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Filarial infections in humans are chronic infections that cause significant morbidity. The
chronic nature of these infections with continuous antigen release is associated with a
parasite-specific T cell hypo-responsiveness that may over time also affect the immune
responses to bystander antigens. Previous studies have shown the filarial parasite antigen-
specific T cells hypo-responsiveness is mediated by regulatory cytokines – IL-10 and TGF-β
in particular. Recent studies have suggested that the modulated/regulatedT cell responses
associated with patent filarial infection may reflect an expansion of regulatoryT cells (Tregs)
that include both Tregs induced in peripheral circulation or pTregs and the thymus-derived
Tregs or tTregs. Although much is known about the phenotype of these regulatory popu-
lations, the mechanisms underlying their expansion and their mode of action in filarial and
other infections remain unclear. Nevertheless there are data to suggest that while many
of these regulatory cells are activated in an antigen-specific manner the ensuing effectors
of this activation are relatively non-specific and may affect a broad range of immune cells.
This review will focus on the subsets and function of regulatory T cells in filarial infection.
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INTRODUCTION
BACKGROUND
Among the eight filarial humans, four – Wuchereria bancrofti, Bru-
gia malayi, Onchocerca volvulus, and Loa loa – are considered to be
the most pathogenic. These vector-borne parasites cause chronic
helminth infections that have infected approximately 200 million
people in the tropical and subtropical regions of the world (1–5). In
endemic areas, epidemiological studies have grouped people into
three major categories based on the presence of parasites and/or
the presentation of clinical symptoms. These include: (1) endemic
normal (or putatively immune) individuals who, despite chronic
exposure to the infectious agents, appear to have no signs of infec-
tion and/or pathology; (2) those with pathology or obvious clinical
symptoms (e.g., lymphedema in lymphatic filariasis (LF), ocular,
or skin disease in onchocercosis, Calabar swelling in loiasis); and
(3) those with subclinical infection who often have circulating
microfilariae or parasite antigen. It is thought that each of these
varying clinical outcomes reflects to some extent the nature of the
immune (regulatory or inflammatory) response (6–12). Moreover,
these asymptomatic individuals are known to have a diminished
parasite-specific CD4+ proliferative and cytokine (particularly
IL-2, IFN-γ) responses; with longstanding infection, this mod-
ulated parasite-specific response appears to extend to non-filarial
(bystander) antigens including orally- and parenterally delivered
vaccines (13–26). Although there have been a significant num-
ber of studies examining the immunological aspects of L. loa, O.
volvulus,W. bancrofti, and B. malayi infections in humans, very few
have investigated the subsets and the function of regulatory T cells
in these infections. Though initial epidemiological and immune
response studies were done in human populations, the majority of

studies investigating the mechanisms underlying the regulation of
these immune responses have been performed in animal studies.
For instance, although antigen-specific T cell hypo-responsiveness
in filarial infection was first described in human in in vitro sys-
tems, studies investigating role played by regulatory T cells have
been carried out in murine models of filarial infection. Moreover,
with accumulating evidence that multiple subsets of regulatory
T cells exist, based on the expression of particular transcription
factors, their origin and/or the regulatory cytokines they produce
(27–31), animal models have been critical in understanding the
function of a given subset in the context of filarial infection. Thus,
the present review will focus on the different subsets of regula-
tory T cells in the context of chronic filarial infection (mostly W.
bancrofti and O. volvulus) of humans as well as in studies using
relevant animal models.

