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Spinal Muscular Atrophy (SMA) is monogenic motoneuron disease caused by low levels

of the Survival of Motoneuron protein (SMN). Recently, two different drugs were approved

for the treatment of the disease. The antisense oligonucleotide Nusinersen/Spinraza®

and the gene replacement therapy Onasemnogene Abeparvovec/Zolgensma® both

enhance SMN levels. These treatments result in impressive benefits for the patients.

However, there is a significant number of non-responders and an intervention

delay has a strong negative impact on the efficacy. Obviously, later stages

of motoneuron degeneration cannot be reversed by SMN-restoration. Therefore,

complementary, SMN-independent strategies are neededwhich are able to address such

SMN-irreversible degenerative processes. Those are defined as pathological alterations

which are not reversed by SMN-restoration for a given dose and intervention delay.

It is crucial to tailor SMN-independent approaches to the novel clinical situation with

SMN-restoring treatments. On the molecular level, such SMN-irreversible changes

become manifest in altered signaling modules as described by molecular systems

biology. Based on our current knowledge about altered signaling, we introduce a network

approach for an informed decision for the most potent SMN-independent treatment

targets. Finally, we present recommendations for the identification of novel treatments

which can be combined with SMN-restoring drugs.

Keywords: spinal muscular atrophy, therapy, survival of motoneuron (SMN), network biology, systems biology,

SMN-irreversibility, SMN-independency, neurodegeneration

INTRODUCTION

Spinal Muscular Atrophy (SMA) is a monogenic, autosomal recessive neurodegenerative disease.
It has an incidence of 1:6,000−1:10,000, preferentially affects infants and is the most common
rare disease in this age cohort (1, 2). The second motoneurons in the spinal cord and brain stem
degenerate in SMA patients, resulting in fatigue, paralysis, and atrophy of the proximal muscles
(3, 4). Patients harbor homozygous deletions or mutations of the Survival of Motoneuron1 (SMN1)
gene. The lack of the corresponding SMN protein causes SMA (5). However, all humans comprise
a second very similar gene, SMN2, which encodes the same SMN protein. SMN2 differs from
SMN1 in some mutations with a translational silent cytosine to thymine transition within exon
7 (6). This leads to an altered splicing of the vast majority of the SMN2 pre-mRNA resulting
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in a shortened transcript which lacks exon 7 (17 mRNA)
and only a few transcripts of the mature full length SMN2
mRNA (7). While the full-length protein is stable, the SMN17
protein is rapidly degraded. As a consequence, SMN2 produces
only about 10–15% of the protein amount compared to SMN1.
The SMN2 gene is not able to fully compensate the SMN1
loss in patients leading to the preferential degeneration of
motoneurons (6, 7).

The number of the SMN2 gene copies is the most potent
genetic modifier of SMA severity (8): the number of gene copies
negatively correlates with disease severity. SMA is divided into
five different subtypes based on the clinical picture and defined
by the age of disease onset, the life expectancy and the motor
function milestones which the patients are able to reach (9–11).
The most severely affected SMA type 0 patients decease before or
within the firstmonth after birth (12). Themost common subtype
is the severe SMA type 1 with symptoms occurring within the first
3 months after birth. These Patients never gain the ability to sit or
to control their head and die within the first 2 to 3 years of life
(11, 13). Intermediate type 2 patients show the first symptoms
in early childhood between the sixth and eighteenth months of
age, are never able to stand and suffer from a marked reduction
of life-expectancy (10). Symptoms in mild subtype 3, the juvenile
form, typically occur after 18 months of age and these patients
can stand and walk independently (10, 11, 14). In contrast,
type 4 patients show mild muscle weakness symptoms in
adulthood (10).

