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Abstract: Endocrine-disrupting chemicals (EDCs) are chemical substances that can interfere with
the normal function of the endocrine system. EDCs are ubiquitous and can be found in a variety of
consumer products such as food packaging materials, personal care and household products, plastic
additives, and flame retardants. Over the last decade, the impact of EDCs on human health has been
widely acknowledged as they have been associated with different endocrine diseases. Among them,
a subset called metabolism-disrupting chemicals (MDCs) is able to promote metabolic changes that
can lead to the development of metabolic disorders such as diabetes, obesity, hepatic steatosis, and
metabolic syndrome, among others. Despite this, today, there are still no definitive and standardized
in vitro tools to support the metabolic risk assessment of existing and emerging MDCs for regulatory
purposes. Here, we evaluated the following two different pancreatic cell-based in vitro systems: the
murine pancreatic β-cell line MIN6 as well as the human pancreatic β-cell line EndoC-βH1. Both
were challenged with the following range of relevant concentrations of seven well-known EDCs:
(bisphenol-A (BPA), bisphenol-S (BPS), bisphenol-F (BPF), perfluorooctanesulfonic acid (PFOS),
di(2-ethylhexyl) phthalate (DEHP), cadmium chloride (CdCl2), and dichlorodiphenyldichloroethy-
lene (DDE)). The screening revealed that most of the tested chemicals have detectable, deleterious
effects on glucose-stimulated insulin release, insulin content, electrical activity, gene expression,
and/or viability. Our data provide new molecular information on the direct effects of the selected
chemicals on key aspects of pancreatic β-cell function, such as the stimulus-secretion coupling and ion
channel activity. In addition, we found that, in general, the sensitivity and responses were comparable
to those from other in vivo studies reported in the literature. Overall, our results suggest that both
systems can serve as effective tools for the rapid screening of potential MDC effects on pancreatic
β-cell physiology as well as for deciphering and better understanding the molecular mechanisms
that underlie their action.

Keywords: metabolism-disrupting chemicals; pancreatic β-cell; diabetes; metabolic disorders; insulin
secretion; electrical activity

1. Introduction

Pancreatic β-cells are an endocrine cell type with the unique ability to synthetize, store,
and secrete insulin, the only hormone able to decrease circulating blood glucose levels.
They are perfectly designed to act as fine-tuned fuel sensors that are stimulated by dietary
nutrients, particularly glucose, such that insulin release occurs to ensure appropriate
nutrient uptake and storage [1,2]. The failure of normal pancreatic β-cell function is
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accepted as not only the hallmark of type 1 and type 2 diabetes, but also an essential
component of the pathophysiology of other metabolic diseases such as obesity or metabolic
syndrome. This β-cell failure may occur in different manners. While in type 1 diabetes,
β-cells are destroyed by a β-cell-specific autoimmune process [3], in type 2 diabetes, as
well as in obesity-linked type 2 diabetes, β-cells are dysfunctional as they are no longer
able to adapt to the elevated insulin demand caused by systemic insulin resistance [4]. In
overweight/obesity conditions, when β-cells are exposed to chronically excess nutrients,
insulin secretion initially increases, but eventually β-cell dysfunction and death occur [5].
In addition, the extent of β cell malfunction is known to be correlated with the severity of
metabolic syndrome [6].

The prevalence rates of metabolic diseases have exploded over the last several decades
to the extent that nowadays they are considered a global synergy of epidemics. As a
matter of fact, about 32.3 million adults were diagnosed with diabetes in the European
Union in 2019, up from an estimated 16.8 million adults in 2000, while in America the
estimated incidence was 34.2 million [7,8]. Of no less concern is the prevalence of obesity
and overweight. According to the World Health Organization, 39% of adults aged 18 or
over were overweight and 13% were obese [9]. In turn, the metabolic syndrome is known
to increase the risk of type 2 diabetes mellitus fivefold [10].

Genetic predisposition and lifestyle choices are commonly accepted reasons for the
occurrence of metabolic disorders [11]. More recently, it has been acknowledged that a
certain class of endocrine-disrupting chemicals (EDCs), the so-called metabolism-disrupting
chemicals (MDCs), may also promote metabolic disturbances [12–15]. EDCs encompass
a heterogeneous group of chemical substances that can interfere with any aspect of the
endocrine system, including hormone production, release, transport, metabolism, binding,
action, or elimination [12,16]. The list of EDCs is rapidly growing and includes synthetic
chemicals such as plastics, plasticizers, pesticides, industrial solvents, and heavy metals,
among others [12]. Despite all the data supporting EDCs’ role as metabolic disruptors,
there is a lack of robust screening methods that allow us to identify potential MDCs that
lead to disturbances in glucose and lipid metabolism.

At present, there are several test guidelines and specific programs for the screening and
testing of EDCs. The Organization for Economic Cooperation and Development (OECD)
has recently compiled and revised them [17]. Of note, all of them are intended to evaluate
estrogenic, androgenic, thyroid hormone, and steroidogenesis pathways. However, other
endocrine pathways that may be key to the identification of MDCs are not assayed in
the current validated tests. Therefore, there is an urgent need to develop new bioassays
to interrogate these endocrine-specific pathways. As pancreatic β-cells are essential for
glucose and energy homeostasis, new cell-based assays focused on this specific cell type
will contribute to the better identification of potential MDCs as well as the development of
testing strategies for regulatory needs.

The aim of this study was to investigate the effects of a number of model EDCs on pan-
creatic β-cell survival and function and to evaluate different pancreatic β-cell models to be
used as in vitro test systems. We analyzed seven different chemicals used as follows: plasti-
cizers, bisphenol-A (BPA), the BPA substitutes, bisphenol-S (BPS) and bisphenol-F (BPF), as
well as di(2-ethylhexyl) phthalate (DEHP); pesticides, dichlorodiphenyldichloroethylene
(DDE); a representative polyfluoroalkyl compound, perfluorooctanesulfonic acid (PFOS);
the heavy metal cadmium chloride (CdCl2). Chemical selection was made based on their
widespread use, large production volumes, and their potential diabetogenic and obesogenic
properties. We explored the effects of these compounds on two different pancreatic β-cell
lines: MIN6 (a mouse β-cell line) and EndoC-βH1 (a human β-cell line).

Immortalized rodent β-cell lines have been extensively exploited for the study of
β-cell physiology and were demonstrated to be a valuable asset in diabetes research [18].
Nevertheless, they have not been thoroughly evaluated for EDC screening and testing.
A limited number of previous studies have looked at the effects of particular EDCs on
MIN6 cells; however, to the best of our knowledge, this is the first study assessing the
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impact of paradigmatic EDCs on a human pancreatic β-cell line. By using these two cell
models, we compared murine and human β-cell responses, which may be very informative
because up-to-date, direct causal relationships between EDCs and metabolic disorders have
mainly come from animal studies. Our results highlight that both β-cell models can offer a
consistent and sensitive option for screening putative MDCs.

2. Results
2.1. Bisphenols A and S Alter Pancreatic β-Cell Function in Both Mouse and Human
Pancreatic β-Cells

The effects of BPA on cell viability were first studied in the murine pancreatic β-cell
line MIN6 after 24 h of exposure to different concentrations of the chemical ranging from
100 pM to 10 µM. Cell viability was assayed using a combination of the following three
classical dye methods: the resazurin (RZ) assay as an indicator of mitochondrial activity,
the carboxyfluorescein diacetate acetoxymethyl ester (CFDA-AM) assay as an indicator of
cytoplasmic esterase activity and membrane integrity, and the neutral red uptake (NRU) as-
say, which evaluates lysosomal activity. As illustrated in Figure 1A, cell viability (measured
as the RZ test) was slightly reduced at the concentration range of 100 pM to 1 µM, with the
maximum effect at both 10 and 100 nM BPA concentrations (reduction to 87.0 ± 1.4 and
87.9 ± 1.7%, respectively, compared to Control (100%)) (Figure 1A). NRU and CFDA-AM
assay tests showed a modest decrease in cell viability, which was only significant at 10 nM
BPA (reduction to 91.6 ± 1.4 and 88.3 ± 1.7%, respectively, compared to Control (100%))
(Figure 1A). The cytotoxic effects of BPA after 48 or 72 h of treatment were also explored. In
brief, RZ and CFDA-AM assays indicated moderately decreased cell viability at almost all
doses tested (1 nM–10 µM) at time point 48 h, while at 72 h after BPA exposure, a more pro-
nounced cytotoxic effect was observed at 10 nM and 10 µM. Lysosomal activity was slightly
decreased at 48 h (1 µM BPA) and 72 h (10 nM and 10 µM BPA) (Supplemental Table S1).

