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Graphical abstract

Abstract

13-lined ground squirrels (TLGS; Ictidomys tridecemlineatus) are small, omnivorous, fossorial, hibernating sciurids. TLGS 
are seasonal induced ovulators, with a ~28-day gestation period. The main goal of this study was to ascertain whether 
enzyme-linked immunosorbent assay (ELISA) of TLGS fecal samples can be used to non-invasively detect pregnancy. 
Competitive ELISAs for progestogen metabolites were conducted on feces collected from a group of (n =13) females. Feces 
were collected thrice weekly during the breeding season and frozen for subsequent analysis. Competitive ELISAs were 
run using progesterone kits ), setting data against seven different time-points between hibernation, emergence, and litter 
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birthdate. Eleven females produced litters. ELISA data from the (n = 2) non-pregnant females demonstrated no rise in 
progestogen metabolites at any point over 28 days. In contrast, data from the (n = 11) pregnant females all demonstrated 
a pronounced rise in progestogen metabolites, with most animals displaying progesterone withdrawal in the final week of 
gestation. A >20-fold rise in progestogen metabolite was observed halfway through gestation (P < 005). Analysis on litter 
size and progestogen metabolite concentration showed no significant correlation (r2 = −0.615). Initial correlation analysis 
done on sex ratio of litters vs progestogen metabolites showed no significant effect of progesterone on sex ratios (males: 
r2 = −0.772, females: r2 = 0.375). This work demonstrated that TLGS also undergo progesterone withdrawal about a week 
before parturition. We have ascertained that a commercially available progesterone assay kit can detect a significant 
elevation in progestogen metabolites in this species about halfway through gestation.

Lay summary

This research was conducted to discover whether pregnancy prediction is possible in female 13-lined ground squirrels 
(TLGS; a small hibernating ground squirrel named for their number of stripes). Pregnancy status in this species, we 
postulated, could be anticipated by generating profiles for individuals via a non-invasive technique known as fecal 
endocrine hormone profiling. Fecal samples were collected from 13 females thrice weekly for 4 weeks post-hibernation 
in the breeding season of 2016. Fecal samples were then processed and run through an assay known as an ELISA giving 
concentrations of hormone metabolites excreted through feces. We then set these samples against time points to develop 
a profile for each female. We have ascertained that elevated progesterone (potential pregnancy) can be detected by a 
commercially available assay kit. Understanding hormone patterns in animals gives researchers a better idea of best 
husbandry practices, including breeding in managed care.
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Introduction
The 13-lined ground squirrel (TLGS; Ictidomys 
tridecemlineatus) is a rodent species native to most of central 
North America with a habitat that includes short-grassy 
areas (such as golf courses, pastures, lawns, and cemeteries) 
and is an important model species for studies of hibernation 
biochemistry and physiology (Vaughan et al. 2006, Berg von 
Linde et  al. 2015, van Breukelen & Martin 2015, Jastroch 
et  al. 2016, Ratigan & McKay 2016, Reilly & Franklin 
2016, Tupone et al. 2016). Hibernation research has led to 
medical treatments in fields such as organ transplantation, 
cardiology, and neurology (Arendt et al. 2003, Cai et al. 2004, 
Lindell et al. 2005). The use of TLGS as a model species has 
also been central to our understanding of diurnal, cone-
dominant vision (Van Hoosier & Nelson 2006, Krubitzer & 
Stolzenberg 2014, Merriman et al. 2016). Investigation into 
the reproductive physiology of TLGS will help foster new 
discoveries in these fields.