SMN is a multifunctional protein which localizes to the
nucleus, cytoplasm, axon, and the neuromuscular junction
(15–18). The loss of more than one of these functions likely
contributes to motoneuron degeneration. The multifunctionality
of SMN has been excellently reviewed elsewhere (19). Here,
we exemplify two different functions: SMN is part of the
machinery which assembles spliceosomal components (20).
It has been hypothesized that this leads to a general splice
deficiency and that motoneurons are specifically sensitive
to that (21). However, splicing is not a process which is
restricted to neurons or motoneurons. It may thus be possible
that this is the “housekeeping” function of the SMN protein
affecting all cells and organs. A more specific function is
the involvement of the SMN protein in the neuronal actin
cytoskeleton (22). SMN directly interacts with profilin2a,
an actin-binding protein which is specifically expressed in
neurons (23–25). A lack of the SMN protein leads to enhanced
accessibility of profilin2a for its upstream Rho-kinase (ROCK).
As a consequence, profilin2a becomes hyper-phosphorylated
inducing a neuron-specific dysregulation of the actin
cytoskeleton (22, 25–27).

The exact molecular mechanism of motoneuron degeneration
remains elusive. However, pathohistology reveals distinct
degenerative phenotypes in SMA patients which allow
reconstructing a “natural history” of motoneuron degeneration
(28). The pathohistology of SMA type 1 patients’ spinal cords
reveals two prominent characteristics of neurodegeneration: a
loss of motoneurons in the anterior horn and a chromatolysis
of some of the remaining motoneurons (29). The latter is a
distinct degenerative process characterized by the loss of rough

endoplasmic reticulum and a displacement of the nucleus toward
the cell body periphery (30). Chromatolysis in SMA hints for
a distal pathology with an axonal damage—an axotomy is the
most simple method to experimentally induce chromatolysis
in motoneurons (30). In such models, chromatolysis occurs
before regeneration and degeneration. Thus, it is supposed
that chromatolytic neurons are on the verge of cell death but
that a regenerative potential remains. However, it is unclear
whether chromatolytic motoneurons can be rescued or not in
SMA. Evidence for an axonal dying back mechanism came from
studies in fetuses predicted to develop SMA. Muscle histology
revealed altered neuromuscular junction phenotypes (31).
Moreover, central synapses were altered in pre-symptomatic
SMA mice indicating a synaptic pathology (32). Thus, there
may be a functional motoneuron degeneration preceding the
loss of motoneurons which has been observed in post mortem
pathohistology. However, such studies indicated even earlier
perturbations in motoneuron development: SMA type 1 and
2 patients displayed heterotopic motoneurons with a round-
shaped migratory phenotype and an abnormal localization at the
anterior rim of the spinal cord (28).

The SMN protein is ubiquitously expressed and it is not
surprising that a lack of SMN protein affects peripheral organs
in SMA patients. Those include metabolic alterations (33),
muscle (34), heart (35), vasculature (36, 37), pancreas (38),
and liver (39). Accordingly, SMA is considered to be a multi-
system disease (40, 41). However, motor impairments andmuscle
atrophy are severe conditions in patients. It is difficult to
dissect peripheral organ-intrinsic pathomechanisms from the
neuromuscular phenotype. In experimental SMA models, such
as SMA mice, it is possible to perform an organ or cell-specific
rescue approach which selectively restores SMN protein levels
in single cell types. Thereby, some studies showed cell- or
organ-intrinsic pathomechanisms including muscle (42, 43) and
astrocytes (44). Considering the relation between SMN levels
and peripheral organs it has been suggested that there are
cell or organ-specific SMN thresholds needed for proper organ
function (45). However, motoneurons are preferentially affected
independent of the clinical type and are thus an important and
common therapeutic target. An elevation of SMN levels in the
spinal cord has been a successful strategy for novel therapeutics
approved recently.

In this state-of-the-art review, we focus on the approved
compounds Nusinersen/Spinraza R© and Onasemnogene
Abeparvovec/Zolgensma R© which both enhance SMN levels
in the central nervous system (CNS). Thereby, we exemplify
that (i) central SMN-restoration in the CNS is important
but may not be sufficient because (ii) a peripheral SMN-
restoration may be needed in patients with very low peripheral
SMN levels. Moreover, (iii) a SMN-independent regeneration
has to be considered in patients with a delayed therapeutic
intervention. We will then focus on such SMN-independent
approaches. Moreover, we review pre-clinical studies which
used interventions in cellular signaling as a strategy to identify
SMN-independent treatment options. Thereby, we include
pathways with evidence from mammalian SMA models only.
Finally, we summarize the experience with SMN-independent

Frontiers in Neurology | www.frontiersin.org 2 February 2020 | Volume 11 | Article 45

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Hensel et al. SMA: Strategies for Combinatorial Treatments

TABLE 1 | Severity and time point of intervention critically determines the treatment strategy.

