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Accumulating studies have shown that microbes are closely related to human
diseases. In this paper, a novel method called MSBMFHMDA was designed to
predict potential microbe–disease associations by adopting multi-similarities bilinear
matrix factorization. In MSBMFHMDA, a microbe multiple similarities matrix was
constructed first based on the Gaussian interaction profile kernel similarity and
cosine similarity for microbes. Then, we use the Gaussian interaction profile kernel
similarity, cosine similarity, and symptom similarity for diseases to compose the disease
multiple similarities matrix. Finally, we integrate these two similarity matrices and the
microbe-disease association matrix into our model to predict potential associations.
The results indicate that our method can achieve reliable AUCs of 0.9186 and 0.9043 ±
0.0048 in the framework of leave-one-out cross validation (LOOCV) and fivefold cross
validation, respectively. What is more, experimental results indicated that there are 10,
10, and 8 out of the top 10 related microbes for asthma, inflammatory bowel disease,
and type 2 diabetes mellitus, respectively, which were confirmed by experiments and
literatures. Therefore, our model has favorable performance in predicting potential
microbe–disease associations.
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INTRODUCTION

Microorganisms are the general names of all tiny organisms that individuals cannot observe with
the naked eye, but are closely related to humans. Microorganisms include bacteria, viruses, fungi,
and a large group of small protozoa, microalgae (The Human Microbiome Project Consortium,
2012). We all know that microbes can cause diseases and make food, cloth, and leather moldy
and decay, but it also has a beneficial side. For instance, probiotics in the gut are beneficial to
ferment undigested carbohydrates in order to produce nutrition needed for the human body.
One of the most important effects of microbes on human beings is to lead to the spread of
infectious diseases. Viruses are the cause of 50% of human diseases, therefore, microbes can
greatly influence human health. For example,Mycobacterium tuberculosis and Bacillus anthracis
can cause tuberculosis and anthrax, respectively (Hawn et al., 2014; Hendricks et al., 2014).
Therefore, identifying disease-related microbes is one of the important tasks in the study of
complex disease pathology. One of the useful values of biological research is its application in the
field of medicine for the benefit of human health. Identification and prediction of human
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microbe–disease associations are important for disease
prevention, diagnosis, treatment, and prognosis.
Nevertheless, the traditional test methods are time
consuming and costly. As the result, it is crucial to predict
microbe–disease associations by computational methods.

Due to the rapid development of artificial intelligence (AI)
and machine learning technology (Huang, 1996; Huang, 1999;
Huang and Du, 2008), many computational methods are
widely applied in predicting the potential correlation among
biological entities [such as miRNA-disease (Chen and Yan,
2015; You et al., 2017; Chen et al., 2018a; Chen et al., 2018b),
lncRNA-disease (Chen and Yan, 2013; Chen et al., 2016b; Yu
et al., 2018; Chen et al., 2019; Xuan et al., 2019), and
drug–target interaction prediction (Chen et al., 2012)].
Meanwhile, many computational methods have been
proposed to predict microbe–disease associations.
According to the introduction of this paper (Wen et al.,
2021), the existing methods can be divided into five
categories, namely, path-based methods, random walk
methods, bipartite local models, matrix factorization
methods, and other methods. The path-based method
mainly calculates the relationship between microbe and
disease by two indexes, one is walk length, the other is the
number of paths reached. KATZHMDA (Chen et al., 2016a),
based on path-based method, is the first calculation method by
computing the number of walks of connections between
microbe and disease nodes in the microbe–disease
association network. Random walk methods first construct a
transition probability network by microbe and disease nodes; a
potential association is then searched by measuring the path
probability of the walker from the start node to the end node in
the network. BiRWHMDA (Zou et al., 2017), BiRWMP (Shen
et al., 2018), and NBLPIHMDA (Wang et al., 2019) using
random walk achieves satisfying performance. Bipartite local
models calculate the prediction scores of microbes and
diseases, respectively, and then the two scores are combined
as the final prediction score. Matrix factorization methods
decompose an interaction matrix into two low dimensional
matrices representing disease features and microbe features.
Finally, the product of the two feature matrices is taken as the
final prediction matrix. CMFHMDA (Shen et al., 2017) is the
first calculation model based on matrix factorization by
integrating known microbe–disease association and
Gaussian interaction profile kernel similarity for microbes
and diseases. MDLPHMDA (Qu et al., 2019) puts forward
the matrix decomposition and label propagation to predict
microbe–disease association. NMFMDA (Liu et al., 2018)
predicts potential associations by graph-regularized non-
negative matrix factorization. Other methods mainly
include ensemble learning and matrix completion, such as
ABHMDA (Peng et al., 2018), BMCMDA (Shi et al., 2018), and
MCHMDA (Yan et al., 2021). What is more, the methods
based on matrix decomposition were developed to predict the
relationship between other biological entities (Wang and Gao,
2015; Qiu et al., 2021a; Qiu et al., 2021b), for example, Qiu
et al. (2021a) proposed a novel model based on weighted data
fusion with sparse matrix tri-factorization to predict