We next analyzed whether BPA treatment for 24 h affected gene expression in MIN6
cells. We focused on the key genes for pancreatic β-cell function and identity. We found
that Pdx1 and Hnf4α gene expressions were upregulated at various BPA concentrations
(100 pM, 10 nM, and 1 µM) (Figure 1B); Hnf4α was elevated at 10 µM as well. BPA treatment
also promoted increased expression of MafA and Kir6.2, at 100 and 10 nM concentrations,
respectively (Figure 1B). These results were consistent with the increments of glucose-
stimulated insulin secretion (GSIS) found in the BPA-treated cells compared to controls
(Figure 1C). The increase was only statistically significant at 100 nM BPA, although a similar
trend was observed at all tested doses (Figure 1C). In addition, insulin secretion in response
to low glucose was also increased at 100 nM and 10 µM of BPA. The insulin content was
found to be increased at the highest dose tested (10 µM) (Figure 1D).

EndoC-βH1 cell viability was not reduced after 24 h (Supplemental Table S2), 48 h
(Supplemental Table S2), or 72 h (Figure 1E) of BPA exposure. Unlike the results found
in the murine cell model, only a slight decrease in mitochondrial activity (1 µM BPA) and
membrane integrity (100 nM and 1 µM BPA) at 48 h was observed (Supplemental Table S2).
On the contrary, BPA treatment for 72 h (1, 10, and 100 nM) modestly augmented the
percentage of lysosomal activity (NRU assay) (Figure 1E). No effect was observed on GSIS
when cells were treated for 24 or 48 h with BPA (Supplemental Figure S1A,B, respectively);
however, a marked dose-dependent increase in GSIS was observed in EndoC-βH1 cells
treated with BPA for 72 h compared to controls (Figure 1I). This effect was statistically
significant at 10, 100 nM, and 1 µM doses. Basal insulin secretion was also increased at
1 µM BPA. In a similar manner, increased insulin content was found in the BPA-treated cells
(72 h), which was significant at all doses tested (Figure 1J). The impact of BPA on insulin
release in EndoC-βH1 cells was not related to changes in gene expression (Figure 1F) but
to a disruptive effect on the electrical activity (Figure 1G,H). Voltage-gated K+ and Ca2+

currents were recorded in human pancreatic β-cells treated with vehicle or BPA for 72 h. As
shown in Figure 1G, BPA exposure resulted in decreased K+ currents at both 1 and 100 nM
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concentrations. In addition, augmented Ca2+ currents were found in BPA-treated cells (10
and 100 nM) (Figure 1H).

Figure 1. Cont.
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Figure 1. BPA effects on pancreatic β-cells. (A) Viability of MIN6 cells treated for 24 h with different
BPA concentrations (100 pM–10 µM) as evaluated by RZ, NRU and CFDA-AM assays. n = five
independent experiments. * vs. Control; one-way ANOVA or Kruskal-Wallis. (B) mRNA expression
of Ins, Pdx1, Hnf4α, MafA, Kir6.2, Sur1, Glut2, and Gck in MIN6 cells treated for 24 h with different
BPA concentrations (100 pM–10 µM). n = three independent experiments. * vs. Control; one-way
ANOVA or Kruskal-Wallis. # vs. Control; Student’s t-test. (C) Effects of BPA (100 pM–10 µM) on GSIS
in MIN6 cells treated for 24 h. n = six independent experiments. * vs. Control 16.7 mM G; two-way
ANOVA. $ vs. Control 1.67 mM G and + vs. Control 16.7 mM G; Kruskal-Wallis. (D) MIN6 insulin
content after 24 h BPA treatment. n = six independent experiments. * vs. Control; Kruskal-Wallis.
# vs. Control; Student’s t-test. (E) Viability of EndoC-βH1 cells treated for 72 h with different BPA
concentrations (1 nM–1 µM) as evaluated by RZ, NRU and CFDA-AM assays. n = four independent
experiments. * vs. Control; one-way ANOVA or Kruskal-Wallis. (F) mRNA expression of INS, PDX1,
HNF4α, MAFA, MAFB, KIR6.2, SUR1, SNAP25, GLUT1, and GCK in EndoC-βH1 cells treated for 72 h
with different BPA concentrations (1 nM–100 nM). n = three independent experiments. * vs. Control;
Kruskal-Wallis. (G) Upper panel, representative recordings of K+ currents in response to depolarizing
voltage pulses in Control or BPA (1 nM–100 nM) EndoC-βH1 treated-cells for 72 h. Lower panel,
relationship between K+ current density and the voltage of the pulses. Control (n = 12) and BPA
(n = 12 per condition) cells. * Control vs. 1 nM BPA and # Control vs. 100 nM BPA; two-way ANOVA.
(H) Upper panel, representative recordings of Ca2+ currents in response to depolarizing voltage
pulses in Control or BPA (1 nM–100 nM) EndoC-βH1 treated-cells for 72 h. Lower panel, relationship
between Ca2+ current density and the voltage of the pulses. Control (n = 11) and BPA (n = 10 per
condition) cells. * Control vs. 10 nM BPA and # Control vs. 100 nM BPA; two-way ANOVA. (I) Effects
of BPA (1 nM–1 µM) on GSIS in EndoC-βH1 cells treated for 72 h. Left panel: GSIS in response to low
glucose (2.8 mM G) and high glucose (20 mM G). Right panel is an inset graph that shows insulin
release in response to 20 mM G. n = five independent experiments. * vs. Control 20 mM G; two-way
ANOVA. $ vs. Control 2.8 mM G and + vs. Control 20 mM G; one-way ANOVA. (J) EndoC-βH1
insulin content after 72 h BPA treatment. n = five independent experiments. * vs. Control; one-way
ANOVA. # vs. Control; Student’s t-test. All data are expressed as mean± SEM. Significance * p < 0.05,
** p < 0.01, *** p < 0.001, and **** p < 0.0001; # p < 0.05, ### p < 0.001, and #### p < 0.0001; $ p < 0.05,
and $$ p < 0.01; + p < 0.05, ++ p < 0.01, and ++++ p < 0.0001.
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BPS was also studied since this compound has become a common BPA substitute. Like
BPA, BPS promoted a modest decrease in cell viability (measured as the RZ test) in the pan-
creatic β-cell line MIN6 after 24 h of treatment at all doses tested (Figure 2A). This effect was
also observed at 48 h, although it was less pronounced at 72 h (Supplemental Table S1). The
CFDA-AM assay also showed a slight but significant cytotoxic effect of BPS in MIN6 cells
treated for 24 (1 nM–10 µM) (Figure 2A), 48, or 72 h (10 nM–10 µM) (Supplemental Table S1).
The NRU assay manifested a much more limited BPS effect, which was only significant
at 48 h (100 pM and 10 µM) (Supplemental Table S1). These data indicated that BPS
slightly impaired mitochondrial activity and membrane integrity, but it did not affect
lysosomal activity.

Figure 2. Cont.
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Figure 2. BPS effects on pancreatic β-cells. (A) Viability of MIN6 cells treated for 24 h with different
BPS concentrations (100 pM–10 µM) as evaluated by RZ, NRU and CFDA-AM assays. n = four
independent experiments. * vs. Control; one-way ANOVA or Kruskal-Wallis. (B) mRNA expression
of Ins, Pdx1, Hnf4α, MafA, Kir6.2, Sur1, Glut2, and Gck in MIN6 cells treated for 24 h with different
BPS concentrations (100 pM–10 µM). n = three independent experiments. # vs. Control; Student’s
t-test. (C) Effects of BPS (100 pM–10 µM) on GSIS in MIN6 cells treated for 24 h. n = five independent
experiments. * vs. Control 16.7 mM G; two-way ANOVA. + vs. Control 16.7 mM G; Kruskal-Wallis.
(D) MIN6 insulin content after 24 h BPS treatment. n = five independent experiments. * vs. Control;
one-way ANOVA. # vs. Control; Student’s t-test. (E) Viability of EndoC-βH1 cells treated for 48 h
with different BPS concentrations (1 nM–1 µM) as evaluated by RZ, NRU and CFDA-AM assays.
n = four independent experiments. * vs. Control; one-way ANOVA. (F) mRNA expression of INS,
PDX1, HNF4α, MAFA, MAFB, KIR6.2, SUR1, SNAP25, GLUT1, and GCK in EndoC-βH1 cells treated
for 48 h with different BPS concentrations (1 nM–100 nM). n = three independent experiments.
* vs. Control; Kruskal-Wallis. # vs. Control; Student’s t-test. (G) Upper panel, representative
recordings of K+ currents in response to depolarizing voltage pulses in Control or BPS (1 nM–100 nM)
EndoC-βH1 treated-cells for 48 h. Lower panel, relationship between K+ current density and the
voltage of the pulses. Control (n = 27) and BPS (n = 13–20 per condition) cells. (H) Upper panel,
representative recordings of Ca2+ currents in response to depolarizing voltage pulses in Control
or BPS (1 nM–100 nM) EndoC-βH1 treated-cells for 48 h. Lower panel, relationship between Ca2+