Central SMN-restoration in the CNS is needed in all patients (black), since SMN reduction commonly affects motoneurons in the spinal cord. According to the hypothesis of SMN organ-

specific thresholds, more severely affected patients with a strong SMN reduction may be more susceptible for peripheral organ defects. While this makes a peripheral SMN-restoration

important in SMA type I patients (black), this is less important for SMA type II patients (dark gray) and possibly neglectable for milder affected patients (light gray). Moreover, later disease

stages show pathological changes which cannot be reversed by SMN-restoration only—they are SMN-irreversible. As a consequence, SMN-independent strategies are needed which

allow reversal of symptoms or regeneration. While pre-symptomatically treated patients may not depend on such strategies (light gray), this may be more important for patients which

are treated at disease onset (dark gray), and critical for symptomatically treated patients (black). In summary, different patient cohorts with different needs for treatments can be defined.

It is likely that a single compound may not address central and peripheral SMN-restoration at the same time. Moreover, a combinatorial treatment regimen should include regenerative

SMN-independent drugs.

pre-clinical approaches with a set of recommendations for their
future identification.

CURRENT THERAPIES FOCUS ON SMN
LEVELS IN THE CNS: THE IMPORTANCE
OF PERIPHERAL SMN-RESTORATION
AND SMN-INDEPENDENT
REGENERATION FOR FUTURE THERAPIES

Since the identification of the causality between SMN protein loss
and SMA, many treatment strategies focused on restoring SMN
levels. Those strategies are generally termed “SMN-dependent.”
Since motoneurons are preferentially affected independent of
the clinical subtype, they are a common target for a SMN-
restoration in the central nervous system and this strategy
is important for all SMA cases irrespective of the severity
(Table 1). In December 2016, the first treatment for all clinical
subtypes of SMA was approved by the US Food and Drug
Administration (FDA) and half a year later for Europe as well.
The drug Nusinersen/Spinraza R© is an antisense oligonucleotide
(ASO) which does not cross the blood-brain-barrier. The ASO
is directly administered to the CNS by lumbar puncture into the
cerebrospinal fluid (CSF) where it enhances central SMN levels
only (46). On the molecular level, Nusinersen/Spinraza R©

modulates the deficient SMN2 pre-mRNA splicing to restore
SMN protein levels (47). The half-life time of the ASO within
the spinal cord of non-human primates is about 140 days
allowing a reduction of application burden by lumbar punctures
(48). Currently, Nusinersen/Spinraza R© is administered to SMA

patients by four loading doses followed by maintenance doses
every 4 months (49). In a phase-I study, Nusinersen/Spinraza R©

enhanced the survival compared to natural history data. The
ASO was detected in neurons and glia cells of deceased SMA
patients’ spinal cords where it induced exon 7 inclusion (46).
However, low ASO-levels could also be found in blood indicating
some leakiness during the ASO administration procedure or
a subsequent CSF clearance into the blood (49, 50). Although
there was a significant number of non-responders during the
observation period of a placebo-controlled study, over 70% of
treated infants improved motor functions and the risk of death
or permanent assisted ventilation dropped by 47% compared to
the placebo group (49).

In 2019, the FDA approved Onasemnogene Abeparvovec/
Zolgensma R©, an Adeno-associated virus 9 (AAV9) delivering
a cDNA which codes for the SMN protein, as a gene
replacement therapy. Onasemnogene Abeparvovec/Zolgensma R©

is systemically applied to children less than 2 years. So far, there
is one published phase-I study with the AAV9 employed at
two different doses which resulted in improvements in motor
function and survival compared to natural history data (51).
The AAV9 crosses the blood-brain barrier which induces SMN
expression in the CNS and in peripheral organs. However, human
bioavailability data have not been published so far. Moreover,
AAV9 does not integrate into the genome which leads to a
dilution effect in mitotic cells. As a consequence, a SMN-
restoration by a gene replacement therapy may be of limited
sustainability in the periphery. However, in the light of the multi-
system character of SMA, a peripheral SMN-restoration may be
needed complementing the central SMN-restoration in the CNS
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FIGURE 1 | Model for motoneuron degeneration and the underlying signaling network in SMA. Motoneuron loss observed in post mortem analyses is preceded by a

functional degeneration of central synapses and the neuromuscular junction. The subsequent axonal damage induces a chromatolytic phenotype of the motoneurons.