associations between RNA-binding proteins and alternative
splicing, namely, WDFSMF. WDFSMF simultaneously
decomposes heterogeneous data source matrices into low-
rank matrices to mine potential associations.

However, some of the above prediction models of
microbe–disease have their own limitations. Owing to the
lack of measurements for microbe and disease similarity,
some models, which are only based on the Gaussian
interaction profile kernel similarity of microbes and
diseases, cannot be used to predict diseases that are not
associated with microbes. In this study, considering the
above limitations and inspired by the good performance of
multi-similarities bilinear matrix factorization method to
predict drug-associated indications (Yang et al., 2021), we
proposed a new microbe–disease association prediction
model called MSBMFHMDA. The overall workflow of our
method is illustrated in Figure 1. First, we calculated the
Gaussian interaction profile kernel similarity and cosine
similarity for diseases and microbes based on the dataset
of known microbe–disease associations. Then, two
concatenated microbe and disease similarity matrices are
constructed based on the Gaussian interaction profile
kernel similarity for diseases and microbes, disease
symptom similarity, cosine similarity for diseases, and
microbes. Notably, we concatenate these similarity
matrices of microbe and disease instead of fusing multiple
similarities into a single similarity matrix. Finally, we
integrate these two concatenated similarity matrices and
the microbe–disease association matrix into our MSBMF
model to infer potential microbe–disease associations. The
framework of LOOCV and fivefold cross validation were
implemented to estimate the prediction performances of
MSBMFHMDA. The results suggested that our method
could achieve reliable AUCs of 0.9186 and 0.9043 ±
0.0048 in LOOCV and fivefold cross validation,
respectively, which is much better than state-of-the-art
methods. Moreover, we further implemented the case
studies of asthma, IBD, and T2D on MSBMFHMDA, and
the reliability of our model is further verified.

MATERIALS AND METHODS

Datasets
The Human Microbe–Disease Association Database (HMDAD)
(Ma et al., 2017) is the first human microbe–disease association
database established by Ma et al. through a lot of biological
experiments. The database includes 483 experimentally tested
and verified associations between 292 microbes and 39 diseases.
We downloaded the data from HMDAD (http://www.cuilab.cn/
hmdad), then removed redundant associations. Thus, 450
microbe–disease associations including 39 diseases and 292
microbes were obtained from 61 publications. As a result, a
39 × 292 dimensional adjacency matrix A is constructed. In
addition, in the adjacency matrix A, the value ofA[i [j]] is set to 1
if microbe m[j] is related to disease d[i], otherwise, A[i [j]] is
set to 0.
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Similarity Measures of Microbe
Gaussian Interaction Profile Kernel Similarity of
Microbes: KM
Gaussian kernel function is a common kernel function. Its
essence is to measure the similarity between samples (van
Laarhoven et al., 2011). It is based on the assumption that two
similar diseases and the same microbe will exhibit the same
interaction and non-interaction relationship. Therefore, in the
known microbe–disease association network, we adopt the
Gaussian interaction profile kernel similarity to compute
microbe similarity according to the following Eq. 1:

KM(m(i), m(j)) � exp(− cm
����IP(m(i) − IP(m(j))����2) (1)

where m[i] and m[j] represent the ith and jth microbes,
respectively, in the matrix A, and its interaction profiles
IP(m(i)) and IP(m(j)) represent the ith and jth column,
respectively. Based on this information, we can calculate the
similarity between the two microbe vectors by calculating the L2
norm. Additionally, the parameter cm can be calculated as follows:

cm � cm′

( 1
nm
∑nm

k�1‖IP(m(k))‖2) (2)

where cm is a parameter used to control the bandwidth of theGaussian
kernel function; it is the result of normalization by bandwidth
parameter cm′ , and according to the previous experiment (van
Laarhoven et al., 2011), cm′ will be set to 1. nm is the total number of
microbes collected from the HMDAD, so, nm is equal to 292.

Cosine Similarity of Microbes: CM
Microbe cosine similarity is calculated based on assumptions that
if the microbes are similar to each other (Xie et al., 2019). In other
words, in the microbe–disease association matrix, A(i, :) and
A(j, :) should be similar to each other. Therefore, the cosine
similarity between microbe m(i) and microbe m(j) can be
calculated as follows:

CM(m(i), m(j)) � A(i, : ) · A(j, : )
‖A(i, : )‖ × ����A(j, : )���� (3)

where A(i, :) represents the ith row of adjacency matrix A; the
result is then projected into [0, 1] by the min–max normalization.

Similarity Measures of Disease
Gaussian Interaction Profile Kernel Similarity of
Diseases: KD
In a similar way, the Gaussian interaction profile kernel
similarity between disease d(i) and disease d(j) can be defined
as follows:

KD(d(i), d(j)) � exp( − cd
����IP(d(i) − IP(d(j)) 2)���� (4)

cd �
cd′

( 1
nd
∑nd

k�1‖IP(d(k))‖2)
(5)

cd′ will be also set to 1; nd is equal to 39.

Cosine Similarity of Diseases: CD
The cosine similarity between disease d(i) and disease d(j) is
given as follows:

FIGURE 1 | The overall workflow of MSBMFHMDA.
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CD(d(i), d(j)) � A(: , i) · A(: , j)
‖A(: , i)‖ × ����A(: , j)���� (6)

where A(:, i) represents the ith column of adjacency matrix A; the
result is then projected into [0, 1] by the min–max normalization.

Symptom-Based Disease Similarity: SDM
The abnormal subjective feeling or some objective pathological
changes of patients caused by a series of abnormal changes in
function, metabolism, and morphological structure in the process
of disease are called symptoms. Some diseases, especially in the
early stage of some diseases, may not be accompanied by
symptoms and signs. The human symptoms–disease network
(HSDN) has been constructed by Zhou et al. from PubMed
(Wheeler et al., 2007; Zhou et al., 2014). Moreover, they used
term frequency inverse document frequency (TF-IDF) (Salton
et al., 1975) to measure the symptom-based disease similarity
based on the co-occurrence frequency between a disease and a
symptom. Based on these data, Chen et al. (2016a) extracted those
symptom-based similarities of common diseases from HMDAD.
Hence, symptom similarity SDM can be constructed.

MSBMF Model
As the microbe–disease association matrix is low rank, in other
words, it is very sparse, microbe-disease association matrix can
be split into two low-dimensional feature matrices, i.e., disease
feature X and microbe Y. Then, Tikhonov regularization
terms are used to avoid over-fitting. The elementary matrix
factorization model is formulated as follows:

min
X,Y

1
2

����PΩ(XYT − A)����2F + λ1
2
(‖X‖2F + ‖Y‖2F) (7)

where ‖ •‖Fdenotes the Frobenius norm,
‖A‖F � 							

tr(ATA)√ �
				∑m

i�1
√ ∑n

j�1a2ij, tr(A) is the trace of matrix

A, ‖A‖2F � tr(ATA) � ∑m
i�1 ∑n

j�1 a2ij, λ1 is the harmonic parameter

to counterpoise the error term and the regularization terms,Ω is an
index set of known association in matrix A, and ΡΩ is defined as:

(PΩ(I))ij � { Iij, (i, j) ∈ Ω
0, (i, j) ∉ Ω (8)

However, Eq. 7 does not involve prior information about diseases
and microbes. Given a disease similarity matrix D and a microbe
similarity matrixM, as X,Y can be considered as matrices containing
disease and microbe potential characteristic vectors, respectively,
XXT and YYT are expected to match D and M, respectively
(Zheng et al., 2013; Cui et al., 2019). Therefore, Eq. 7 is extended to:

min
X,Y

1
2

����PΩ(XYT − A)����2F + λ1
2
(‖X‖2F + ‖Y‖2F) + λ2

2
(����D −XXT

����2F
+ ����M − YYT

����2F)
(9)

In order to incorporate multiple similarity measures, an MSBMF
model can be proposed for predicting microbe–disease associations,
which is formulated as follows:

min
X,Y,P,Q,Z

1
2

����XYT − Z
����2F + λ1

2
(‖X‖2F + ‖Y‖2F)

+ λ2
2
(����Dm −XPT

����2F + ����Mm − YQT
����2F)

+ λ3
2
(‖P‖2F + ‖Q‖2F)

s.t. PΩ(A) � PΩ(Z)
X≥ 0, Y≥ 0

(10)

Dm and Mm are multi-similarities matrices of diseases and
microbes, respectively, and λ1, λ2, λ3 are balancing parameters.
Obviously, Dm � [KD,CD, SDM] and Mm � [KM,CM], where
P and Q are matrices including latent features representing disease
similarity and microbe similarity, respectively. Z is an auxiliary
matrix that helps to optimize. Furthermore, by introducing two
splitting matrices S and T, Eq. 10 is transformed into:

min
X,Y,P,Q,S,T,Z

1
2

����XYT − Z
����2F + λ1

2
(‖X‖2F + ‖Y‖2F)

+ λ2
2
(����Dm −XPT

����2F + ����Mm − YQT
����2F)

+ λ3
2
(‖P‖2F + ‖Q‖2F)

s.t. PΩ(A) � PΩ(Z)
S � X,T � Y

S≥ 0, T≥ 0

(11)

Then, we use the alternating direction method of multipliers
(ADMM) framework to solve Eq. 10. The augmented Lagrangian
function is given by:

ℓ(X, Y, P, Q, S, T, Z) � 1
2

����XYT − Z
����2F + λ1

2
(‖X‖2F + ‖Y‖2F)

+λ2
2
(����Dm −XPT

����2F + ����Mm − YQT
����2F) + λ3

2
(‖P‖2F + ‖Q‖2F)

+〈Φ, X − S〉 + 〈Ψ, Y − T〉 + μ

2
(‖X − S‖2F + ‖Y − T‖2F)

(12)

TABLE 1 | The area under the curve (AUC) value using different λ1 and λ2 values in
the leave-one-out cross validation (LOOCV).

λ2 0.001 0.01 0.1 1

λ1

0.001 0.8667 0.8653 0.7689 0.6894
0.01 0.8849 0.8884 0.8798 0.7854
0.1 0.9067 0.9186 0.8968 0.8764
1 0.8932 0.8946 0.8937 0.8831

TABLE 2 | The AUC value using different τ values while fixing λ1 � 0.1 and λ2 �
0.01.

τ 0.1 0.3 0.5 0.7 0.9 1

AUC 0.8556 0.8721 0.8901 0.9186 0.9187 0.9186
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where Φ and Ψ are the Lagrange multipliers, and μ is the penalty
parameter. After k iteration,Xk+1, Yk+1, Pk+1, Qk+1,Sk+1, Tk+1 and
Zk+1 will be computed. We adopt a scheme with gradually

increasing learning rate to achieve fast convergence (Shang
et al., 2018). After executing the MSBMF algorithm, a non-
negative matrix M* is a predicted scores matrix. The scheme
of MSBMF model is illustrated in Algorithm 1.