current density and the voltage of the pulses. Control (n = 12) and BPS (n = 11–12 per condition)
cells. * Control vs. 10 nM BPS and # Control vs. 100 nM BPS; two-way ANOVA. (I) Effects of BPS
(1 nM–1 µM) on GSIS in EndoC-βH1 cells treated for 48 h. Left panel: GSIS in response to low glucose
(2.8 mM G) and high glucose (20 mM G). Right panel is an inset graph that shows insulin release in
response to 20 mM G. n = five independent experiments. * vs. Control 20 mM G; two-way ANOVA.
+ vs. Control 20 mM G; Kruskal-Wallis. (J) EndoC-βH1 insulin content after 48 h BPS treatment.
n = five independent experiments. All data are expressed as mean ± SEM. Significance * p < 0.05,
** p < 0.01, *** p < 0.001, and **** p < 0.0001; # p < 0.05, ## p < 0.01, ### p < 0.001, and #### p < 0.0001;
+ p < 0.05, and ++++ p < 0.0001.
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Changes in the gene expression profile were also explored in the murine cells treated
with BPS for 24 h (Figure 2B). The most remarkable effect was a marked decrease in Glut2
gene expression in a wide range of doses from 1 nM to 1 µM. Decreased expression of Hnf4α
was also found, although it was only statistically significant at the lowest dose (100 pM).
By contrast, an upregulation of MafA (10 and 100 nM) and Kir6.2 (10, 100 nM, and 10 µM)
was quantified. Together with a reduction effect on the glucose transporter expression, we
found markedly diminished GSIS at all doses tested, which was statistically different from
controls at 100 pM, 10 nM, and 1 and 10 µM BPS concentrations (Figure 2C). In parallel
to this effect on insulin secretion, we found that BPS-treated cells exhibited a reduction in
insulin content at 10, 100 nM, and 1 and 10 µM concentrations (Figure 2D).

Then, we analyzed BPS effects on the human cellular model EndoC-βH1. As in the
case of BPA, BPS did not affect viability in EndoC-βH1 cells. However, a modest increase
in the lysosomal activity (NRU) after 24 h (10 nM) (Supplemental Table S2), 48 h (10 and
100 nM) (Figure 2E), and 72 h (100 nM) treatments was found (Supplemental Table S2).

Similar to the effects reported in MIN6, 48 h of BPS treatment resulted in a marked
decrease in the expression of the gene encoding for the main glucose transporter (GLUT1)
in EndoC-βH1 cells. The effect was found to be statistically significant at 10 and 100 nM
concentrations (Figure 2F). In addition, decreased expression of MAFA (100 nM), MAFB (10
and 100 nM), SNAP25 (1 nM), and KIR6.2 (10 nM) genes were quantified (Figure 2F). These
changes were correlated with a marked diminution in insulin release at the same time point
of 48 h. A clear decreasing trend was observed at all doses tested, although the statistically
significant effects were found at 1 nM and 1 µM BPS doses (Figure 2I). No effects on insulin
content were reported (Figure 2J). As regards electrical activity, no effects on K+ currents
were quantified (Figure 2G), although increased Ca2+ currents were registered in response
to 10 and 100 nM BPS (Figure 2H).

The second most common BPA substitute, BPF, was also included in the study. For
BPF, we did not find any effect on GSIS in EndoC-βH1-treated cells compared to controls
(Supplemental Figure S2A) at any of the doses tested. A slight decrease in cell viability
(measured as the RZ assay) was found, with the most significant effects after 24 and 48 h
treatments. Membrane integrity was also slightly reduced after 24 h of treatment, while
lysosomal activity showed a slight increase (Supplemental Figure S2B).

2.2. The Phthalate DEHP Disrupts Murine and Human Pancreatic β-Cell Function in a
Similar Manner

As shown in Figure 3A, RZ and NRU tests showed no effect of DEHP on cell viability
in MIN6 cells treated for 24 h at most doses tested, while the CFDA-AM assay manifested a
modest decrease in membrane integrity in response to DEHP (10 nM–10 µM). Of note, after
48 h of treatment, there was a consistent decrease in cell viability at the highest dose of
DEHP (10 µM) as measured in both NRU (79.5± 1.7%) and CFDA-AM (83.2± 3.2%) assays.
The effect was even more pronounced at 72 h, when the following dramatic decrease in the
percentage of cell viability was quantified in all the assays performed: RZ (59.1 ± 3.7%),
NRU (47.1 ± 2.9%), and CFDA-AM (65.9 ± 3.3%) (Supplemental Table S1).
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Figure 3. Cont.
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Figure 3. DEHP effects on pancreatic β-cells. (A) Viability of MIN6 cells treated for 24 h with
different DEHP concentrations (100 pM–10 µM) as evaluated by RZ, NRU and CFDA-AM assays.
n = four independent experiments. * vs. Control; Kruskal-Wallis. (B) mRNA expression of Ins,
Pdx1, Hnf4α, MafA, Kir6.2, Sur1, Glut2, and Gck in MIN6 cells treated for 24 h with different DEHP
concentrations (100 pM–10 µM). n = five independent experiments. * vs. Control; Kruskal-Wallis.
(C) Effects of DEHP (100 pM–10 µM) on GSIS in MIN6 cells treated for 24 h. n = four independent
experiments. * vs. Control 16.7 mM G; two-way ANOVA. + vs. Control 16.7 mM G; one-way
ANOVA. (D) MIN6 insulin content after 24 h DEHP treatment. n = four independent experiments.
# vs. Control; Student’s t-test. (E) Viability of EndoC-βH1 cells treated for 7 d with different
DEHP concentrations (1 nM–1 µM) as evaluated by RZ, NRU and CFDA-AM assays. n = four
independent experiments. * vs. Control; one-way ANOVA. (F) mRNA expression of INS, PDX1,
HNF4α, MAFA, MAFB, KIR6.2, SUR1, SNAP25, GLUT1, and GCK in EndoC-βH1 cells treated for 7 d
with different DEHP concentrations (1 nM–100 nM). n = four independent experiments. (G) Upper
panel, representative recordings of K+ currents in response to depolarizing voltage pulses in Control
or DEHP (1 nM–100 nM) EndoC-βH1 treated-cells for 7 d. Lower panel, relationship between K+

current density and the voltage of the pulses. Control (n = 15) and DEHP (n = 12–15 per condition)
cells. (H) Upper panel, representative recordings of Ca2+ currents in response to depolarizing voltage
pulses in Control or DEHP (1 nM–100 nM) EndoC-βH1 treated-cells for 7 d. Lower panel, relationship
between Ca2+ current density and the voltage of the pulses. Control (n = 11) and DEHP (n = 11 per
condition) cells. (I) Effects of DEHP (1 nM–1 µM) on GSIS in EndoC-βH1 cells treated for 7 d. Left
panel: GSIS in response to low glucose (2.8 mM G) and high glucose (20 mM G). Right panel is an
inset graph that shows insulin release in response to 20 mM G. n = five independent experiments.
* vs. Control 20 mM G; two-way ANOVA. + vs. Control 20 mM G; Kruskal-Wallis. (J) EndoC-βH1
insulin content after 7 d DEHP treatment. n = five independent experiments. # vs. Control; Student’s
t-test. All data are expressed as mean ± SEM. Significance * p < 0.05, ** p < 0.01, *** p < 0.001, and ****
p < 0.0001; # p < 0.05; + p < 0.05, and +++ p < 0.001.
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No significant changes were found at the level of gene expression in response to 24 h
DEHP treatment, except for an increase in the expression of Sur1 and Glut2 genes at the
highest dose tested (10 µM) (Figure 3B). However, at the functional level, we observed an
impairment of insulin release in response to stimulatory glucose concentration in DEHP-
treated cells for 24 h compared to controls (Figure 3C). The effect was statistically significant
at almost all doses tested. Decreased insulin content was also observed at the highest dose
(1 µM) (Figure 3D). Although the disruptive effect of DEHP on secretion was similar in
human and murine cells, we observed a clear difference in the exposure time required to
achieve this effect. We did not find any change in insulin secretion in EndoC-βH1 after 72 h
of DEHP treatment (Supplemental Figure S3), so we extended our study to 7 d. As shown
in Figure 3I, we found that a 7-d treatment with DEHP resulted in a marked decrease in
GSIS at 1, 10, and 100 nM concentrations. Curiously, at the highest dose tested, 1 µM,
DEHP-treated cells manifested increased insulin release (Figure 3I). In addition to that, a
decrease in insulin content in response to 10 and 100 nM DEHP exposure was quantified
(Figure 3J). No changes at the level of gene expression (Figure 3F), K+ or Ca2+ currents
(Figure 3G,H) were observed at this time point. The effects of DEHP on cell viability were
explored after 24, 48, 72 h (Supplemental Table S2) and 7 d of exposure (Figure 3E). A
modest decrease in membrane integrity was observed at the 24, 48, and 72 h time points
in response to the highest DEHP dose tested (1 µM). In addition, after 7 d of treatment,
mitochondrial activity was decreased at the tested concentration range of 1 to 100 nM, while
lysosomal activity was found to be decreased only at the highest dose (1 µM) (Figure 3E).