IMMUNE REGULATION IN FILARIAL INFECTIONS
Early studies of immune responses in LF showed that while indi-
viduals with circulating microfilariae showed impaired filarial-
specific lymphoproliferative responses and cytokine (IL-2 and
IFN-γ) production, cells from individuals free of parasites and free
of clinical symptoms (so-called endemic normals) and from those
with lymphedema (but no circulating filarial antigenemia) prolif-
erated vigorously and produced measurable levels of cytokines to
filarial parasite antigen (6, 32–37). Because all of these earlier stud-
ies were cross-sectional and in human populations, it remained
unclear how the down-regulated antigen-specific T cell response
in those with patent infection got established. However, based on
animal models of filarial infection (e.g., Litomosoides or Brugia)
and some limited studies in vitro using human cells exposed to
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infectious stage larvae (38–42), in our opinion the majority of
data point to time-dependent early response to filarial parasites
in which the mammalian-adapted infective larvae (L3) induce a
local inflammatory response that is followed by a mixed type 1
(Th1) and type 2 (Th2) T cell response with higher levels of IL-4
and IL-5 cytokines (43–46). At the time of patency (that is when
microfilariae appear in the blood or skin) there is (again based on
varying animal models with different times to patency (45, 47) – a
change in the parasite-specific immune response in which a Th2-
expanded immune response occurs (with a concurrent contraction
of the Th1 response) that is followed by a modulated (regulated)
response that is mediated by IL-10 and TGF-β (among others)
(48–52).

That soluble factors and suppressive cells might mediate
the immune hypo-responsiveness associated with chronic filar-
ial infection was first suggested by work in a B. malayi-endemic
region of Indonesia (19). Furthermore using animal models, it
has been shown that the suppression of filarial-specific immune
response during chronic filarial infection was mediated by non-
specific suppressor cells (33). In fact, it was known since the early
1970s that T cells mediated some of the suppression of immune
responses engendered in mice; by the mid 1990s regulatory T cells
were identified in mice followed subsequently by their having been
found in humans (53–59).

Though regulatory T cells were discovered about two decades
ago, questions remain about their basic biology, their mode of
action, and their therapeutic potentials. Moreover, a number of
regulatory T lymphocytes (Tregs) have been described. Based on
the expression of the canonical transcription factor Foxp3, two
Foxp3+ subsets have been identified: the regulatory T cells (Tregs)
that are thymus-derived (tTregs) and those that are induced in the
periphery from naïve Foxp3-T cells or pTregs (60). In addition to
the Foxp3-expressing Tregs, two other subsets that do not express
Foxp3 have been described based on the regulatory cytokines
expressed by those cells. These include the type 1 regulatory T
cells (Tr1) that express mainly IL-10 and the TGF-β expressing
Th3 regulatory T cells (27, 28, 61–65). Each of the Treg subsets has
been identified in the peripheral blood of filarial-infected patients.

Following the discovery of the transcription factor forkhead
box P3 (Foxp3) being a canonical marker of regulatory T cells (66,
67), work investigating the role of these T cells in the context of
chronic filarial infection was undertaken. Indeed, by the use of
multiparameter flow cytometry and qPCR, several studies showed
that chronic filarial infection was associated with increased expres-
sion of Foxp3-expressing CD4+ cells as well as Foxp3 negative
CD4+ cells that expressed IL-10 (68–70). These studies revealed
that in patent filarial infection the immune environment is domi-
nated by increased frequencies of regulatory T cells some of which
being Foxp3-expressing T cells.

ROLE OF THE CYTOKINES IL-10 AND TGF-β
Although IL-10 and TGF-β were originally thought to be pro-
duced by Th2 cells and can be produced by various cell types
including regulatory T cells, it has been shown that the major
sources of IL-10 and TGF-β are Tr1 and Th3 respectively (71–
78). Immune responses to filarial infection have been shown to
be stage-specific with cytokines such as IL-4, IL-2, IFN-γ, IL-5,