Algorithm 1. MSBMF algorithm.

Input: the microbe–disease association matrix M, the multiply
similarities of disease matrices Dm, the multiply similarities of
microbe matrices Mm, subspace dimensionality r, parameters
λ1, λ2 and λ3.
Output: predicted association matrix M*.
Step1: calculate microbe GIP similarity and cosine similarity;
Step2: calculate disease GIP similarity, cosine similarity, and
symptom-based similarity;
Step 3: initializing randomly four non-negative matrices X0,
Y0, P0, Q0; S0 �X0,T0 �Y0, Z0 �M,Φ0 � 0,Ψ0 � 0, μ0, μmax, and
rate changing factor ρ > 1;
Step4: repeat compute Xk+1, Yk+1, Pk+1, Qk+1, Sk+1, Tk+1, and
Zk+1, and update the multipliers by:
Φk+1 ←Φk + μk(Xk+1−Sk+1); Ψk+1 ←Ψk + μk(Yk+1−Tk+1);
update μk+1 by μk+1 ←min(ρμk , μmax); k← k + 1; until
convergence;
Step5: obtain the predicted association matrix M*.
Step6: Return M*.

RESULTS

Performance Evaluation
The problem of microbe–disease associations prediction can be
seen as a classification or regression problem, usually using
cross-validation to evaluate the generalization capabilities of the
new sample. In order to evaluate performance of our model, we
carry out two kinds of computational experiments, including
LOOCV and fivefold cross validation. In LOOCV, each
confirmed microbe–disease association was chosen as a test
sample in turn, and the rest of the associations were used to
train. After executing MSBMFHMDA, the score of the test
example would be ranked with the scores of candidate
samples that were made up of all unconfirmed
microbe–disease pairs. In fivefold cross validation, we first
divided the known microbe–disease associations into five
equal parts and later made each part as a test sample in turn
and the remaining four parts of associations as training samples.
Similarly, the score of each test sample would be ranked with the
scores of candidate samples that were made up of all
unconfirmed microbe–disease pairs. As the sample divisions
may cause bias, we repeated the fivefold cross-validation
100 times to get an average value as the final result. As the
predicted score that obtained a higher rank than the given
threshold, our model is considered to make a successful
prediction. Then according to diverse thresholds, we plotted
the receiver operating characteristics (ROC) curve by
computing the ratio of true positive rate (TPR, sensitivity) to
false positive rate (FPR, 1-specificity). The AUC can be used to

FIGURE 2 | Prediction performance comparison between
MSBMFHMDA and the other three methods in leave-one-out cross
validation (LOOCV).

TABLE 3 | Performances of different methods in LOOCV and fivefold CV.

Method LOOCV Five-fold CV

MSBMFHMDA 0.9186 0.8993 ± 0.0032
NBLPIHMDA 0.8777 0.8958 ± 0.0027
BiRWMP 0.8637 0.8522 ± 0.0054
KATZHMDA 0.8382 0.8301 ± 0.0033

FIGURE 3 | Prediction performance comparison between
MSBMFHMDA and the other three methods in fivefold cross validation.
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evaluate its predictive performance, where the AUC value of 1
represents perfect prediction ability, and the AUC value of 0.5
indicates random prediction performance (Chen et al., 2016a).

Effects of the Parameters
In our algorithm, the tunable parameters include the latent
dimension r and the three coefficients λ1, λ2, and λ3. We set r
� [τmin (m, n)], where τ ∈ [0, 1] and [•] denotes the rounding
function. Because there are many parameters, they may lead to
overfitting. So, we set λ2 and λ3 to the same value to prevent
overfitting. Finally, three parameters need to be determined,
including τ, λ1, and λ2.

FIGURE 4 | Variation of the AUCs with the various settings of λ1.

FIGURE 5 | Variation of the AUCs with the various settings of λ2.