Lifestyle and history

TLGS have historically been challenging to breed in 
captivity (Vaughan et  al. 2006, Merriman et  al. 2012), 

in part because ground squirrel physiology is strongly 
influenced by circannual rhythms (Helm et  al. 2013). 
Therefore, TLGS in the UW Oshkosh animal colony (The 
Colony) have been bred following replication of the 
circannual cycle by facilitating hibernation for breeding 
individuals. TLGS reach sexual maturity at 1 year of age 
and can produce offspring for at least 6 years thereafter 
(D. Merriman, unpublished). Additionally, biological 
cues shared between males and females are thought to 
promote estrus (Millesi et  al. 2000), therefore, opposite 
sex individuals in managed populations are often housed 
within proximity of each other. In common with wild 
animals captive male emergence in managed settings 
is scheduled before female emergence to allow for the 
resumption of spermatogenesis (Streubel & Fitzgerald 
1978). In wild and managed populations males will mate 
multiple females, and each female produces a single 
litter of 4–14 young (Johnson 1931). Generally, females 
produce only one litter a year though a second litter has 
been reported in the wild in their southernmost range 
(McCarley 1966), and a second litter has been observed in 
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managed populations within a breeding season only when 
the first litter perished and the females were immediately 
re-bred (McCarley 1966).

Reproductive anatomy, physiology and behavior

The TLGS’s mating strategy is scramble competition 
polygyny with first male advantage (Foltz & Schwagmeyer 
1989). Upon emergence from hibernation in the wild 
TLGS ovaries already contain antral follicles (Foster 1934), 
and behavioral estrus lasts a few hours once copulation 
has occurred (Foster 1934). Females are considered 
induced ovulators with ovulation occurring 10–36 h post-
copulation (Foster 1934). Gestation is estimated to range 
27–30 days and variability may be due to differences in 
ovulatory lag (Johnson 1931, Johnson & Wade 1931, 
Johnson et al. 1933, Foster 1934, Bridgwater 1966, Barr & 
Musacchia 1968, Landau & Holmes 1988, Vaughan et al. 
2006, Merriman et al. 2012). Copulatory plugs do occur in 
TLGS but are not often witnessed (Koprowski 1992) and 
are therefore unreliable as copulation (and thus potential 
pregnancy) indicators in a large colony.

Progesterone and parturition/post-parturition 
in TLGS

Progesterone withdrawal has been demonstrated prior to 
parturition in several sciurid species (Concannon et al. 1984, 
Holekamp et al. 1988, Exner et al. 2003), and this is believed 
to be generalized to all sciurids (Nnamani et al. 2013). To 
permit parturition progesterone signaling is thought to fail 
in one of two basic ways: either progesterone withdrawal, 
or functional withdrawal (Mitchell & Taggart 2009).

Objectives

Regular phlebotomy on an animal with an average 150 g 
weight is not practical. Handling of animals this small is 
technically difficult and raises the serum concentration 
of hormones such as corticosterone, ACTH, corticotropin, 
and other glucocorticoids which can disrupt reproductive 
hormone pathways (Reburn & Wynne-Edwards 2000). 
The use of barbiturates for anesthesia to obtain serum 
samples have been met with varying success (Reburn & 
Wynne-Edwards 2000). Therefore, a non-invasive method 
for determining progesterone patterns pre-breeding and 
throughout gestation was the main goal of this research, 
and specific objectives included: (1) validate the use 
of the Arbor Assays progesterone assay for use in the 
quantification of progestogen metabolites in the TLGS, 

and generate reproductive profiles of breeding-season 
females for use in diagnosing pregnancy and monitoring 
reproductive status, (2) to determine if TLGS exhibit a 
progesterone withdrawal that is akin to other sciurids and 
(3) uncover useful information that progesterone patterns 
might reveal such as correlations between progestogen 
metabolites concentrations and litter size, as well as sex 
ratio of offspring.

Methods

Animals and housing

All animal procedures were preapproved by the University 
of Wisconsin Oshkosh Institutional Animal Care and Use 
Committee (Approval numbers 0026-000260 and 0026-
000288) and conformed to USDA, OLAW, and AAALAC 
guidelines for rodent care.

The Animal Colony at UW Oshkosh is a large-scale 
breeding operation used to fulfill the needs of researchers 
for TLGS. The Colony had ~160 individuals (105 females 
and 55 males) in the breeding season of 2016.