and IL-13 in association with IgE dominating the acute phase
of the infection while levels of regulatory cytokines such as IL-
10 and TGF-β and the antibody isotype IgG4 being elevated
during the chronic phase of the infection (79–83). The role of
the cytokines IL-10 and TGF-β in the modulation of immune
responses during patent filarial infection was largely inferred from
studies demonstrating that neutralizing antibodies to IL-10 (and to
a lesser extent TGF-β) significantly increased the down-regulated
antigen-specific proliferative responses in patients with subclin-
ical microfilaremic W. bancrofti infection (1). In similar studies
in Haiti (W. bancrofti-endemic) data emerged to show that cells
from microfilaremic subjects also showed an inverse relationship
between proliferative response to filarial antigens and IL-10 pro-
duction in filarial-infected individuals (84). Since these initial
studies, others have extended these by demonstrating that high lev-
els of IL-10 were produced spontaneously (ex vivo) and in response
to parasite antigen stimulation in filarial-infected individuals (85,
86). Additional studies using neutralizing antibodies to IL-10 (as
well as TGF-β) reversed both the T cell hypo-responsiveness and
cytokine production to filarial antigen observed in filarial-infected
patients (1, 69, 87, 88) and also reversed some of the modulation
seen to the response to bystander antigens (24). The critical role
of IL-10 in modulating immune responses during chronic filarial
infection has been shown most notably in animal models of infec-
tion. In fact, it has been shown that mice treated with anti-IL-10
neutralizing antibody or in IL-10 deficient mice had lower micro-
filaremia (with B. malayi) compared with isotype treated or wild
type mice (89).

In addition to directly suppressing immune responses IL-10
and TGF-β may indirectly regulate not only the antibody response
to filarial antigens but also the function of antigen presenting cells
(APCs) (1, 49, 52, 90). In fact, it has been shown that IgG4 is associ-
ated with patent filarial infection while IgE was associated with the
acute phase of the infection (79, 82, 83, 91–94). Furthermore, IgE
and IgG4 seem to be strongly induced in filarial infection; while IgE
appears very early in the infection, IgG4 levels rises exponentially
following the production of microfilaremia.

The mixed IgE/IgG4 seen in chronic filarial infection may
reflect the cytokine environment that dominates the immune envi-
ronment during chronic infection. In fact, it has been shown
that patent filarial infection is characterized by a modified Th2
response that is associated with increased frequencies of IL-4-
and IL-10-producing CD4 T cells (70, 95). Moreover, IgG4 has
been used as a marker of filarial infection diagnosis but also as
a marker of immunoregulation (96, 97). Although direct evi-
dence for filarial-induced IL-10 to be involved in the induction
of IgG4 class switching has not been established, it has been
shown that IL-10 can act on human B cells and induce the
production of IgG4 (98, 99). Furthermore, Satoguina and collabo-
rators showed tetanus-specific regulatory T cells clone producing
high levels of IL-10 and TGF-β induced the production of IgG4
by naive and memory B cells in a GITR/GITRL-, TGF-β-, and
IL-10-dependent manners (100). In addition to modulating anti-
body responses, it has been shown that chronic filarial infection
modulates the function of APCs. In fact, APCs from filaria-
infected animals appear to promote T cell unresponsiveness (49,
90, 101–104).
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REGULATORY T CELLS IN FILARIAL INFECTION
With the identification of CD25+CD4+T cells as a subpopulation
responsible for controlling autoimmunity and for downregulat-
ing immune responses in mice (54–56, 105), these regulatory T
cells (Tregs) were demonstrated in humans at relatively consis-
tent levels in human peripheral blood (57, 58, 106). In patients
with LF, it was first demonstrated that Foxp3, CTLA-4, TGF-β,
and PD1 expression in bulk PBMCs were significantly increased
in filaria-infected individuals (69). Concurrently, several studies
in mouse models of filarial infection and in human populations
showed that filarial infection was associated with increased fre-
quencies of these Tregs (70, 107–111). Using a non-permissive
mouse model of infection with B. malayi, it was then shown
that mice infected with either infective stage larvae or implanted
with adult parasites expanded a population of CD4+Foxp3+
T cells that also expressed CD25, CD103, and CTLA-4 (107).
Using multicolor flow cytometry in a filarial-infected group of
patients in Mali, it was further shown that human filarial infec-
tion was also associated with an increased frequency not only
of Tregs that were CD4+CD25+Foxp3+CD127−, but also of
CD4+CD25−Foxp3− cells producing only IL-10 [characteristic
of type 1 regulatory (Tr1) cells] (70).