FIGURE 6 | Variation of the AUCs with the various settings of τ.

TABLE 4 | The validation results of the top 10 predicted asthma-related microbes
by implementing MSBMFHMDA.

Rank Microbe Evidence

1 Firmicutes PMID:23265859
2 Clostridium difficile PMID:21872915
3 Staphylococcus aureus PMID:17950502
4 Bacteroides PMID:18822123
5 Clostridium coccoides PMID:21477358
6 Lachnospiraceae PMID:27433177
7 Tropheryma whipplei PMID:26647445
8 Lactobacillus PMID:20592920
9 Actinobacteria PMID:23265859
10 Enterobacteriaceae PMID:21639872
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We choose to adopt a “fixing one and determining the others”
strategy. First, we set τ to 0.1 and then picked the values of λ1 and
λ2 from {0.001, 0.01, 0.1, 1} by LOOCV in a standard dataset.
Then, we fix the determined values of λ1 and λ2, and selected τ
from {0.1,0.3,0.5,0.7,0.9,1}. The computational results for
determining the λ1 and λ2 are listed in Table 1. We can
discover that the AUC value reach maximum when λ1 � 0.1
and λ2 � 0.01. As shown in Table 2, our model furnishes
approximately the same good performance when τ ≥ 0.7.
Therefore, we set τ � 0.7.

The stopping criteria of the MSBMF algorithm are fk ≤ tol1
and |fk+1−fk|

max 1,|fk | ≤ tol2}{ , where fk � ‖Sk+1Tk+1−SkTk‖F
‖SkTk‖F and tol1, tol2 are the

given tolerances. Here, according to the related studies (Yang
et al., 2021), we set tol1 � 2 × 10−3 and tol2 � 10−4.

Comparison With Other State-of-the-Art
Methods
In this section, we consider several state-of-the-art microbe–disease
association prediction methods and make comparisons to
demonstrate superior performance of our proposed method
MSBMFHMDA. We compare it with KATZHMDA, BiRWMP,
and NBLPIHMDA based on the dataset of known microbe–disease
associations. As illustrated in the following Figure 2 and Table 3,
MSBMFHMDA yields best performance in LOOCV, achieving an
AUC score of 0.9186, while KATZHMDA, BiRWMP, and
NBLPIHMDA produce AUC scores of 0.8382, 0.8637, and

0.8777, respectively. As demonstrated in the following Figure 3,
in the framework of fivefold cross validation, MSBMFHMDA can
achieve a reliable AUC of 0.9043 ± 0.0048, which is better than the
AUC achieved by KATZHMDA (0.8301 ± 0.0033), BiRWMP
(0.8522 ± 0.0054), and NBLPIHMDA (0.8958 ± 0.0027).

The Sensitivity Analysis of Parameters
In this section, we concentrate on the sensitivity analysis for
λ1, λ2, and τ in LOOCV. As we all know, when
λ1 � 0.1, λ2 � 0.01, and τ � 0.7, our model can realize
excellent performance. We vary one parameter and keep
the rest of the two parameters fixed to observe how the
parameter benefits the AUC value.

As shown in Figure 4, the AUC can achieve the best values when
λ1 � 0.1. In the same way, Figure 5 indicates the best AUC on λ2 �
0.01. Finally, the effect of parameter τ on the prediction accuracy is
discussed. Figure 6 shows the AUC values of MSBMF with different
τ. When τ > 0.7, the trend of AUC is becoming steady. If τ continue
to increase to 0.9 or 1, our model will not only generate overfitting
but also increases the computational complexity.

Case Studies
Microbes are closely related to human health, and it is
meaningful to explore whether microbes are associated
with disease. In order to investigate into disease-causing
microbes and further measure the prediction performance
of our model, we selected three kinds of common microbe-
induced diseases as cases for the analysis, namely, asthma,
inflammatory bowel disease, and type 1 diabetes. The scores
of the top 10 disease-related microbes are published in
Supplementary Tables S1–S3, respectively.