2.3. Different Effects of PFOS Exposure on Human and Murine Pancreatic β-Cell Models

Slight inhibition of MIN6 cell viability was detected after 24 h of PFOS exposure
(Figure 4A). RZ reduction and membrane integrity (CFDA-AM assay) were the most
sensitive cellular processes affected, with a reduction of approximately 87–92% compared
to controls (100%) in response to all tested doses. Lysosomal activity was less affected
(reduction to 90–96%), with no effect at 100 pM and 1 µM doses (Figure 4A). The 3 metabolic
assays showed similar results of reduced viability after 48 h of treatment, with more
significant differences at 10 nM and 1 µM. On the contrary, no significant changes in viability
were observed after 72 h of treatment (Supplemental Table S1). PFOS exposure also induced
a reduction in Glut2 gene expression at almost all the doses analyzed (10 nM–10 µM) as
well as a sharp reduction in MafA gene expression at 1 µM dose (Figure 4B). In line with
this, insulin release in response to stimulatory glucose concentration was markedly reduced
in 24 h PFOS-treated cells at 100 pM, 100 nM, and 10 µM concentrations (Figure 4C). No
effects were found on insulin content (Figure 4D).

Figure 4. Cont.



Int. J. Mol. Sci. 2022, 23, 4182 12 of 29

Figure 4. Cont.



Int. J. Mol. Sci. 2022, 23, 4182 13 of 29

Figure 4. PFOS effects on pancreatic β-cells. (A) Viability of MIN6 cells treated for 24 h with
different PFOS concentrations (100 pM–10 µM) as evaluated by RZ, NRU and CFDA-AM assays.
n = four independent experiments. * vs. Control; one-way ANOVA or Kruskal-Wallis. (B) mRNA
expression of Ins, Pdx1, Hnf4α, MafA, Kir6.2, Sur1, Glut2, and Gck in MIN6 cells treated for 24 h
with different PFOS concentrations (100 pM–10 µM). n = three independent experiments. * vs.
Control; one-way ANOVA. #vs. Control; Student’s t-test. (C) Effects of PFOS (100 pM–10 µM) on
GSIS in MIN6 cells treated for 24 h. n =five independent experiments. * vs. Control 16.7 mM G;
two-way ANOVA. + vs. Control 16.7 mM G; one-way ANOVA. (D) MIN6 insulin content after 24 h
PFOS treatment. n = five independent experiments. * vs. Control; Kruskal-Wallis. (E) Viability of
EndoC-βH1 cells treated for 72 h with different PFOS concentrations (1 nM–1 µM) as evaluated by
RZ, NRU and CFDA-AM assays. n = five independent experiments. * vs. Control; Kruskal-Wallis.
(F) mRNA expression of INS, PDX1, HNF4α, MAFA, MAFB, KIR6.2, SUR1, SNAP25, GLUT1, and GCK
in EndoC-βH1 cells treated for 72 h with different PFOS concentrations (1 nM–100 nM). n = three
independent experiments. (G) Upper panel, representative recordings of K+ currents in response to
depolarizing voltage pulses in Control or PFOS (1 nM–100 nM) EndoC-βH1 treated-cells for 72 h.
Lower panel, relationship between K+ current density and the voltage of the pulses. Control (n = 11)
and PFOS (n = 11–14 per condition) cells. * Control vs. 10 nM PFOS; two-way ANOVA. (H) Upper
panel, representative recordings of Ca2+ currents in response to depolarizing voltage pulses in Control
or PFOS (1 nM–100 nM) EndoC-βH1 treated-cells for 72 h. Lower panel, relationship between Ca2+

current density and the voltage of the pulses. Control (n = 10) and PFOS (n = 10–12 per condition)
cells. * Control vs. 10 nM PFOS and # Control vs. 100 nM PFOS; two-way ANOVA. (I) Effects of PFOS
(1 nM–1 µM) on GSIS in EndoC-βH1 cells treated for 72 h. Left panel: GSIS in response to low glucose
(2.8 mM G) and high glucose (20 mM G). Right panel is an inset graph that shows insulin release in
response to 20 mM G. n = five independent experiments. * vs. Control 20 mM G; two-way ANOVA.
$ vs. Control 2.8 mM G and + vs. Control 20 mM G; Kruskal-Wallis. (J) EndoC-βH1 insulin content
after 72 h PFOS treatment. n = five independent experiments. * vs. Control; Kruskal-Wallis. # vs.
Control; Student’s t-test. All data are expressed as mean ± SEM. Significance * p < 0.05, ** p < 0.01,
*** p < 0.001, and **** p < 0.0001; # p < 0.05, ## p < 0.01, ### p < 0.001, and #### p < 0.0001; $ p < 0.05,
and $$ p < 0.01; + p < 0.05, ++ p < 0.01, and +++ p < 0.001.

In human pancreatic β-cells, we found quite different results. No remarkable changes
in cell viability were observed at any of the time points assayed; instead, a slight increase
in lysosomal activity (NRU assay) after 24 and 48 h (1 nM–1 µM) (Supplemental Table S2)
and 72 h of treatment (10 nM and 1 µM) was reported (Figure 4E). No significant changes
were observed at the level of gene expression (Figure 4F). However, a consistent tendency
toward increased expression of the glucose transporter GLUT1 was observed (p = 0.0571)
(Figure 4F). As shown in Figure 4I, an increase in GSIS was quantified at 10 and 100 nM
PFOS doses as well as in basal insulin secretion (10 nM and 1 µM). In line with this,
increased insulin content at 1, 10 nM, and 1 µM PFOS was found (Figure 4J). Importantly,
this increase in the secretory capacity of the human β-cells was accompanied by an increase
in K+ currents at 10 nM (Figure 4G) and Ca2+ currents at 10 and 100 nM PFOS (Figure 4H).
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2.4. CdCl2 Effects on Pancreatic β-Cell Function and Viability

CdCl2 was the EDC that caused the greatest inhibition of MIN6 cell viability. As shown
in Figure 5A, 24 h CdCl2 treatment significantly affected RZ reduction (100 pM–10 µM),
NRU (100 nM–10 µM) and CFDA-AM (1 nM–10 µM). Similar results were found after
48 and 72 h of treatment (Supplemental Table S1). The effects were relatively modest
at concentrations in the range of 100 pM to 1 µM; however, all three metabolic tests
assayed showed a very pronounced cytotoxic effect of CdCl2 at the highest dose (10 µM)
(RZ 22.0 ± 2.1%, NRU 12.2 ± 2.2%, CFDA-AM 39.9 ± 1.1%), which was maintained at all
time points analyzed. This dose was excluded from the study.

Figure 5. Cont.
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Figure 5. CdCl2 effects on pancreatic β-cells. (A) Viability of MIN6 cells treated for 24 h with
different CdCl2 concentrations (100 pM–10 µM) as evaluated by RZ, NRU and CFDA-AM assays.
n = four independent experiments. * vs. Control; one-way ANOVA or Kruskal-Wallis. (B) mRNA
expression of Ins, Pdx1, Hnf4α, MafA, Kir6.2, Sur1, Glut2, and Gck in MIN6 cells treated for 24 h with
different CdCl2 concentrations (100 pM–100 nM). n = three independent experiments. * vs. Control;
one-way ANOVA. (C) Effects of CdCl2 (100 pM–1 µM) on GSIS in MIN6 cells treated for 24 h. n = three
independent experiments. * vs. Control 1.67 mM G; two-way ANOVA. # vs. Control 16.7 mM G;
Student’s t-test. (D) MIN6 insulin content after 24 h CdCl2 treatment. n = three independent
experiments. # vs. Control; Student’s t-test. (E) Viability of EndoC-βH1 cells treated for 72 h
with different CdCl2 concentrations (1 nM–1 µM) as evaluated by RZ, NRU and CFDA-AM assays.
n = five independent experiments. * vs. Control; Kruskal-Wallis. (F) mRNA expression of INS, PDX1,
HNF4α, MAFA, MAFB, KIR6.2, SUR1, SNAP25, GLUT1, and GCK in EndoC-βH1 cells treated for 72 h
with different CdCl2 concentrations (10, 100 nM). n = three independent experiments. # vs. Control;
Student’s t-test. (G) Upper panel, representative recordings of K+ currents in response to depolarizing
voltage pulses in Control or CdCl2 (1 nM–100 nM) EndoC-βH1 treated-cells for 72 h. Lower panel,
relationship between K+ current density and the voltage of the pulses. Control (n = 10) and CdCl2
(n = 10 per condition) cells. (H) Upper panel, representative recordings of Ca2+ currents in response
to depolarizing voltage pulses in Control or CdCl2 (1 nM–100 nM) EndoC-βH1 treated-cells for 72 h.
Lower panel, relationship between Ca2+ current density and the voltage of the pulses. Control (n = 8)
and CdCl2 (n = 8–10 per condition) cells. * Control vs. 10 nM CdCl2 and # Control vs. 100 nM
CdCl2; two-way ANOVA. (I) Effects of CdCl2 (1 nM–1 µM) on GSIS in EndoC-βH1 cells treated for
72 h. Left panel: GSIS in response to low glucose (2.8 mM G) and high glucose (20 mM (G). Right
panel is an inset graph that shows insulin release in response to 20 mM G. n = five independent
experiments. * vs. Control 20 mM G; two-way ANOVA. + vs. Control 20 mM G; one-way ANOVA.
(J) EndoC-βH1 insulin content after 72 h CdCl2 treatment. n = five independent experiments. All
data are expressed as mean ± SEM. Significance * p < 0.05, ** p < 0.01, *** p < 0.001, and **** p < 0.0001;
# p < 0.05; + p < 0.05, and ++++ p < 0.0001.
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When cells were treated with CdCl2 for 24 h, significant increases in the expressions of
Ins (100 pM and 100 nM) and MafA (100 nM) genes were quantified (Figure 5B). Neverthe-
less, this was not related to any effect on GSIS (Figure 5C) or insulin content (Figure 5D).