TLGS were caged in transparent plastic shoebox type 
cages measuring 43 × 61 × 20 cm and provided ad libitum 
water, a base diet of dog kibble (4–5 pieces daily; IAMS 
Chunks, Mason, OH, USA) and daily rotating enrichment 
treats (live mealworms, sunflower seeds, dried vegetables, 
peanuts in the shell, dried corn) (Van Hoosier & Nelson 
2006, Krubitzer & Stolzenberg 2014).

Animals were maintained at the same temperature 
(22–24°C) and a photoperiod (Beginning April 10, 2016: 
sunrise 06:16:47 h and sunset 19:33:25 h. Ending May 
4,2016: sunrise 05:39:22 h and sunset 20:02:17 h) that 
mimicked seasonal conditions and fluctuations in natural 
habitat. Animals were uniquely identified by microchips.

Female TLGS (n = 13) were proven dams having 
weaned litters the year prior. One individual was removed 
from the study due to illness. Of the remaining females 
seven were wild-caught and at least 3 years old, and six 
were captive-bred and 2–3 years of age. Females were 
removed from the hibernaculum and single-housed after 
a hibernation period of 28–32 weeks. All 13 aroused from 
hibernation normally (Wade 1930) and resumed eating 
the same day. An initial fecal sample was collected the 
same day as arousal (day 0) from each female while she 
was single housed. Thereafter, fecal sample collection 
occurred approximately three times per week until a 
litter was observed or until 1 June (this was the last date 
any of the study females could have had a litter based 
on when the females were separated from the males). All 
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males (n = 6, all captive born) were proven sires, emerged 
from hibernation in a normal fashion, and had enlarged 
breeding-season testes.

After initial fecal collection, females were exposed 
to a male within a trio (1M2F) or a quad (1M2F2F) cage. 
Animals were housed in this fashion because there were 
fewer males than females in the Colony. In the latter, on 
alternate days the male was moved back and forth between 
two pairs of co-housed females. Females were bred to the 
same male as the prior season whenever possible (6 of the 
13 females). While some females rejected the approach of 
a mate upon introduction inter-individual aggression was 
rare. Following male exposure of 3.5 weeks females were 
moved to individual housing (~3 days short of the earliest 
possible litter birthdate).

Sample collection and storage

Fecal sample collection commenced at 08:00 h. Squirrels 
were handled in the same manner; person and order every 
time. Collection consisted of the female being placed in a 
transparent plastic shoebox cage measuring 25 × 48 × 20 
cm containing a plastic hiding tube and water bottle but 
no bedding. An enrichment treat (shelled peanut) was 
offered for occupation and encouragement of GI motility. 
Females were left in collection cages for 2 h and then all 
fecal samples were collected. If there were no feces within 2 
h that date’s sample was deemed not available (N/A). Fecal 
samples were placed into Eppendorf tubes and stored at 
−80°C until extraction, within 4 months from collection.

Sample selection, extraction, and reconstitution

For the 11 females that gave birth fecal samples were 
assayed at landmarks with reference to estimated 
copulation and birthdate. The reason that all samples 
were not assayed was due to time and resource constraints. 
These landmarks were: date of pairing but prior to male 
exposure (DOP), DOP plus 2 days (DOP+2), estimated day 
of fertilization, that is, 28 days prior to litter birth date 
(eDOF), litter birth-date minus 21 days (DOB-21), litter 
birth-date minus 14 days (DOB-14), litter birth-date minus 
7 days (DOB-7), and 1-3 days before birth (dependent 
upon last collection prior to birth to avoid disruption of 
maternal care).

To determine the overall effect of pregnancy on fecal 
progestogen metabolites data obtained from the two 
non-pregnant females during the 4 weeks following male 
exposure were averaged, and data obtained over the 4-week 
pregnancies of ten pregnant females were averaged (the 

11th parous female was omitted because we did not obtain 
fecal samples at every landmark time point from her).

