporating remote fragments and the sequence

order-independent alignments in the initial alignment process plays an im-

portant role in finding the optimal interaction interface alignments

Table 2. Probabilities of observing higher alignment scores and

t-values of paired t-tests: � ¼ 0:01; SR is a random alignment score

generated by a simple superimposition sampling method

(see Section 3); S�R is the optimal alignment score found by the sim-

ple superimposition sampling method (after at least 106 iterations);

S�P is the optimal alignment score found by PROSTA-inter; S�I is

the optimal alignment score found by iAlign; paired t-tests are

performed on paired alignment scores ðS�I ;S�PÞ; and therefore, it is

highly unlikely to improve the alignment scores by chance, while

PROSTA-inter achieves significant improvements

PðSR�S�I þ �Þ PðS�R�S�I þ �Þ PðS�P�S�I þ �Þ t-values

iTM-score �4:4� 10�6 1.2% 21.5% �42.4

IS-score < 10�6 0.0% 24.4% �55.4
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included in this analysis as they are biologically relevant. Here, for

each interface pair, the highest IS-score calculated by the two

methods is presumed to be the optimal IS-score, and the interface

pairs with optimal IS-scores >0.4 are presumed to be similar

(see Table 1).

The IS-scores (Gao and Skolnick, 2010) of the interface align-

ments found by iAlign (Gao and Skolnick, 2010) are compared with

those found by our method in Figure 5a. Among the 394 pairs of

similar interfaces, our method finds 390 interface pairs with

IS-scores >0.4, and iAlign finds 315 interface pairs with IS-scores

>0.4. Again, 24% more similar interfaces are found if our method is

used instead of iAlign. Specifically, there are 96 cases where the

IS-scores are improved by at least 0.01 if our method is used, and

there are three cases where the IS-scores are improved by at least

0.01 if iAlign is used. In the best case, the IS-score is 0.11 higher if

our method is used. Therefore, our method outperforms iAlign for

the task of finding the optimal interaction interface alignment with

the highest IS-score.

We also repeated the interaction interface alignments with differ-

ent initial alignment processes as shown in Figure 5b and c.

Specifically, there are 30 cases where the IS-scores (Gao and

Skolnick, 2010) are at least 0.01 higher if remote fragments are used

instead of local fragments, and there are 33 cases where the IS-scores

are at least 0.01 higher if the weighted bipartite matching algorithm

(Kuhn, 1955) is used instead of the NWDP algorithm (Needleman

and Wunsch, 1970). Therefore, incorporating remote fragments and

the sequence order-independent alignments in the initial alignment

process plays an important role in finding the optimal interaction

interface alignments.

3.3 Two case studies
We investigated the cases where our method can identify structural

similarity between the protein–DNA interfaces significantly better

than iAlign. Here, we present two such cases. Interestingly, the two

cases also demonstrate that our method is capable of detecting func-

tionally related interaction interfaces that are very challenging for

the other methods.

The first case study is the protein–DNA interface alignment be-

tween PDB IDs 3IKT and 1JKO, where IS-score of the alignment

generated by our method and iAlign is 0.42 and 0.30, respectively.

3IKT contains the redox-sensing transcriptional repressor rex pro-

tein (McLaughlin et al., 2010). The rex protein senses NADH levels

and fine-tunes gene expression in response to fluctuations in the

NADH:NADþratio in the cell via the DNA-binding influences of

NADH or NADþ interactions (McLaughlin et al., 2010). The rex

family contains a ‘winged helix’ that usually binds to the ‘TGTGAA’

DNA sequence and a rossman fold that binds NAD(H) cofactors

(McLaughlin et al., 2010). 1JKO contains the DNA-invertase hin

protein (Chiu et al., 2002). Hin protein is a member of an extended

family of serine recombinases, which catalyzes a site-specific DNA

inversion of the 1 kb DNA segment between the hixL and hixR re-

combination sites within the chromosome of Salmonella typhimu-

rium (Silverman et al., 1981). This switches the orientation of a

promoter responsible for the alternate synthesis of two different

flagellins. The DNA-binding domain of Hin is arranged in a com-

pact ‘helix-turn-helix’ motif that binds the major grove of the DNA.

Enhanced specificity and affinity are achieved by the binding of the

N-terminal segment of the Hin peptide into the minor groove (Chiu

et al., 2002). Both ‘winged helix’ and ‘helix-turn-helix’ play import-

ant roles in selective DNA recognition. A simple cocitation analysis

of the two terms by CoCiter v2.0 (Qiao et al., 2013) results in 47

publications in PubMed.