In EndoC-βH1 cells, the cytotoxic effect of CdCl2 was clearly less pronounced. Only a slight
decrease in cell viability (measured as RZ reduction) at 48 h (1 nM–1µM) (Supplemental Table S2)
and 72 h (1–100 nM) (Figure 5E) was found. A modest decrease in HNF4α and SNAP25
gene expressions at 100 nM dose was found (Figure 5F). Regarding changes in electrical activ-
ity, enhanced Ca2+ currents at 10 and 100 nM CdCl2 doses compared to control were noted
(Figure 5H), but no effects on K+ currents (Figure 5G) were found. In addition, augmented GSIS
was observed in CdCl2-treated cells at 10 nM (Figure 5I). No effects on insulin content were
reported (Figure 5J).

2.5. DDE Exposure Did Not Compromise Pancreatic β-Cell Function or Viability

MIN6 cells treated with DDE for 24 h exhibited a modest decrease in viability measured
as RZ reduction (10 nM) and membrane integrity (10 nM, 1 and 10 µM) (Figure 6A).
However, this effect was not confirmed in the NRU assay (Figure 6A). A more pronounced
reduction was found after 48 h of DDE exposure in the three assays performed at 10 nM
(RZ 85.4 ± 1.8%, NRU 89.1 ± 1.9%, CFDA-AM 93.5 ± 1.6%) and 10 µM (RZ 77.4 ± 4.1%,
NRU 79.5 ± 4.5%, CFDA-AM 87.6 ± 2.2%) concentrations (Supplemental Table S1). At
72 h, a clear cytotoxic effect of DDE was found at the highest dose assayed (10 µM)
(RZ 40.7 ± 2.4%, CFDA-AM 69.9 ± 5.1%) (Supplemental Table S1).

At the level of gene expression, the most profound change detected was a reduction
in Ins gene expression at 1 nM, 1 and 10 µM DDE doses (24 h treatment). Furthermore,
diminished expression of the MafA gene was found at 1 nM DDE (Figure 6B). GSIS and
content were quantified after 24 h of treatment with DDE. Both parameters showed a
tendency to decrease at DDE doses in the range from 100 pM to 1 µM; however, this finding
did not reach statistical significance (Figure 6C,D).

Insulin secretion capacity of EndoC-βH1 was not affected by DDE treatment at short
periods of 72 h (Supplemental Figure S4) or at longer times of 7 d (Figure 6I). No changes
in insulin content or gene expression were observed either (Figure 6F,J). A modest decrease
in mitochondrial activity and membrane integrity after 24 h (100 nM and 1 µM) and 48 h
of DDE treatment (1 µM) was quantified (Supplemental Table S2), while no significant
changes in cell viability were observed at 72 h (Supplemental Table S2). 7 d of DDE exposure
caused a very slight decrease in mitochondrial activity (reduction to approximately 95%,
compared to Control (100%)) at all doses tested in the nanomolar range (Figure 6E). Finally,
electrophysiological recordings of K+ and Ca2+ currents in DDE-treated β-cells did not show
any differences compared to control conditions at any of the doses tested (Figure 6G,H).

Figure 6. Cont.
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Figure 6. DDE effects on pancreatic β-cells. (A) Viability of MIN6 cells treated for 24 h with different
DDE concentrations (100 pM–10 µM) as evaluated by RZ, NRU and CFDA-AM assays. n = six-seven
independent experiments. * vs. Control; one-way ANOVA or Kruskal-Wallis. (B) mRNA expression
of Ins, Pdx1, Hnf4α, MafA, Kir6.2, Sur1, Glut2, and Gck in MIN6 cells treated for 24 h with different DDE
concentrations (100 pM–10 µM). n = three independent experiments. # vs. Control; Student’s t-test.
(C) Effects of DDE (100 pM–10 µM) on GSIS in MIN6 cells treated for 24 h. n = four independent
experiments. # vs. Control; Student’s t-test. (D) MIN6 insulin content after 24 h DDE treatment.
n = three independent experiments. # vs. Control; Student’s t-test. (E) Viability of EndoC-βH1 cells
treated for 7 d with different DDE concentrations (1 nM–1 µM) as evaluated by RZ, NRU and CFDA-
AM assays. n = eight independent experiments. * vs. Control; one-way ANOVA or Kruskal-Wallis.
(F) mRNA expression of INS, PDX1, HNF4α, MAFA, MAFB, KIR6.2, SUR1, SNAP25, GLUT1, and
GCK in EndoC-βH1 cells treated for 7 d with different DDE concentrations (1 nM–100 nM). n = four
independent experiments. (G) Upper panel, representative recordings of K+ currents in response
to depolarizing voltage pulses in Control or DDE (1 nM–100 nM) EndoC-βH1 treated-cells for 7 d.
Lower panel, relationship between K+ current density and the voltage of the pulses. Control (n = 9)
and DDE (n = 10 per condition) cells. (H) Upper panel, representative recordings of Ca2+ currents in
response to depolarizing voltage pulses in Control or DDE (1 nM–100 nM) EndoC-βH1 treated-cells
for 7 d. Lower panel, relationship between Ca2+ current density and the voltage of the pulses. Control
(n = 8) and DDE (n = 9–10 per condition) cells. (I) Effects of DDE (1 nM–µM) on GSIS in EndoC-βH1
cells treated for 7 d. Left panel: GSIS in response to low glucose (2.8 mM G) and high glucose
(20 mM G). Right panel is an inset graph that shows insulin release in response to 20 mM G. n = three
independent experiments. +vs. Control 20 mM G; Kruskal-Wallis. (J) EndoC-βH1 insulin content
after 7 d DDE treatment. n = three independent experiments. All data are expressed as mean ± SEM.
Significance * p < 0.05, ** p < 0.01, and *** p < 0.001; # p < 0.05; + p < 0.05, and +++ p < 0.001.

3. Discussion

In the present study, we evaluated the effects of selected EDCs within a range of doses
relevant to human exposure on important parameters for pancreatic β-cell function. It
is important to note that, with the exception of high doses of CdCl2, the concentrations
tested did not display significant cytotoxic effects either in murine or in human β-cells. In
all cases, the viability was above 80%, which highlights that the adverse effects of EDCs
reported here could not be attributed to factors such as cytotoxicity.

Voltage-gated ion channels in pancreatic β-cells, such as K+ and Ca2+ channels, are
a key part of the molecular pathway triggering insulin secretion. This is because the
stimulation of insulin release by glucose is linked to membrane depolarization and action
potential generation. In short, glucose enters β-cells through the glucose transporter Glut2
in mice and GLUT1 in humans. Then, glucose is metabolized, leading to an elevation of the
cytoplasmic ATP/ADP ratio, which promotes the closure of the ATP-sensitive K+ channels
(KATP) and K+ efflux reduction. This causes membrane depolarization, opening of voltage-
dependent Ca2+ channels and TTX-sensitive Na+ channels, and elevation of cytosolic
free Ca2+ concentration, which ultimately stimulates the exocytosis of insulin-containing
granules [19]. Finally, delayed rectifying voltage-dependent potassium channels (Kv)
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and calcium-sensitive voltage-dependent K+ channels repolarize the membrane, reducing
insulin release [20]. Thus, any alteration affecting ion channel activity may lead to altered
pancreatic β-cell function.

Here, we evaluated, for the first time, whether some paradigmatic EDCs may impair
glucose-induced electrical activity in a functional human β-cell line. This is highly relevant
as human-translatable models have been revealed as essential for a complete understanding
of the mechanisms underlying pancreatic β-cell failure in diabetes and other metabolic
disorders. In keeping with this, the human β-cell line EndoC-βH1 was recently established
as a robust and valid model for studying human β-cell physiology and also for the screening
of potential drug target candidates [21,22]. Furthermore, it was demonstrated that this
cellular model expresses ion channel counterparts with characteristics similar to those
found in human β-cells, acknowledging that this is a valuable model comparable with
primary human β-cells [23].

We found that some of the selected EDCs impaired global K+ and/or Ca2+ currents.
In particular, we observed that BPA treatment led to reduced K+ currents in EndoC-βH1
cells, a finding that agreed with previously described results in mouse β-cells, and which
was considered dependent on the activation of the estrogen receptor β [24]. Voltage-gated
K+ currents in human pancreatic β-cells include two components. The first one is driven
by large-conductance Ca2+-activated K+ channels (big K+ channels or BK channels), as it
is activated in a rapid manner upon membrane depolarization, depends on Ca2+ influx,
and is inhibited by iberiotoxin. The second one relies on delayed rectifying K+ channels
(Kv2.2 and Kv1.6) [25]. Whether BPA directly affects the specific activity of BK channels,
Kv channels, or both, in human β-cells, requires further investigation. In any case, the
inhibition of K+ channel activity is known to promote increased insulin secretion [25,26],
an effect that was mimicked by BPA.