During disease progression those processes become less reversible indicated by a reduced regenerative capacity. This is reflected by a growing network of

dysregulated signaling nodes with an increased fraction of SMN-irreversible (black) vs. SMN-reversible (blue) signaling mediators. SMN-restoration restores blue nodes

only. The relative number of SMN-restorable nodes becomes reduced over time as illustrated in this hypothetical scheme. Highly connected SMN-irreversible (black)

nodes may be potent treatment targets (arrow). Those nodes may be critical regulators for a module involved in a specific degenerative process.

(Table 1). According to the hypothesis of organ-specific SMN
thresholds, severely affected children with very low peripheral
SMN levels are potentially at risk of multi-organ defects while
this could be less relevant in milder affected patients.

Importantly, the beneficial effects of Nusinersen/Spinraza R©

are dependent on disease duration at the time of intervention:
the shorter the infants were symptomatic before treatment;
the higher was the survival without permanent ventilation as
well as the improvement of motor functions (49, 52). This
effect was strongest in pre-symptomatic patients with two or
three SMN2 copies resulting in impressive benefits and the
achievement of motor milestones such as independent walking
(53). Similarly, patients treated early with Onasemnogene
Abeparvovec/Zolgensma R© performed better compared to
patients with delayed intervention (51). Taken together, this
confirms a number of pre-clinical studies which employed
SMN-dependent treatment strategies in SMA mice: disease
duration before treatment is critical and a delayed intervention
leads to a less efficient rescue (54). This and the occurrence
of non-responders clearly demonstrate pathological processes
which cannot be reversed by enhancing SMN protein levels
and that they increase in number and/or severity with
prolonged intervention delay (Figure 1). It is unclear which

pathological changes underlie this SMN-irreversibility. However,
the complete loss of a motoneuron is a clearly irreversible
change. Moreover, this constitutes a severe problem if no
newborn screening becomes implemented and for milder
affected SMA patients which are symptomatic for years.
Complementary strategies are needed which are not based
on enhanced SMN protein expression—since this is already
accomplished by Nusinersen/Spinraza R© or Onasemnogene
Abeparvovec/Zolgensma R©—but reverse pathological changes
independent of SMN (Table 1).

AN “SMN-INDEPENDENT TREATMENT
APPROACH” DOES NOT NECESSARILY
MEAN THAT IT IS INDEPENDENT FROM
SMN LEVELS: THE IMPORTANCE OF
SMN-IRREVERSIBLE PROCESSES

