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ABSTRACT: Electronic structure calculations, such as in the
Hartree−Fock or Kohn−Sham density functional approach,
require an initial guess for the molecular orbitals. The quality of
the initial guess has a significant impact on the speed of
convergence of the self-consistent field (SCF) procedure.
Popular choices for the initial guess include the one-electron
guess from the core Hamiltonian, the extended Hückel method,
and the superposition of atomic densities (SAD). Here, we
discuss alternative guesses obtained from the superposition of
atomic potentials (SAP), which is easily implementable even in
real-space calculations. We also discuss a variant of SAD which produces guess orbitals by purification of the density matrix that
could also be used in real-space calculations, as well as a parameter-free variant of the extended Hückel method, which
resembles the SAP method and is easy to implement on top of existing SAD infrastructure. The performance of the core
Hamiltonian, the SAD, and the SAP guesses as well as the extended Hückel variant is assessed in nonrelativistic calculations on a
data set of 259 molecules ranging from the first to the fourth periods by projecting the guess orbitals onto precomputed,
converged SCF solutions in single- to triple-ζ basis sets. It is shown that the proposed SAP guess is the best guess on average.
The extended Hückel guess offers a good alternative, with less scatter in accuracy.

1. INTRODUCTION

Quantum chemical calculations are used in several applications
to determine single-point energies or molecular properties of
systems of interest. The level of theory can range from mean-
field Hartree−Fock (HF) or Kohn−Sham (KS) density
functional theory1,2 (DFT) to high-level ab initio methods,
such as multiconfigurational (MC) self-consistent field (SCF)
theory,3 coupled-cluster (CC) theory,4 or the density matrix
renormalization group (DMRG) method.5 In each of these
approaches, the energy can be written in terms of a reference
set of orbitals. Solving the electronic structure is then
tantamount to minimizing the energy with respect to the
reference orbitals.
High-level ab initio methods are invariably initialized with

HF or KS orbitals. As HF produces by definition the best
possible single-configurational wave function, it often offers a
reasonable starting point for the treatment of correlation
effects. Conversely, KS typically produces good orbitals in
cases where HF is not a good starting point, such as for
transition metal complexes. Because of this, for the present
purpose it is sufficient to restrict the discussion to the HF and
KS levels of theory.
Although the HF and KS theories are mathematically

simpler than high level ab initio methods such as MC-SCF or
DMRG-SCF, the minimization of the corresponding energy
functional is still a difficult nonlinear optimization problem
that has been tackled with dozens of robust methods that

cannot be satisfactorily reviewed here due to length
constraints.
Regardless of the method used to optimize the orbitals, an

initial guess is necessary. Orbital optimization is usually the
simpler, the closer the initial guess is to the converged result.
However, despite its pronounced importance, the choice of
initial orbitals has attracted surprisingly little interest in the
literature.6−13 (Note that although the optimization problem
can also be reformulated only in terms of density matrices in
the case of HF and KS theory,14 this has no implications for
the present study, as the two approaches are equivalent.)
As the HF/KS potential is density dependent, the simplest

sensible orbital guess (ignoring the trivial random orbital
guess) is obtained by minimizing the density independent part
of the functional. By employing the variational principle, it can
be seen that in an orthonormal basis set {|i⟩}, this task is
equivalent to finding the lowest eigenpairs of the matrix of the
core Hamiltonian

= ⟨ | ̂ + ̂ | ⟩H i T V jcore nuc (1)

where T̂ is the (single-determinant) kinetic energy and V̂nuc is
the nuclear attraction operator. Correspondingly, the guess
from eq 1 is known as the core or one-electron guess. If only one
nucleus is present in the system, eq 1 is the hydrogenic
Hamiltonian, and the core guess yields hydrogenic orbitals.
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Now, as the core guess neglects all interactions between the
electrons, it does not take into account the significant
screening of the nuclear charge by the core electrons, thereby
wasting considerable effort to converge the shell structure of
atoms. Furthermore, as the initial guess does not reproduce the
true energy ordering of atomic orbitals of s, p, d, and f
symmetry, the procedure may produce a molecular guess that
does not have the symmetry of the ground state solution. This
may lead to the SCF algorithm requiring many more iterations
to find the ground state, or possibly even to the SCF procedure
converging onto a higher lying solution or a saddle-point, as,
e.g., we have recently shown for fully numerical calculations on
diatomic molecules.15