Fecal samples were laid onto a square of aluminum 
foil and placed into a drying oven at 75°C for 2–3 h. 
Dried samples were immediately ground into a powder 
with a mortar and pestle. Macro-impurities were removed 
with forceps and powdered samples were weighed to the 
nearest 0.01 g. Samples were extracted as per progesterone 
kit instructions (Arbor Assays DetectX item K025, Ann 
Arbor, MI, USA). Briefly, 1 mL of 90% ACS grade ethanol 
was added per 0.1g of feces and shaken for 30 min and 
aliquots of 100 µL were used for further processing.

Excess was stored at −80°C for re-testing when 
necessary. Tubes containing 100 µL aliquots of sample were 
uncapped and allowed to evaporate within a SpeedVac 
(Labconco Centrivap Concentrator & Cold Trap, model 
#225638, Kansas City, MO, USA with a Precision Scientific 
Vacuum Pump, model #D 75, Chicago, IL, USA) and then 
covered and stored in a freezer dessicator (Thermo Fisher 
Scientific, product #08-615A, Waltham, MA, USA) for up 
to a week before reconstitution. Anhydrous ACS Ethanol 
(90%, 100 µL) was added to each sample and samples were 
vortexed three times for 10−20 s. ELISA was conducted 
within 1 week of extraction.

Competitive ELISA procedures

For ELISA progestogen metabolite kits designed for use 
with fecal extracts were used. Sensitivity was 47.9 pg/mL 
and the limit of detection was 52.9 pg/mL. Sensitivity 
was calculated by comparing the optical densities (OD) 
for 20 wells run for each of the B0 and standard #7. 
The detection limit was determined at two standard 
deviations from B0 along the standard curve. See kit 
instructions for cross-reactivities (Arbor Assays DetectX 
item K025, Ann Arbor, MI, USA). Plates were read on 
a BioRad iMark plate reader (Hercules, CA, USA). Raw 
data were imported into an online analysis package 
(www.myassay.com for Arbor Assays Progesterone EIA 
kit). Wells were run in triplicate. If the coefficient of 
variation among triplicate wells was >15%, the outlier 
was excluded from the results or the same sample was 
re-run on a new plate.

The average percent for extraction efficiency for 
exogenous hormones was 82% (R2 = 0.9929). The average 
percent recovery for exogenous hormones was 75.8% 
(R2 = 0.9929). Average intra- and inter-assay coefficients of 
variation were 9.3 and 14%, respectively.

Parallelism (y = −5E−09x3 + 4E−05x2 − 0.096x + 101.85,  
R2 = 0.9995) determined that the samples from TLGS 
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were immunologically similar to assay kit progesterone. 
Pooled samples (n = 5) showed that extracts had binding 
percentages in range (20–80%) when run with 1:32 to 
1:128 dilution factors (on a neat – 1:2048 scale). Samples 
were run at a 1:40 dilution to start and depending on the 
HRP binding (above or below the 20−80% range) were 
adjusted accordingly. During gestation some samples 
need to be diluted more due to a <20% HRP binding 
(1:200 to 1:300), and some baseline samples that had HRP 
binding values >80% needed to be diluted less (down to 
1:5). Dilution adjustments were made on a case-by-case 
basis after the initial run obtaining percent bindings.

Statistical analysis

All statistical analyses were performed in R (R Core Team 
2016 Vienna, Austria), and Excel version 1609 7369.2120 
(Microsoft Corporation, Redmond, WA, USA). An ANOVA 
with repeated measures was run to compare progestogen 
metabolites at landmark time points for each female. A 
pairwise t-test with a Bonferroni correction (α = 0.01) was 
run to determine where the differences lie.

To determine the effect of litter size on progesterone 
during gestation, a Pearson’s correlation test was run on 
seven females and four litter sizes (only these seven had 
both a full fecal sample set and a confirmed litter size).

A Pearson’s correlation test was run on recorded sex 
ratios from six of the 2016 litters, vs their respective 
dam’s progestogen metabolite concentrations to find any 
potential relationships.

Finally, to determine if the ELISA for progestogen 
metabolites is an appropriate test to determine levels 
above baseline in this species a Student’s t-test was used 
to identify any significant differences between the 11 
females that produced litters and the two females that did 
not (α = 0.05).