Several studies have reported an increased frequency of Foxp3-
expressing Tregs in filarial infection in humans and in animal
models (69, 70, 107, 110, 112) though the differentiation between
tTregs and pTregs in peripheral blood circulation has not been
addressed clearly to date (29, 31, 113, 114). Recently, using a mouse
model of the intestinal helminth parasite Heligmosomoides poly-
gyrus, it has been demonstrated that E/S products of this parasite
contained a TGF-β-like molecule that was sufficient to induce
in vitro the differentiation of Foxp3-expressing Tregs or iTregs
(115). Although this induction of iTregs by filarial parasites has
not been assessed in humans, it has been shown that infection of
mice with human filarial parasite B. malayi or the murine filar-
ial parasite L. sigmodontis induce early expression of Foxp3 and
recruitment of Foxp3-expressing regulatory T cells (107, 109, 110).
Furthermore, it has been shown that all filarial parasites examined
to date do express a homolog of human TGF-β (116–119). Further-
more, using onchocercomas collected from patients in West Africa,
immunohistochemical staining showed that dead (but not live)
Onchocerca adult worms in these onchocercomas were surrounded
by Foxp3-expressing T cells. Whether this increased frequency of
Foxp3-expressing T cells was the result of increased accumulation
of tTregs or a local induction of pTregs within the tissue remains
to be determined (120).

Although the difference between tTregs and pTregs has not been
clearly established in filarial infection, several studies using human
T cell cloning and others in mouse animal models of filarial infec-
tion have investigated Tr1 and Th3 regulatory T cells in filarial
infection. T cell clones from patients with onchocerciasis were
shown to produce high levels of IL-10 and TGF-β in response
to parasite antigen; these cells were shown to be either Tr1 (IL-
10-producing) or Th3 (TGF-β producing) cells (50). Likewise
cloned T cells that produced neither IL-2 nor IL-4 but sub-
stantial amounts of IL-10 (characteristics of Tr1) that inhibited
the function of other T cells in vitro was demonstrated from
patients in Ghana (121). When looked at systematically, studies

in filarial-infected patients from West Africa (but evaluated in
North America) demonstrated that the major T cell source of
IL-10 comes from CD4+CD25− cells (that are likely Tr1 cells)
(122). These data have been supported by multiparameter flow
cytomtetry based frequency analysis as well (70).

FUNCTION OF REGULATORY T CELL SUBSETS IN FILARIAL
INFECTION
Several mechanisms by which Tregs (tTregs/pTregs, Tr1, and Th3)
mediate their suppressive functions have been investigated in the
settings of chronic filarial infection (Figure 1). Though their mode
of action is not very clear, it is thought that tTregs and pTregs
(at least) mediate their suppressive function through cell to cell
interaction through surface molecules such as CTLA-4, GITR,
LAG-3, and membrane-bound TGF-β (123–127). In chronic filar-
ial infection settings studies investigating the mechanisms under-
lying the immune hypo-responsiveness showed that CD4+ cells
from filaria-infected individuals not only expressed high levels
of CTLA-4 but that antibody blockade of CTLA-4 in in vitro
cultures increased filarial antigen-specific proliferative response
and cytokine production (87). Likewise, it has been shown that
antibody blockade of CTLA-4 and TGF-β in vitro, increased the
expression of IFN-γ, TNF-α, IL-4, IL-5, GATA-3, and Tbet mes-
senger RNA by cells from filaria-infected subjects in response to
parasite antigen stimulation (69).