Another major finding reported here is that low doses of BPA, PFOS, and CdCl2
augmented Ca2+ currents in human β-cells. As insulin granule exocytosis is evoked by the
rise in [Ca2+]i [27], it is tempting to speculate that the modulation of voltage-gated Ca2+

channels elicited by the abovementioned EDCs may be responsible, at least in part, for the
upregulation of insulin secretion found. Of note, BPS treatment also selectively enhanced
Ca2+ currents, although this effect did not correlate with an increase but rather a decrease
in insulin secretion. One possible explanation is that Ca2+ channel activity upregulation
might be an associated compensatory response to the reduced β-cell insulin release as it
happens in aged pancreatic β-cells from mice with a lower insulin sensitivity [28]. It may
also be the case that BPS is negatively regulating the exocytosis machinery.

The clinical relevance of adequate insulin release in response to circulating blood
glucose levels is unquestionable since insulin is the only hormone able to decrease glycemia
levels. Equally important, is that this occurs in the appropriate range since both too low
and too high insulin levels are harmful for the physiological function of body systems.
On one hand, sustained impaired insulin secretion will cause hyperglycemia and, even-
tually, diabetes. On the other hand, an excess of circulating insulin levels will promote
hyperinsulinemia, and, as a consequence, systemic insulin resistance, a key feature of type
2 diabetes [29].

For clarity of discussion, the results of insulin secretion and content for the different
EDC categories will be separately dissected. In addition, a comparison between murine
and human in vitro models, as well as correlation with the in vivo studies in the literature
will be addressed.

3.1. Bisphenols:

We found that BPA in the dose range of 1 nM to 1 µM markedly increased insulin
secretion in both human (EndoC-βH1) and murine (MIN6) pancreatic β-cell lines. This
finding agreed with previous published results in mouse [30–32] and human isolated
islets [33] and also in other murine pancreatic β-cell lines [34]. It was also known that
BPA treatment led to augmented insulin content in mouse islet β-cells [31], an effect that
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was reproduced here in the human β-cell EndoC-βH1. These results correlated well with
the in vivo response elicited by BPA exposure, as BPA-treated animals manifested high
plasma insulin concentration and insulin resistance, both hallmarks of prediabetes [30].
Epidemiological studies in humans have largely pointed in the same direction [12,35,36].
Our data suggest the important role of Ca2+ and K+ channel activity rather than genetic
modification as the molecular mechanism underlying BPA action in pancreatic β-cells.

In contrast, BPS promoted a marked decrease in insulin secretion in mouse and in
human β-cells, which was already evident at the lowest doses assayed (100 pM, 1 nM).
Compared to BPA, the effects of BPS on pancreatic β-cells remain much less well understood.
To date, only one study has been published exploring BPS action. This study showed that
mouse islets of Langerhans treated with 1 nM and 1 µM BPS exhibited enhanced insulin
release compared to controls [37]. The reasons for the discrepancy may include different
time treatments, cellular models, and species used. In addition, we have to consider that
the biological characteristics of 2D-monolayered cell models are not identical to islets cells
as, it is well known that cell-to-cell communication and spatial arrangement in the islets
allow signal synchronization, leading to more effective insulin secretion [38]. In any case,
although few epidemiological studies have been published, they all conclude that BPS is
associated with an increased risk of type 2 diabetes [39,40]. A decline in pancreatic β-cell
function, as here reported, could be a molecular mechanism underlying this phenomenon.

Our study also looked at gene expression changes caused by the selected EDCs. The
analysis, although limited, focused on genes relevant to pancreatic β-cell function and
identity. Some of the most prominent changes were observed in BPA-treated murine β-cells
with an upregulation of the transcription factors Pdx1, Hnf4α, and Mafa. This correlated
quite well with the increase in insulin release as these transcription factors are important
for normal glucose sensing and insulin secretion in adult β-cells [41]. These results also
agreed with the findings observed in β-cells isolated from BPA-exposed animals at different
periods of life [42,43]. In the case of BPS, we found a consistent downregulation of the
glucose transporter gene in both mouse and human β-cells. This is the first evidence that
BPS alters mRNA expression of a key player in glucose uptake in pancreatic β-cells. In this
regard, we speculate that the biological effects of BPS may be similar in other physiological
systems, as this EDC also promoted a downregulation of the sodium glucose transporter
(SGLT1) and the glucose transporter 2 (GLUT2) in the duodenum [44].

3.2. DEHP

Consistent with the current literature, we found that DEHP treatment led to impaired
insulin secretion. This phenomenon has been reported in other in vitro studies. For
example, studies performed on the rat insulinoma cell line INS-1 have shown that cells
exposed to DEHP for 24 h at different concentrations in the micromolar range [45,46]
exhibited decreased insulin secretion. A similar response was found in the murine β-cell
line Rin 5F [47]. Under in vivo conditions, DEHP has also been shown to negatively affect
pancreatic β-cell function and, accordingly, glucose homeostasis [48–52].

Of considerable interest was demonstrating for the first time that DEHP promoted
a decline in insulin secretory capacity in human pancreatic β-cells, an effect comparable
to that found in murine β-cells, although the response pattern was slightly different.
While MIN6 cells manifested marked diminished insulin release in the concentration
range from 100 pM to 10 µM, human β-cells exhibited a non-monotonic dose response
(NMDR) with reduced insulin secretion at nanomolar doses and an increase at a higher
concentration (1 µM). These findings are of relevance as standard risk assessments have
as a core assumption that linear extrapolation procedures can be used to predict effects.
Of note, NMDRs associated with DEHP exposure have also been observed in a broad
range of in vivo and in vitro studies [53]. Some of the outcome variables affected include
aromatase activity [54], fetal male serum testosterone, testicular testosterone, and anogenital
distance [55]. To the best of our knowledge, this was the first experimental indication that
the same behavior could affect the insulin secretory response to glucose.
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3.3. PFOS

It is known that PFOS can accumulate in pancreatic tissue [56,57], affecting pancreatic
β-cell function. In particular, a dual effect of PFOS on insulin secretion has been reported
that could be attributed to different EDC exposure times or species specificity and sensitivity
as discussed below.

Thus, in the murine pancreatic β-cell line TC-6, acute PFOS exposure (5–100 µM)
promoted increased insulin secretion in response to low (1.4 mM) [58], and high glucose
concentrations (16.7 mM) [59]. On the contrary, 48 h of exposure to PFOS (micromolar
range of 10–200 µM) resulted in decreased insulin secretion together with diminished ATP
production, membrane potential, and intracellular calcium concentration [60]. In MIN6
cells and isolated mouse islets, PFOS treatment at 1 and 10 µM doses for 24 h led to reduced
ATP production and GSIS, an effect proposed to be mediated by the downregulation of an
insulin-related Akt-pathway [61]. These data agreed with the findings reported here. We
tested different concentrations of PFOS in the range of 100 pM to 10 µM and found that
MIN6 cells treated for 24 h showed a marked decrease in insulin release, an effect that was
more significant at 100 pM, 100 nM, and 10 µM concentrations. Importantly, we found that
this was correlated with a reduced gene expression of Glut2. Therefore, our data not only
confirmed the disruptive effect of PFOS on pancreatic β-cell function but also provided
new evidence highlighting that this may occur not only in the micromolar range but also at
lower PFOS doses. This is extremely relevant since lower doses seem to be more realistic in
terms of human exposure.

Of note, we also found that human pancreatic β-cells treated with 10 and 100 nM
PFOS for 72 h showed enhanced insulin secretory activity and content, a response similar to
the one revealed in human population studies. Many epidemiological investigations have
demonstrated that plasma PFOS concentrations are positively correlated with elevated
insulin levels, augmented pancreatic β-cell activity, and insulin resistance in adults [62–65]
as well as in overweight children [66]. In vivo animal studies have pointed in the same
direction and shown that developmental exposure to PFOS may lead to hyperinsulinemia
and insulin resistance in offspring when reaching adulthood [67].