Since the introduction of SMN-enhancing drugs with an
impressive but yet limited effect, SMN-independent treatment
approaches attained more attention. Those could be combined
with SMN-enhancing drugs for defined patient cohorts (Table 1).
However, the definition of an “SMN-independent treatment
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approach” is not clear yet. Sometimes, a strategy which does
not involve the increase of the SMN protein level is included
in such definition. This is misleading because there might be
strategies which do not rely on enhanced SMN levels but are
still SMN-dependent. For example, inhibition of Rho-kinase
(ROCK) activity (see below) could be considered as an SMN-
independent treatment strategy. However, its activity toward
different downstream targets has been demonstrated to be SMN-
dependent by direct interaction of SMN with profilin2a, a
ROCK binding protein (25). Neurodegeneration could elicit
pathway and network perturbations which could not be restored
by therapeutic SMN-enhancing intervention (Figure 1). Those
signaling modules represent important putative targets for
combinatorial treatments. For an optimal outcome, treatment
strategies should be adapted to specific pathological changes
of a disease. In principle, it is possible that SMN restoration
induces a regenerative process which abrogates those changes: the
pathological process or symptom may be reversed. Thus, SMN-
independent strategies should focus on treatment targets which
are SMN-irreversible (Figure 1). A pathomechanistic SMN-
reversible changemay have already changed back to normal levels
by application of antisense oligonucleotide or gene replacement
therapies so that there is no process to reverse anymore.
This also applies to strategies which target peripheral tissues
without enhancing SMN levels. Pre-clinical studies in SMA mice
specifically target muscle function with myostatin inhibitors
enhancing body- and muscle weight. However, the clinically
relevant impact on motor functions is unclear yet (55, 56).
Moreover, SMN-irreversibility of the underlying pathological
changes such as the loss of muscle function has not been
reported so far: It is possible that a central and peripheral
restoration of the SMN levels may enhance the muscle functions
in a way that myostatin inhibition would not have an extra
benefit. As seen by the better response of early treated patients,
SMN-irreversibility critically depends on the intervention delay.
Thus, an appropriate SMN-independent treatment strategy
must rely on a given intervention delay (Figure 1): In fact,
a pre-clinical pipeline for the development of combinatorial
treatment approaches should detect alterations downstream of
SMN deficiency to identify a specific pathomechanistic change
(a target), test its SMN-irreversibility in a model reflecting the
clinical situation with delayed intervention, and show robust
pathophysiological benefitswhen rescued. In the last years, we and
others identified several signaling pathways which are potential
treatment targets for Spinal Muscular Atrophy without changing
SMN levels. However, there are only limited reports about
their SMN-irreversibility.

INTERVENTION IN CELLULAR SIGNALING
AS A STRATEGY FOR SMN-INDEPENDENT
TREATMENT APPROACHES: A SKEPTICAL
VIEW ON OUR CURRENT KNOWLEDGE
ABOUT PATHWAYS

There are a number of potential SMA treatment approaches
which rely on their interference with cellular signaling. Thereby,

two different strategies have been followed: approaches which
interfere with an altered pathway downstream of SMN-deficiency
and potential treatments focusing on unchanged pathways
in SMA. The latter are more likely to be unaffected by
SMN-restoration but may be less efficient. However, SMN-
irreversibility of these approaches has not been tested yet and
this is a pre-requisite for their SMN-independency. Those include
the Rho kinase (ROCK) (25, 62–65), the extracellular regulated
kinase (ERK) (62, 63, 66, 67), the c-Jun N-terminal Kinase (JNK)
(68, 69), and the p53-pathway (70) (Box 1). The Phosphatase
and tensin homolog (PTEN) pathway was not altered in SMA
but its inhibition may exert some beneficial effects (71). PTEN
is a pro-apoptotic protein, involved in Akt signaling. In an
ischemic rat model, the death of hippocampal neurons was
inhibited by decreased PTEN activity demonstrating general
neuroprotective properties of PTEN inhibition (72). However,
there are no findings of an altered PTEN signaling in SMA mice.
A systemic AAV-based knock-down strategy led to a modest
effect on survival and motor functions in SMN17 mice (71).
However, it is unclear whether motoneurons mediate those
beneficial effects. Moreover, a systemic approach is based on high
viral loads and may enhance the risk for cancer especially in
non-neuronal cells.

Another possible target for a SMN-independent treatment is
the c-Jun N-terminal kinase 3 (JNK3). JNK3 is a MAP-kinase
which is specifically expressed in the central nervous system
(CNS) where it becomes up-regulated after traumatic brain injury
(73, 74). Within the CNS, it may be expressed in neurons,
oligodendrocytes, and astrocytes (75–77). JNK inhibition in
an Alzheimer’s disease (AD) model partially restored synaptic
dysfunctions (78) which are of particular interest with regard to
the SMA pathology. As mentioned above, synaptic dysfunctions
are an important hallmark of motoneuron degeneration in
SMA. Interestingly, SMN17 mice displayed an enhanced JNK3
activation in the spinal cord with an unknown cell type origin.
However, enhanced JNK3 activity was measured in severely
symptomatic post-natal day 12 mice indicating a reaction to
a neurodegenerative trauma rather than being the cause of
motoneuron degeneration (68, 69). Altered JNK phosphorylation
levels could not be detected in SMA cellular and mouse models
or human tissue (79). However, there might be effects in different
segments of the spinal cord with the lumbar part showing
highest susceptibility. For example, such a pattern has been
observed for p-ERK in lumbar segments L3 and L5 (but not
in thoracic or L1 segments) (63). Importantly, SMN17 mice
with a JNK3 knock-out lived significantly longer than control
SMN17 mice (68) while a pharmacological approach with
a pan JNK inhibitor did not convincingly enhance their
survival (69).