No global similarity between the 3IKT and the 1JKO pair can be

found. Our method, for the first time, directly identifies the

structural similarity between the protein–DNA interfaces of the

DNA-binding domains of rex and hin protein, resulting an align-

ment with IS-score of 0.42 (Fig. 6a). Our results suggest that even

though the structures of DNA-binding domains of rex and hin vary

significantly from one another, their DNA interaction interfaces

formed by the ‘winged helix’ and the ‘helix-turn-helix’ motif are

quite similar. Our method is able to align the ‘winged helix’ in rex

protein and the ‘helix-turn-helix’ motif in the hin protein, suggesting

that the DNA binding interactions are conserved in both these com-

plexes therefore resulting in similar selective DNA recognition. Both

iAlign and TM-align fail to align these motifs (Fig. 6b and c).

The second case study is the protein–DNA interface alignment be-

tween PDB IDs 3OH9 and 2BZF. 3OH9 consists of DNA glycosylase

AlkA protein, belonging to the class of BER enzymes that repairs a

highly diverse array of nucleoside lesions (Bowman et al., 2010).

AlkA can recognize N3- and N7-methylguanine, -adenine and O2-

methylpyrimidines, cyclic nucleobases, electron-deficient nucleobases

and undamaged nucleobases that are in mismatched base pairs

(Bjelland et al., 1993, 1994; O’Brien and Ellenberger, 2004;

Saparbaev and Laval, 1994; Saparbaev et al., 1995). AlkA interacts

with the DNA in a non-specific manner via the interactions between

the helix–hairpin–helix (HhH) motif and the phosphate backbone

(Bowman et al., 2010). 2BZF consists of barrier-to-autointegration

factor (BAF) protein. It is shown to be involved in DNA repair,

chromosomal organization, nuclear assembly and gene expression (6)

(Bradley et al., 2005). BAF forms an obligatory dimer, each monomer

Fig. 5. Comparison of the IS-scores found by iAlign, our default method and our method with different initial alignment processes (the dissimilar interaction inter-

faces and the similar interaction interfaces with IS-score differences <0.01 are masked): from the 394 pairs of similar interfaces, (a) the numbers of pairs with

IS-scores >0.4 found by iAlign and PROSTA-inter are 315 and 390, respectively; (b) there are 30 cases where the IS-scores are considerably higher if remote

fragments are used and six cases where the IS-scores are considerably higher if local fragments are used; and (c) there are 33 cases where the IS-scores are con-

siderably higher if the weighted bipartite matching algorithm is used and just one case where the IS-score is considerably higher if the NWDP algorithm is used
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containing two copies of HhH motif that interacts with the DNA in a

non-specific manner as well (Doherty et al., 1996).

No global structural similarity has been discovered between the

AlkA and BAF proteins, although they contain similar structural

motif (HhH). However, the interface alignment generated by our

method has an IS-score of 0.4, which is significantly higher than the

IS-score of 0.31 calculated on the alignment generated by iAlign.

This suggests considerable overlap of the interaction interfaces

(Fig. 7a). Both iAlign and TM-align are unable to align this func-

tionally important motif in the interaction interface (Fig. 7b and c).

This structural similarity is also supported by the fact that both pro-

teins interact with the DNA in a non-specific manner and both have

reported roles in DNA repair.

4 Structure alignment of protein–RNA mimicry

Molecular mimicry refers to the process that a molecule evolves to

resemble another molecule in terms of the structure, and thus also

mimics the function (Liang and Landweber, 2005; Pasteur, 1982).

For example, translation initiation factor 2A (eIF2A) is mimicked by

K3L from poxviruses (Katz et al., 2014). The latter inhibits the

phosphorylation of the former on double-stranded RNA-dependent

protein kinase, and thus increases viral production. Two small non-

coding RNAs, CrcY and CrcZ, were found to mimic mRNAs in

Pseudomonas putida to inhibit the activity of the master post-

transcriptional regulatory protein Crc (Marzi and Romby, 2012;

Moreno et al., 2012).

The structure-driven mimicry is not restricted to molecules of

the same type. Elongation factor P (EF-P), a prokaryotic protein

translation factor, is known to mimic tRNA to enable the synthe-

sis of peptides (Tsonis and Dwivedi, 2008). EF-P binds to PoxA, a

protein paralog of the catalytic domain of lysyl-tRNA synthetase,

to perform post-translational modification. A recent study reveals

the structural and evolutionary mimicry of EF-P on tRNAAsp

(Katz et al., 2014). They studied the structural similarity between

the EF-P/PoxA complex (PDB ID 3A5Z, Fig. 8b) and the tRNAAsp/

AspRS complex (PDB ID 1ASY, Fig. 8a), where AspRS is the

aspartyl-tRNA synthetase. 1ASY has two interaction interfaces

Fig. 6. Structure alignment of protein–DNA interaction interfaces in 3IKT (the Rex–DNA complex, as shown in blue) and 1JKO (the Hin–DNA complex, as shown in

red): (a) the interface alignment by PROSTA-inter results in an IS-score of 0.42 and 92 shared interface contacts; (b) the interface alignment by iAlign results in

an IS-score of 0.30 and 31 shared interface contacts (the same interface definition is used for PROSTA-inter and iAlign); (c) the protein structure alignment by