3.4. CdCl2
It has been reported that pancreatic β-cells are particularly susceptible to the accumula-

tion of CdCl2 in a time- and dose-dependent manner. Furthermore, it has been pointed out
that CdCl2 may compete with Zn2+ for some of its transporters and binding proteins [68].
This could be quite relevant considering that Zn2+ plays a key role in the correct storage and
release of insulin [69]. It is then reasonable to speculate that the potential harmful effects of
this metal on β-cells will depend to a large extent on both factors. A study carried out on
the MIN6 β-cell line showed that in vitro cellular treatment with CdCl2 (0.5 and 1 µM) for
48 h decreased insulin secretion in a concentration-dependent manner with no effect at the
lowest dose assayed [68]. In another study, MIN6 cells were exposed to CdCl2 (1–5 µM) for
24 h, and diminished insulin release was found in response to 2 µM CdCl2 concentration or
above [70], while in Rin-m5F cells [71], higher doses (5 and 10 µM) were required to achieve
the same effect. Our data indicated that treatment of MIN6 cells with CdCl2 in a range
of doses from 100 pM to 1 µM for 24 h did not exert any effect on GSIS. Given the above,
we hypothesized that longer exposure times and higher doses are required for CdCl2 to
have an impact on β-cell function. Surprisingly, in human β-cells we found that 10 nM
CdCl2 treatment for 72 h led to a modest increase in insulin release, although no effect was
observed at lower (1 nM) or higher (100 nM, 1 µM) doses. This was in accordance with
an increase in Ca2+ currents at 10 nM, which could explain this slight increase in insulin
secretion. Whether or not this has a major impact on pancreatic β-cell physiology should
be further explored.

In vivo studies also suggested that CdCl2 effects on pancreatic β-cell activity and
glucose homeostasis may vary, presumably depending on time, doses of exposure, and
route of administration. For example, rats orally exposed to CdCl2 for 1 month manifested
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hyperinsulinemia and insulin resistance [72,73]. Longer exposures to CdCl2 (12 w) led
to diminished insulin secretion in isolated islets [74], while rats intraperitoneally injected
with CdCl2 for 24 w manifested decreased serum insulin levels and liver insulin receptor
expression, but no effects on glucose levels or insulin tolerance were detected [75].

3.5. DDE

DDE is the major metabolite of the persistent organochloride pesticide DDT. Although
there is some epidemiological evidence indicating a positive association between DDE
levels and diabetes incidence [76,77], whether this results from a direct action of DDE on
pancreatic β-cell function remains unknown. To date, very few studies have explored this
plausible underlying mechanism. A previous study has reported that basal insulin levels
decreased in INS-1E cells exposed to 10 µM DDE, but the effects of DDE on the insulin
secretory response to stimulatory glucose concentrations were not analyzed [78]. In our
experiments, we did not find any effect of DDE on insulin secretion or content, either in
mouse β-cells or in human cells, at least under the experimental conditions assayed. In any
case, more investigation is needed in order to decipher DDE’s impact on β-cell physiology.

There are several limitations to our study. First, it is focused on cell-based in vitro
models and, although they are currently considered essential for conducting safety chemi-
cal assessments as they have been successfully employed to unravel processes relevant to
human diseases, cells in vitro are a relatively simplified system with respect to the complex-
ity of the entire organism. This can lead to a number of challenges, including difficulties in
extrapolating from in vivo doses to in vitro concentrations, analyzing interactions between
different cell types, as well as simulating the consequences of long-term exposures in vitro.
Second, we are exploring the effects of exposure to individual chemicals but not to chemical
mixtures, which could better reflect the “real-life” situation.

Despite these limitations, the present study has several strengths. First, this study
was able to evaluate the impact of seven different MDCs on pancreatic β-cells, revealing
new molecular information on how the selected chemicals may exert direct effects on key
aspects of pancreatic β-cell function. Second, we examined the use of the pancreatic β-cell
line EndoC-βH1 as a valuable human-translatable model for EDC screening and made a
comparison between murine and human β-cell responses. Lastly, we provided evidence
that the selected EDCs impaired a number of metabolic endpoints in pancreatic β-cells.
It is worth mentioning that these endpoints can be considered important molecular key
events (KEs) in an adverse outcome pathway (AOP) framework for diabetes. These KEs
include the following: (i) impaired expression of genes encoding for β-cell function and
identity, (ii) decreased K+ currents, (iii) increased Ca2+ currents, and (iv) altered insulin
secretion and content. This is of considerable relevance as KEs are essential biological
events connecting a molecular initiating event (MIE) with a final adverse outcome (AO)
such as insulin resistance or hyperglycemia.

4. Conclusions

Our results showed that both pancreatic β-cell models, MIN6 and EndoC-βH1, were
responsive and sensitive to most of the EDCs tested and that the responses were in general
agreement with those revealed in other in vivo and in vitro studies found in the literature.
In addition, we revealed for the first time the impact of relevant EDCs on key molecular
aspects of pancreatic β-cell physiology, such as electrical activity and insulin release, in a
human cell-based model. As such, this system may shed light on the molecular mechanisms
underlying the EDC mode of action and improve the risk assessment framework for MDC
in relation to human β-cell dysfunction. Overall, the work presented here points to the
possibility of using the pancreatic β-cell lines assayed as sensitive screening tools for the
identification of the potential diabetogenic environmental pollutants.

The results presented here have been obtained in the framework of the OBERON
project, a project funded by the European Union’s Horizon 2020 Research and Innovation
programme with the main goal of developing the experimental methods for EDC assess-
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ment in relation to metabolic disorders and supporting the OECD conceptual framework
for testing and assessment of EDCs.

5. Material and Methods
5.1. Chemicals

Bisphenol A (BPA, Cat No 239658), bisphenol S (BPS, Cat No 103039), bisphenol F (BPF,
Cat No B47006), Di(2-ethylhexyl) phthalate (DEHP, Cat No 36735), perfluorooctanesulfonic
acid (PFOS, Cat No 77283), cadmium chloride (CdCl2, Cat No 202908), and 1,1-Dichloro-2,2-
bis(4-chlorophenyl)ethene, 4,4′-DDE (4,4′-DDE, Cat No 35487), and IBMX (Cat No I-5879),
were purchased from Sigma-Aldrich (Saint Louis, MO, USA). Diazoxide (Cat no 0964) was
purchased from Tocris Cookson (Bristol, UK). All chemicals were dissolved in dimethyl
sulfoxide (DMSO) to prepare the stock solution, except for CdCl2, which was dissolved in
water. The amount of DMS was maintained at less than 0.03%.

5.2. Cell Culture

The MIN-6 cell line was kindly provided by Dr. Jun-Ichi Miyazaki (Osaka University,
Osaka, Japan). MIN6 cells were grown in optimized DMEM (AddexBioTechnologies,
San Diego, CA, USA) supplemented with 10% FBS (HyClone, GE Healthcare Life Sciences,
Logan, UT, USA), 50 µM 2-β-mercaptoethanol (Gibco, Paisley, UK), 100 units/mL penicillin
and 100 µg/mL streptomycin (Thermo Fisher Scientific, Waltham, MA, USA). For EDC
treatment, DMEM without phenol red (Sigma-Aldrich, Saint Louis, MO, USA) was used.
It was supplemented with 1.5 g/L sodium bicarbonate, 1 mM sodium pyruvate (Gibco,
NY, USA), 50 µM 2-β-mercaptoethanol (Gibco, Paisley, UK), 100 units/mL penicillin,
100 µg/mL streptomycin (Thermo Fischer Scientific, Waltham, MA, USA), and 10% charcoal
dextran-treated FBS (HyClone, GE Healthcare Life Sciences, Logan, Utah, USA).

EndoC-βH1 cells (Univercell Biosolutions, Paris, France) were cultured and passaged
as previously described [79]. Briefly, cells were cultured in DMEM containing 5.6 mM
glucose, 2% BSA fraction V fatty acid free (Sigma-Aldrich, Saint Louis, MO, USA), 50 µM
2-β-mercaptoethanol (Gibco, Paisley, UK), 10 mM nicotinamide, 5.5 µg/mL human trans-
ferrin, 6.7 ng/mL sodium selenite (Sigma-Aldrich, Saint Louis, MO, USA), 100 units/mL
penicillin and 100 µg/mL streptomycin (Thermo Fischer Scientific, Waltham, MA, USA).
Cells were seeded at a density of 70–80 × 103 cells/cm2 on ECM (1%) and fibronectin
(2 µg/mL) (Sigma-Aldrich, Saint Louis, MO, USA) -coated plates, and cultured at 37 ◦C
in 5% CO2. For treatment with EDCs, DMEM was replaced with DMEM without phe-
nol red (Sigma-Aldrich, Saint Louis, MO, USA) and BSA was replaced by 2% charcoal
dextran-treated FBS (HyClone, GE Healthcare Life Sciences, Logan, UT, USA).

Both cell lines were incubated at 37 ◦C with 5% CO2. Cells were discarded after
passage 32 for MIN6 and passage 72 for EndoC-βH1.

5.3. Cell Viability

MIN6 and EndoC-βH1 cells were seeded at densities of 35 × 103 and 20 × 103 cells
per well, respectively, in dark 96-well plates (Corning Incorporated, Kennebunk, ME, USA)
72 h before the treatment. Then, the medium was replaced, and cells were treated with
vehicle or different concentrations of the EDCs tested for 24, 48, 72 h, or 7 d as indicated in
the figure legends.