Results

General study findings

Of the 13 females in this study, 11 bore litters and 
two did not (85% fecundity). Litter birth dates ranged 
approximately 18 days, and conception date was 
determined by assuming a 28-day gestation and counting 
back from birthdates. These data are in line with what we 
have historically observed in the Colony. Despite thrice-
weekly examination, none of the 11 parous females was 
ever observed with a copulatory plug.

Progestogen metabolite patterns during gestation

Fecal progestogen metabolites of the two females who did 
not give birth during the study did not rise above baseline 
(mean for no litter females was 28.85 ng/g of dried feces for 
the duration of the study). In contrast, fecal progestogen 
metabolites of the 11 females who did give birth during the 
study rose substantially above the low initial concentration 
measured on DOP; averaged results are shown in Fig. 1. The 
lower mean fecal progestogen metabolite exhibited by non-
pregnant females was statistically lower than the higher 
mean fecal progestogen metabolite exhibited by pregnant 
females (P  = 0.02, t13 = −3.63). Progestogen metabolite 
concentrations differed across time points throughout 
gestation (P  < 0.01; Fig. 1). Asterix indicates levels of 
significant difference. 1, 2, and 3 Asterixis show significant 
differences between one another. Ex. * is different from ** 
and ***, and ** is different from ***. Color coding shows 
corresponding significant differences (Fig. 1). From among 
individual results the progestogen metabolite concentration 
measured by competitive ELISA was 4.98 ng/g at DOP+2 
days and the highest was 3340.4 ng/g at DOB-21.

A Pearson’s correlation test revealed there was no 
correlation (rs = −0.615, P  = 0.078) between litter size and 
progesterone concentration.

Pearson’s correlation test showed there was no 
correlation between number of males in a litter and 
progesterone (rs = −0.772, P  = 0.0717), and no correlation 
between number of females in a litter and progesterone 
(rs = 0.464, P  = 0.375).

Figure 1 Mean fecal progestogen metabolite data among 10 pregnant 
13-TLGS (thirteen-lined ground squirrels; Ictidomys tridecemlineatus) 
females averaged over 4 weeks for all groups. Boxes show the first and 
third quartile of the data; the dark lines show the median of the data, and 
the lines above or below the box show the data minima and maxima. 
Dots that appear above the lines are outliers. Asterisks show significant 
differences: *0.01, **0.001, ***0.0001, with color coding showing 
corresponding differences.
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Discussion

The progestogen metabolite assay kit was validated for 
the use of detecting an elevation in fecal progestogen 
metabolite in the TLGS by finding that there was a 
significant difference between mean concentrations of 
the pregnant vs non-pregnant females. Profiles of the 
pregnant females were generated to show the significance 
of the rise in progestogen metabolite concentration.

The mean fecal progestogen metabolite profile from 
11 pregnant TLGS over the breeding and gestation period 
(Fig. 1) demonstrated steadily rising fecal hormone starting 
on the estimated day of fertilization (eDOF), peaking 
approximately 1 week before the litter’s birth (DOB-7), 
and then falling to about half-maximal levels in the 1–3 
days before birth. Compared to the 4 weeks of gestation 
by pregnant females, 4 weeks of data from non-pregnant 
females exhibited consistently and significantly lower 
fecal progestogen metabolite concentration. Therefore, 
quantifying progestogen metabolites via ELISA proves 
an effective method for detecting the rise in progestogen 
metabolites in TLGS stemming from copulation and 
ovulation, lending toward the possibility of pregnancy.

Diagnosing pregnancy, however, will require more 
nuanced research since the rise in progestogen metabolites 
is synonymous with copulation and ovulation, and 
not necessarily pregnancy. In TLGS the placenta alone 
is not able to secrete enough progesterone to sustain a 
pregnancy, and corpora lutea (CL) provide the remainder 
of the progesterone for pregnancy maintenance. 
Furthermore, the CL of TLGS remain secretory until 
at least 2 months post-partum making them a major 
producer of progesterone, and this study was not able 
to differentiate between CL progesterone, and placental 
progesterone (Dripps 1919, Foster 1934). It is worth 
noting, however, that in this study there were no females 
that had an elevation in progestogen metabolites that did 
not result in a pregnancy.