TM-align shows no global structural similarity. Even though the orientation of the helix in the alignment produced by PROSTA-inter is slightly different, majority

(24) of the contacts between the helix and the DNA are still the same. Therefore, PROSTA-inter successfully aligns the ‘winged helix’ in rex protein and the ‘helix-

turn-helix’ motif in the hin protein (as shown in the green circle), and this suggests that the DNA binding interactions are conserved in both proteins resulting in

similar functions

Fig. 7. Structure alignment of protein–DNA interaction interfaces in 3OH9 (the AlkA–DNA complex, as shown in blue) and 2BZF (the BAF–DNA complex, as shown

in red): (a) the interface alignment by PROSTA-inter results in an IS-score of 0.4 and 58 conserved interface contacts; (b) the interface alignment by iAlign results

in an IS-score of 0.31 and 27 conserved interface contacts (the same interface definition is used for PROSTA-inter and iAlign); (c) the protein structure alignment

by TM-align shows no global structural similarity. Specifically, PROSTA-inter successfully identifies the similar HhH motifs, while iAlign is biased toward the DNA

strand alignment. Therefore, PROSTA-inter successfully aligns the HhH motif in DNA-binding interfaces of AlkA and BAF proteins (as shown in the green circle),

and this suggests that the DNA binding interactions are conserved in both proteins resulting in similar functions
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between tRNAAsp and the two domains of AspRS, as shown in

Figure 8a.

When aligning the interaction interfaces formed by different

types of molecules, existing interface alignment tools have several

limitations. In addition to the problems demonstrated in the previ-

ous experiment, it is challenging to design scoring functions to align

nucleotides with amino acids due to the significantly different geo-

metries. Specifically, the distance between the C30 atoms of two con-

secutive nucleotides is different from that between the Ca atoms of

two consecutive amino acids. Thus, although the protein-binding

pocket and the RNA-binding pocket might look similar in shape,

the alignment score for the overlapped region may not be favored

(i.e. <0.4).

Here, our method is able to align the protein–protein interface of

the EF-P/PoxA complex with the correct protein–RNA interface of

the tRNAAsp/AspRS complex with an IS-score of 0.21 (Fig. 8c) as

compared with iAlign that aligns it with the incorrect protein–RNA

interface with an IS-score of 0.16 (Fig. 8d). The relatively low IS-score

(<0.4) is due to the imperfection of the scoring function. Specifically,

when aligning a protein chain to an RNA strand, there is no one-to-

one relationship between the residues and the nucleotides, but current

alignment scoring functions are defined based on such one-to-one re-

lationships. In spite of the fact that the scoring function is not suited

to handle this task, PROSTA-inter still manages to do a reasonable

job. The protein–protein interaction interface in EF-P/PoxA complex

and the protein–RNA interface in the tRNAAsp/AspRS complex shares

a key-lock like structural motif. Although the RNA structure of 1ASY

cannot be well aligned to the loop region of 3A5Z, the key structures

share a similar trace as there are 26 shared interface contacts in the

alignment generated by PROSTA-inter. This demonstrates the power

and applications of PROSTA-inter which cannot be achieved by the

existing methods. This also shows the need for a more robust and gen-

eric scoring function to evaluate alignments between biological com-

plexes composed of different types of molecules.

5 Conclusion

In this article, we propose a novel structure alignment method,

PROSTA-inter, for aligning interaction interfaces formed by protein,

DNA or RNA molecules. Our method naturally handles multiple

types of interfaces, multiple chains and multiple interfaces in

complexes. After employing remote fragments and the MWBM

algorithm (Kuhn, 1955), statistical benchmark evaluation on

protein–DNA complex dataset demonstrates significant improve-

ments over state-of-the-art alignment methods. Moreover, unre-

ported interface similarities in two pairs of protein–DNA complexes

are discovered. We finally illustrate the generic nature of our

method through a protein–RNA mimicry study. We are currently

Fig. 8. Structure alignment of protein–RNA mimicry: (a) 1ASY (the tRNAAsp/AspRS complex) contains two protein–RNA interfaces (one on the left side and one on

the right side); the right-side interface of 1ASY has a key (the yellow RNA strand) inserted into a lock (the green pocket including a beta sheet); (b) 3A5Z (the EF-P/

PoxA complex) also has a key (the purple loop region) inserted into a lock (the cyan pocket including a beta sheet); (c) the interface alignment by PROSTA-inter

successfully aligns the key-lock like structural motifs between the right-side interface of 1ASY and the interface of 3A5Z; (d) the interface alignment by iAlign

aligns the left-side interface of 1ASY and the interface of 3A5Z, and neither the keys nor the locks show sufficient similarities. The alignment generated by

PROSTA-inter contains 26 shared interface contacts as compared to the 21 in the alignment generated by iAlign
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developing new scoring functions and applying our method to

discover structural relevance of different types of interaction

interfaces.
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