p53 is a major regulator of cell cycle, DNA repair and
apoptosis in numerous cell types. In differentiated neurons,
p53 may regulate neuronal regeneration vs. apoptosis which
is promoted by p53 phosphorylation of N-terminal residues
(80). Post mortem analysis of SMA patient spinal cords
revealed a nuclear accumulation of p53 in motoneurons (81).
This was corroborated in SMN17 mice in which nuclear
accumulation was accompanied by a specific phosphorylation
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BOX 1 | An informed decision for the most promising candidate—the advantages of network biology.

Network biology describes the physical and/or functional interaction of a plethora of biological molecular entities. An important application is the network biology of

proteins involved in signaling (57). Signaling proteins form nodes which are connected by links or edges. Those edges define the relationship between the nodes.

Those can be functional or physical interactions of proteins, normally derived from databases such as the BioGRID, Intact or EMBL-STRING databases (58–60).

Graphical analysis algorithms are able to arrange the nodes based on their connectivity. This leads to the formation of modules or clusters which often share a common

biological function (57). Hubs are highly connected nodes located within modules—thus being critical master regulators for distinct biological processes. Inter-modular

nodes may even be more important since they affect more than one module simultaneously. If applied on a disease, network biology provides a non-reductionist

view on molecular processes such as altered signaling. The selection of hubs or inter-modular nodes allows an informed decision for a novel treatment target.

We performed a network analysis based on published reports about altered signaling in SMA. Therefore, we included SMN, JNK3 (MAPK3), p53 (TP53), PTEN, ERK

(MAPK1), and ROCK1 as input proteins (red dots). We used the Functional Enrichment Analysis Tool (FunRich) (61) with the EMBL-STRING database for a network

analysis (60). Highly connected interactors were added to the network (green dots). Interestingly, a number of them have been connected to SMA pathology before

(black outlined green dots). However, the selection of the input proteins may be biased a priori. It is not always clear whether those pathways have been identified in

hypothesis-free approaches. An unbiased high-throughput approach may circumvent this drawback.
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at the N-terminus (70). Interestingly, the SMN protein directly
interacts with p53 (82). However, this interaction has not been
linked to the altered N-terminal p53 phosphorylation. Moreover,
in vivo changes in p53 localization and phosphorylation were
evaluated in symptomatic SMN17 animals (70). Therefore,
altered p53 homeostasis may be the result rather than
the cause of motoneuron degeneration. Indeed, amino-
terminal p53 phosphorylation is a cell-type specific signal
for apoptosis (83) and may become activated due to the
degeneration of motoneurons in later stages. In line with
that, p53 inhibition rescued motoneuron numbers but not
the motor functions and SMN17 mice did not survived
longer (70).