In vivo depletion of regulatory T cells using anti-CD25 and
antibody in combination with anti-GITR antibody in a mouse
model of filarial infection demonstrated enhanced production of
IL-4, IL-5, and IL-10 in response to parasite antigen stimulation
in vitro (109). In addition these authors showed that neutraliza-
tion of CTLA-4 and depletion of CD4+CD25 regulatory T cells in
combination increased parasite-specific antibody production and
enhanced worm killing (108).

Though the direct effect of filaria-induced Tregs on APC has
not been evaluated formally, several studies have shown that
APCs from those with patent filarial infection have altered pheno-
types and diminished function (49, 90, 101, 103, 104, 128–133).
Although the mechanisms underlying the modulation of APC
function in patent filarial remain obscure, several studies suggested
that the regulatory cytokines TGF-β and IL-10 might involved.
Furthermore it has been shown that tTregs and/or pTregs mod-
ulate APC function through molecules such as CTLA-4, GITR,
LAG-3, and membrane-bound TGF-β (123–127).

Though the role of tTregs and pTregs in the context of
human filarial infection remains elusive, the other regulatory T
cells subsets act thought the production and secretion of IL-10
and TGF-β (1, 69, 87, 88). Although these regulatory cytokines
can be produced by different types of CD4 T cells includ-
ing tTregs and pTregs, in the setting of filarial infection, it has
been showed that the principal sources of IL-10 and TGF-β are
Tr1 and Th3 cells respectively (50, 70, 121, 122). Using ani-
mal models of filarial infection it has been shown that these
regulatory cytokines particularly IL-10 directly regulate immune
response to filarial parasites (89, 134). These regulatory cytokines
elevated in the serum of chronically infected individuals and
together with Foxp3-expressing surface markers have been shown
to also modulate in these individuals immune responses to
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FIGURE 1 | Role of regulatoryT cells in the context of filarial infection.
Filarial parasite infective larvae (L3) deposited on the skin during the bite of
an infective mosquito actively penetrate the skin following which they
migrate to a draining lymph node. During their migration, L3 contacts and
activates different cells such as keratinocytes (KC), dermal dendritic cells
(dDC), innate lymphoid cells (ILCs), macrophages (MAC), dendritic cells
(DCs), and basophils (Baso). At this relatively early phase of infection the
parasite induces the differentiation of effector Th1, Th17, and Th2 cells,
which together with IgE antibody may lead to attrition of some of the

parasites. However if there is failure to clear the parasites, the infection
evolves into a chronic longstanding infection associated with
IL-10-producing type 1 (Tr1), TGF-β-producing Th3, and Foxp3-expressing
Tregs or peripheral Tregs (pTregs), which together with the thymus-derived
Tregs (tTregs) can be found with increasing frequencies in filarial infections.
The high levels of IL-10 produced induce the production of IgG4 and
together with IL-4, IL-13, and/or TGF-β induce the differentiation of
alternatively activated macrophages (AAM) and inhibit the function of a
variety of other cells.

non-filarial antigens including malarial antigens (24, 25, 135–138),
mycobacterial antigens (139), and antigens associated with type 1
diabetes (140, 141).

CONCLUSION
Despite the rapidly accumulating evidence acknowledging the
existence of multiple subsets of Tregs and their general modu-
lation of immune responses, the understanding of the molecular
mechanisms of their mode of action is still limited. What is clear
in chronic filarial infection is an association of infection with
increases of most of the Tregs subsets; however it is the dominance
of IL-10-mediated regulation that seems to be the most consis-
tent finding suggesting that the Tr1 cells (along with conventional
IL-10-producing Th2 cells) play the major role.

Delineating the subsets and function of Tregs is of capital
importance as this would provide insight into their model of action
and enhance their use as potential therapeutic targets. Despite
recent advances in the understanding of Treg functions the lack
of simple surface expressed markers for each subset has hindered
some of the fundamental research on their mechanisms of action.
Despite this lack of mechanistic insight, these regulatory T cells are
clearly responsible for the modulation of parasite antigen-specific
responses so characteristic of patent filarial infections.
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