The medium was replaced every 24 h. At the end of the incubation time cell viabil-
ity was assessed using a combination of the following three indicator dyes: RZ (Thermo
Fisher Scientific, Waltham, MA, USA), neutral red (Sigma-Aldrich, Saint Louis, MO, USA),
and CFDA-AM (Thermo Fisher Scientific, Waltham, MA, USA). Cells were washed with
phosphate-buffered saline (PBS) and incubated for 40 min with a solution of RZ (5% v/v)
and CFDA-AM (4 µM) prepared in serum-free DMEM. After incubation, fluorescence
(RZ: excitation 530–570 nm, emission 590–620 nm; CFDA-AM: excitation 485 nm, emis-
sion 520 nm) was measured using a fluorescence plate reader (POLARstar Omega, BMG
Labtech). After removing the RZ and CFDA-AM dye, cells were rinsed twice with PBS
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and incubated for 2 h with neutral red solution (0.005% w/v). Accumulated neutral red
was extracted from cells by a lysis solution (1% glacial acetic acid in 50% ethanol). NRU
was quantified by the measurement of absorbance at 540 and 690 nm (background) using a
microplate reader (Biotek EON). Amounts of 3 or 10% DMSO were used as positive controls
for cellular damage in MIN6 and EndoC-βH1, respectively. The results are expressed as
percentages (%) of the readings in the control wells.

5.4. Insulin Secretion and Content

EndoC-βH1cells were seeded onto coated 24-well plates at a density of 200 × 103 cells
per well for 72 h before EDC treatment. Then, cells were exposed to different concentrations
of test EDCs for 48, 72 h, or 7 d (exposure time was optimized for each compound). Prior
to the insulin secretion experiment, cells were washed twice and preincubated for 2 h in a
modified Krebs–Ringer medium containing 120 mM NaCl, 5.4 mM KCl, 1.2 mM KH2PO4,
1.2 mM MgSO4, 20 mM HEPES, 2.4 mM CaCl2 and 0.1% BSA, pH 7.4 at 37 ◦C. Cells were
then incubated with Krebs–Ringer medium at 2.8 mM glucose for 40 min, followed by
20 mM glucose for 40 min. 3-Isobutyl-1-methylxanthine (IBMX) (0.5 mM) was used as a
positive control and diazoxide (DZX) (0.2 mM) as a negative control. Supernatants were
collected as basal and stimulated insulin secretions, respectively, centrifuged at 700× g and
4 ◦C for 5 min, and immediately frozen for later analysis. For insulin content cells were lysed
using TETG buffer supplemented with Complete™ Mini Anti-protease (Sigma-Aldrich,
Saint Louis, MO, USA) (prepared following the manufacturer’s instructions). Lysate was
centrifuged at 700× g and 4 ◦C for 5 min and supernatants were immediately frozen. Insulin
secretion and content were measured by ELISA according to manufacturer’s instructions
using the Human Insulin Kit (Mercodia, Uppsala, Sweden). Protein measurement was
carried out using Pierce BCA kit (Thermo Fisher, Waltham, MA, USA). Insulin secretion
and content were normalized by protein content and expressed as percentages of control
2.8 mM glucose.

MIN6 cells were seeded in 24-well plates at a density of 150 × 103 cells per well for
72 h before EDC treatment. Cells were preincubated with Krebs–Ringer medium (0 mM
glucose) for 2 h and then incubated with Krebs at 1.67 mM glucose for 30 min, followed
by 16.7 mM glucose for 30 min. Streptozotocin (STZ) (0.25 mM) was used as negative
control. For insulin content measurement, cells were washed with PBS, lysed in ice-cold
acid ethanol (75% ethanol, 1.5% HCl) and incubated overnight at 4 ◦C. Insulin secretion
and content were measured by ELISA (Mercodia, Uppsala, Sweden). Protein measurement
was carried out using Bradford (Sigma-Aldrich, Saint Louis, MO, USA). Insulin secretion
and content were normalized by protein content and expressed as percentages of control
1.67 mM glucose. For simplicity, only significant differences due to EDC treatment between
low or high-glucose and vehicle-treated cells are denoted.

5.5. RNA Extraction and RT-qPCR

Pancreatic cells were seeded in 24-well plates at a density of 150 × 103 cells/well for
MIN6 cells and 200 × 103 cells/well for EndoC-βH1 cells. After EDC treatment, RNA was
extracted using a commercial kit (RNeasy Micro kit, Qiagen, Hilden, Germany) according
to the manufacturer’s instructions. RNA (1µg) was reverse transcribed using the High
Capacity cDNA Reverse Transcription kit (Applied Biosystems, Foster City, CA, USA).
Quantitative PCR assays were performed using the CFX96 Real Time System (Bio-Rad
Laboratories, Hercules, CA, USA). Amplification reactions were carried out in medium
containing a 200 nM concentration of each primer, 1µL of cDNA, and IQ SYBR Green
Supermix (Bio-Rad Laboratories, Hercules, CA, USA). Primers were designed between
exons to avoid genomic cross-reaction. Samples were subjected to the following conditions:
30 s at 95 ◦C, 45 cycles (5 s at 95 ◦C, 5 s at 60 ◦C, and 10 s at 72 ◦C) and a melting curve
of 65–95 ◦C. The resulting values were analyzed with the CFX96 Real-Time System (Bio-
Rad Laboratories, Hercules, CA, USA) and were expressed relative to the control values
(2−∆∆CT). All measurements were performed in duplicate and normalized against the
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geometric mean of the housekeeping genes Actb and Hprt. The primers used herein are
listed in Supplemental Table S3.

5.6. Electrophysiological Recordings: K+ and Ca2+ Currents

EndoC-βH1 cells were plated on ECM–fibronectin pre-coated slip slides (10 mm) at
a density of 150 × 103 cells per slide. After at least 24 h cells were exposed to EDCs at
different concentrations as indicated in the figure legend. For the patch-clamp recordings
of voltage-gated K+ and Ca2+ currents the standard whole-cell patch-clamp was used, as
previously described [25]. Data were obtained using an Axopatch 200B amplifier (Axon
Instruments Co., Union City, CA, USA). Patch pipettes were pulled from borosilicate
capillaries (Sutter Instruments Co., Novato, CA, USA) using a flaming/brown micropipette
puller P-97 (Sutter Instruments Co., Novato, CA, USA) and heat polished at the tip using an
MF-830 microforge (Narishige, Japan). The bath solution contained the following: 135 mM
NaCl, 5 mM KCl, 2.5 mM CaCl2, 1.1 mM MgCl2, 10 mM HEPES, and 5 mM glucose (pH: 7.4
with NaOH). Various pipette-filling solutions were used. For recordings of voltage-gated
K+ currents, the pipette was filled with the following: 120 mM KCl, 1 mM MgCl2, 1 mM
CaCl2, 3 mM MgATP, 10 mM EGTA, and 10 mM HEPES (pH: 7.15 with KOH). A similar
medium was used for the Ca2+ current measurements except that KCl was equimolarly
replaced by CsCl and pH adjusted with CsOH (pH: 7.15). K+ currents were recorded in
response to depolarizing voltage pulses of −60 mV to +80 mV from a holding potential
of −70 mV. Ca2+ currents were recorded in response to depolarizing voltage pulses of
−60 mV to +50 mV from a holding potential of −70 mV. For K+ and Ca2+ currents density
quantification, K+ and Ca2+ currents (in pA) were normalized to the cell capacitance (in pF).

After filling the pipette with the pipette solution, the pipette resistance was 3–5 MΩ.
A tight seal (>1 GΩ) was established between the cell membrane and the tip of the pipette
by gentle suction. The series resistance of the pipette usually increases to 6–15 MΩ after
moving to the whole cell. Series resistance compensation was used (up to 70%) to keep
the voltage error below 5 mV during current flow. Finally, data were filtered (2 KHz) and
digitized (10 KHz) using a Digidata 1550B1 (Molecular Devices, San Jose, CA, USA).

5.7. Statistical Analysis

The GraphPad Prism 7.0 software (GraphPad Software, Inc., San Diego, CA, USA)
was used for all statistical analyses. Data are expressed as the mean ± SEM. To assess
differences between groups, two-way analysis of variance (ANOVA) followed by post
hoc Tukey test, one-way ANOVA followed by Dunnett’s test, or Student’s t-test was used
when appropriate. When data did not pass the parametric test, Kruskal–Wallis followed
by post hoc Dunn’s multiple comparison test was used. Statistical significance was set at
p < 0.05 for all the analyses. The statistical tests used in each experiment are specified in
each figure legend.
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Abbreviations

AO Adverse outcome
AOP Adverse outcome pathway
BPA Bisphenol-A
BPF Bisphenol-F
BPS Bisphenol-S
CdCl2 Cadmium chloride
CFDA-AM Carboxyfluorescein diacetate acetoxymethyl ester
DDE Dichlorodiphenyldichloroethylene
DEHP Di(2-ethylhexyl) phthalate
EDCs Endocrine-disrupting chemicals
EndoC-βH1 Human pancreatic β cell line EndoC-βH1
GSIS Glucose-stimulated insulin secretion
KEs Key events
MDCs Metabolism-disrupting chemicals
MIN6 Mouse insulinoma 6
NRU Neutral red uptake
OECD Organization for Economic Cooperation and Development
PFOS Perfluorooctanesulfonic acid
RZ Resazurin
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