One of the first possible SMN-independent targets
characterized was the RhoA kinase (ROCK) pathway. ROCK
is an important regulator of neuronal actin dynamics which
is critical for the function of motoneuron synapses (22). The
level of ROCK activity was enhanced in the spinal cord of the
intermediate Smn2B/− SMA-mouse model at pre-symptomatic
time points (64) but at no time point in the severe Taiwanese
mice neither in spinal cord nor muscle (our data, not shown).
Consistently, Smn2B/− mice displayed elevated survival rates
when treated with small molecule ROCK inhibitors (64, 65)
while there were detrimental effects on severe Taiwanese mice
(63). ROCK-inhibited Smn2B/− mice did not show elevated
SMN levels compared to control Smn2B/− mice. However,
SMN-irreversibility has not been checked for the enhanced
ROCK activity and the SMN-independency of this effect is
therefore not clear yet (64). The changes in ROCK activity
have been mechanistically linked to a direct interaction of
the SMN protein with the ROCK-target profilin2a: a lack of
the SMN protein results in an enhanced binding of ROCK
to profilin2a which subsequently mediates the pathological
changes (25). Given this molecular model, a restoration of the
SMN-levels would also restore dysregulated actin dynamics—
this mechanism and the resulting treatment approach would
not be SMN-independent. However, the cellular source of
the enhanced ROCK activity has not been identified yet.
Neurodegeneration often induces a chronic, detrimental
neuroinflammation driven by an enhanced glial ROCK activity
(84). Enhanced ROCK activity in intermediate Smn2B/− mice
may thus reflect neuroinflammation while it is possible that
severe Taiwanese SMAmice die before developing such a chronic
condition. Chronic neuroinflammation is a process which—once
induced by neurodegeneration—sustains itself by inducing
further neurodegeneration. This process may not be SMN-
irreversible thus being a candidate for an SMN-independent
treatment approach.

ERK is another pathway which is up-regulated in SMN
knock-down cells (66) and in the spinal cord of two different
severe SMA mouse models (63, 67). The ERK pathway is
a classical neurotrophic signaling pathway and a positive
regulator of neuronal regeneration (85). However, dependent
on the localization of activated ERK, it may also trigger
neurodegeneration (63). Inhibition of ERK enhanced survival of
severe SMA mice and enhanced SMN expression accompanied
by neuroprotection of motoneurons within the spinal cord (67).

However, we employed a randomized study-design avoiding a
litter-wise treatment and found a significant reduction in survival
of severe Taiwanese SMA-mice treated with an ERK inhibitor
(63). Thus, in our hands, we could indeed detect an enhanced
ERK activity. However, ROCK as well as ERK inhibition was
detrimental for SMA mice (63). ROCK and ERK are generic
kinases expressed in most cells and tissues. In combination with
a systemic inhibitory approach, this may produce significant
side effects in a chronic treatment regimen. To develop a
specific treatment strategy it is indispensable to identify and
target the affected cell type in which the altered signaling event
localizes. Moreover, ROCK and ERK act in a regulatory network
influencing SMA-like pathophysiology in a combined manner
rather than acting alone (63). Although both inhibitory regimens
were detrimental, a combination of a ROCK and an ERK inhibitor
performed better than the ERK inhibitor alone. This was
accompanied by a ROCK-mediated rescue of the ERK activity
in the spinal cord and confirmed in vitro studies in which we
showed a crosstalk between both pathways (62, 63). This is a
proof-of-principle of the network character of signaling events
in SMA (Box 1).

OUTLOOK: A SET OF
RECOMMENDATIONS TO IDENTIFY
NOVEL TARGETS FOR COMBINATORIAL
SMA TREATMENT STRATEGIES

Based on the previous comments, one can derive
recommendations for the identification of novel signaling
pathways as SMN-independent treatment targets:

(i) It is better to choose a SMA-specific alteration downstream
of SMN-deficiency as a target rather than selecting an
unspecific neuroprotective signaling pathway. It is more
efficient to target SMA-specific pathological processes.
Those translate into changed network modules.

(ii) The selection of hubs or inter-modular nodes is a promising
strategy for the identification of potent treatment targets.
Targeting hubs or inter-modular nodes maximizes the
beneficial effects on the whole network by restoring
the equilibrium (Box 1).

(iii) For a targeted approach excluding compensatory events
or epiphenomena, a pre-symptomatic evaluation of the
signaling is superior over symptomatic analyses.

(iv) The signaling event must be localized in a disease relevant
tissue and cell type. Motoneurons in the spinal cord and
brain stem are still the preferred target in SMA. The
identification of the cell type is most relevant for the pre-
clinical experimental paradigm, since it allows a specific
rescue approach thereby reducing side effects.

(v) The target must be SMN-irreversible which has to be
tested in an appropriate model in combination with a
SMN-enhancing drug. For the latter, suboptimal dosing or
intervention delays have to be considered.

(vi) Potency must be tested by a robust pathophysiological
benefit in combination with SMN-enhancing drugs.
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