It was found that there is no significant effect of litter 
size on quantified progestogen metabolites, but further 
investigation could be warranted with a larger sample 
size of animals and more frequent serial fecal sample 
collection.

The same could be said for the correlation tests done 
on progesterone and sex ratio of offspring; while there 
were some moderate correlations, neither was significant. 
However, considering the sample size (n = 6) of this small 
data set may prove important. Collecting and testing 
more fecal samples from more females may help to tease 
out these issues.

In Richardson’s ground squirrel (Urocitellus 
richardsonii) it was found that there was a positive 
correlation between cortisol and testosterone, and that 
higher cortisol levels were correlated to smaller litter sizes. 
Furthermore, they found that the smaller litter sizes had a 
higher proportion of males (Ryan et al. 2014). As far as we 
could tell there haven’t been any studies to date on litter 
size effecting progesterone concentration or correlations 
between progesterone and sex ratio of offspring in ground 
squirrels let alone TLGS. This, and our study data, point 
to more work needing to be done on maternal gestational 
hormone levels and litter data in TLGS.

Progesterone withdrawal in TLGS

The mean TLGS profile demonstrates classic progesterone 
withdrawal and agrees well with a study of another 
hibernating sciurid bred in captivity the Vancouver Island 
marmot (Keeley et al. 2012). The mean of the time point 
1–3 days before parturition is significantly lower than the 
mean of the DOB-7 time point.

Potential research directions

Due to microbial degradation, fecal steroids can drop by 
17% after 2 h at room temperature (Brown et  al. 2004, 
Keeley et al. 2012) so time lag may have introduced some 
sample variability during the collection of samples. This 
means that the signal strength may have been diminished 
in some samples that may have not been frozen 
immediately. Future work in this area should require that 
fecal samples are frozen as soon as possible to lower the 
risk of signal reduction.

Despite this, the data did indicate how soon after 
mating we can reliably use elevated fecal progestogen 
data to distinguish between animals that have copulated 
and ovulated (and are therefore potentially pregnant) 
and those who have not copulated and did not ovulate. 
Future research might employ daily (or even twice daily) 
fecal collection to determine if a non-pregnant luteal 
phase could be detected in this species by the same 
ELISA kit. Currently, there is nothing in the literature 
that indicates how long a non-pregnant luteal phase is 
in TLGS.

An iterative process could be performed on future 
profiles to determine basal and elevated hormone 
metabolite concentrations (Herrick et  al. 2010), but was 
not be performed in this study because of how few samples 
were analyzed. In all 11 pregnant animals, the mean fecal 
progestogen metabolites was five-to-ten-fold elevated 
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at eDOF over DOP (Fig. 1). Even more dramatically it 
was >20-fold elevated at DOB-21 over DOP (Fig. 1). The 
individual variation recorded at eDOF makes DOB-21 the 
more conservative choice.

The current study did not include any fecal hormone 
data on estrogens. Time, money, and man-power restraints 
did not allow for it but these data indicate the need for 
more information on estrus and ovulation timing as well 
as how behavior and hormones correlate. Breeding in 
managed care would benefit greatly from this information.

Conclusions

Based on the average fecal progestogen metabolite profile 
that was generated this study demonstrated that TLGS show 
a rise in progesterone during pregnancy that can be detected 
by a commercially available progestogen metabolite ELISA 
kit. This research also demonstrated that TLGS exhibit a 
progesterone withdrawal about a week before parturition 
which is line with other hibernating sciurids. There was 
no evidence that litter size had any effect on progesterone 
levels, but more work with a larger sample size is needed. 
Correlations between sex ratio and progestogen metabolite 
concentrations showed no correlations between offspring 
sex ratios and progesterone in TLGS, but more work is 
warranted here with a larger sample size as well.
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