Asthma is short for bronchial asthma, a heterogeneous disease
characterized by chronic airway inflammation and airway hyper-
responsiveness (Lemanske and Busse, 2010). The key features of
asthma include chronic inflammation of the airway, high
responsiveness of the airway to a variety of stimulators,
limited variable reversible flow, and a series of changes with
the course of the disease, namely, airway reconstruction
(Çalışkan et al., 2013). Asthma is one of the most common
chronic diseases in the world, with about 300 million people
worldwide and about 45 million asthma patients in China, and
there is a trend year by year. Epidemiological studies have
shown that early exposure to microbes may determine the
composition of the microbiome, which can help prevent
allergies or cause the development of asthma. Asthma had
been demonstrated to be closely associated with microbes by a
number of research (Gilstrap and Kraft, 2013). In this section,
though the there is implementation of our model to infer the
novel asthma-related microbes, we published evidence for the
top 10 potential asthma-related microbes predicted by
MSBMFHMDA in Table 4.

Inflammatory bowel disease (IBD) is a group of chronic non-
specific intestinal inflammatory diseases that have no etiology,
including ulcerative colitis and Crohn’s disease (D’Aoust et al.,
2017). In this paper, we selected IBD as one of our case studies to
evaluate the performance of our model. As illustrated in the
following Table 5, there are 10 out of these top 10 microbes

TABLE 5 | The validation results of the top 10 predicted inflammatory bowel
disease (IBD)-related microbes by implementing MSBMFHMDA.

Rank Microbe Evidence

1 Clostridium coccoides PMID:21477358
2 Prevotella PMID:24013298
3 Lactobacillus PMID:20592920
4 Bacteroidetes PMID:29492876
5 Veillonella PMID:30573380
6 Clostridium difficile PMID:21872915
7 Firmicutes PMID:23265859
8 Staphylococcus aureus PMID:17950502
9 Helicobacter pylori PMID:22221289
10 Actinobacteria PMID:23265859

TABLE 6 | The validation results of the top 10 predicted type 2 diabetes (T2D)-
related microbes by implementing MSBMFHMDA.

Rank Microbe Evidence

1 Clostridium difficile PMID:21872915
2 Enterobacteriaceae PMID:21639872
3 Staphylococcus aureus PMID:17950502
4 Helicobacter pylori PMID:22221289
5 Prevotella PMID:24013298
6 Veillonella Unconfirmed
7 Lachnospiraceae PMID:27433177
8 Bacteroides PMID:18822123
9 Burkholderia Unconfirmed
10 Actinobacteria PMID:23265859
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predicted by MSBMFHMDA that have been substantiated to be
associated with IBD.

Type 2 diabetes mellitus (T2D), also known as adult-onset
diabetes, is characterized by a rise in blood sugar and a relative
lack of insulin production because of a decline in the ability of
insulin to help glucose enter cells for metabolism, a metabolic
disorder resulting from a disorder of glucose metabolism (Furet
et al., 2010). We took T2D as a case study for potential T2DM-
related microbe prediction, and as illustrated in the following
Table 6, 8 out of the top 10 predicted microbes were confirmed by
experimental reports.

DISCUSSION AND CONCLUSION

Since the application of traditional experimental methods to
identify disease-associated microbes is time consuming and
expensive, the calculation approach of MSBMFHMDA was put
forward. Our model provides an effective scheme for dynamically
integrating multiple similarities and extracting useful features to
infer potential microbe–disease associations. The non-negative
constraint in the model also ensures that the predicted scores of
associations are non-negative. The computational results
demonstrate that MSBMFHMDA has good performances for
microbe–disease association prediction.

However, our model has two limitations. First, there are only
450 known microbe–disease associations, which accounts for a
very small proportion of human microbe diseases. This may
result in less comprehensive for prediction. Second, our method
involves non-convex optimization, which leads to the local
optimal solutions instead of the global optimal solution. In
the future, we will reform predictive tasks based on the
HMDAD record additional entries whether the quantity of

microbial population is increased or decreased in the
reported cases.
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