Even worse, when applied to large systems composed of a
diversity of elements, the core guess will tend to crowd the
heaviest atoms with a large surplus of electrons, leaving the
other atoms in highly ionized states, because the hydrogenic
orbital energies scale as the square of the atomic number, ϵi ∝
−Z2, while the number of occupied orbitals per atom only
scales as nocc ∝ Z. This is not all, however. Hydrogenic orbitals
are a famously poor choice for single atoms as well, as the
orbitals quickly become too diffuse, thereby missing the
important structure in the core and valence regions,16 further
highlighting the significant shortcomings of the core guess both
near and far from the nucleus. (Note that while hydrogenic
orbitals do not form a complete basis set and have to be
supplemented with continuum orbitals in order to achieve
good results,17,18 this is not a problem for the core guess, as the
eigendecomposition of eq 1 does not change the dimension of
the basis.)
The generalized Wolfsberg−Helmholz (GWH) approxima-

tion19 is used in ref 20 as an alternative guess to the core
Hamiltonian, and it is the default guess for open-shell systems
in ref 21. In the GWH guess, the off-diagonal elements of the
Hamiltonian are approximated as

= +H K H H S
1
2

( )ij ii jj ij (2)

where the parameter K typically has the value K = 1.75, Hii and
Hjj are diagonal elements of the core Hamiltonian, and Sij is the
overlap of basis functions i and j. Although in some cases the
GWH modification of the core guess yields better results than
the core guess itself, it no longer yields an exact solution for
one-electron systems.
All of the problems with the core guess and its GWH

modification can be avoided by the use of the superposition of
atomic densities (SAD) guess,10,22 which employs converged
atomic density matrices at each nucleus in the system. As SAD
has the correct shell structure, it typically reproduces orbital
energy orderings as well. Indeed, SAD is used as the default
guess in most popular quantum chemistry packages, such as
GAUSSIAN,23 MOLPRO,24 ORCA,25 PSI4,21 PYSCF,26 and Q-
CHEM.20 An underappreciated feature of the SAD guess is
that it allows for pursuing different charge states for a system as
well as ionic vs nonionic solutions by manually assigning the
charge states of the individual nuclei in the system;
unfortunately, this is only possible in some implementa-
tions.10,27 Thus, in most cases the SAD density matrix is charge
neutral, meaning it may not match the actual charge state of
the system.
Furthermore, the density matrix produced by SAD is

nonidempotent and does not correspond to a single-
determinant wave function, which results in a nonvariational

energy. In fact, SAD yields a nonidempotent density matrix
even for single atoms, as the guess typically uses either
configuration-averaged densities10,22 or calculations with
fractionally occupied orbitals.28 In addition, the SAD density
matrix is spin-restricted, meaning that it may also represent a
different spin state than the one targeted in the calculation.
The solution to the problems caused by the non-

idempotency and the possibly incorrect spin and charge state
of the SAD density matrix is simple. In the procedure of ref 10,
a spin-restricted Fock matrix build is performed with the initial
guess density, which is then diagonalized to yield a set of guess
orbitals that are then used to start the wanted type of
calculation; this is the most commonly used approach. (Some
implementations of SAD use the nonidempotent closed-shell
density matrix for the first step of the SCF calculation,
reporting nonvariational energies for the first iteration.)
Instead of a usual Fock build, guess orbitals can also be
constructed from the Harris functional29,30 that does not
require the guess density to be idempotent; this is the
approach chosen by GAUSSIAN.23

Alternatively to the diagonalization of a Fock matrix built
from the SAD density, guess orbitals could also be obtained
from a SAD guess by diagonalizing its density matrix to obtain
natural orbitals. We are not aware of the this guess that we call
SADNO having been explicitly considered previously in the
literature. SADNO has been available in ERKALE27,31 and Q-
CHEM

20 for some time, implemented in both programs by the
present author. However, as SADNO arises spontaneously in
linear-scaling approaches that employ density matrix purifica-
tion methods,32−38 it may have been used implicitly in
previous work.
Another guess that has been widely used in the past is the

extended Hückel method.39 In the extended Hückel method,
orbitals are obtained by diagonalizing an effective one-particle
Hamiltonian, the diagonal of which consists of approximate
valence state ionization potentials (IPs), Hii = −IPi, whereas
the off-diagonal is estimated using the GWH rule (eq 2).
Traditionally, a minimal set of Slater functions is used as the
basis set, which is often replaced in Gaussian basis codes with
STO-3G.40 Semiempirical calculations such as the CNDO41 or
INDO42 models can also be used instead of the extended
Hückel guess.
However, as the traditional formulation of the extended

Hückel method, like the CNDO and INDO models, only
operates within a minimal valence basis set, the accuracy of
these three methods may thereby be quite limited, which is
presumably why they have been largely replaced with the SAD
guess. Still, an implementation of the extended Hückel method
for real-space calculations has been described recently with
good results.12 However, as ref 12 only considered a SAD
guess formed of exponential model atomic densities instead of
ab initio atomic density matrices, it is possible that the
performance of the SAD guess was underestimated.
As the original formulation of the extended Hückel method

only describes valence orbitals, core orbitals were added in ref
12 by inserting Slater orbitals with exponents estimated from
Slater’s screening rules. However, instead of relying on
pretabulated IPs and minimal Slater orbital basis sets as in
the original formulation of the extended Hückel method,
Norman and Jensen proposed a variant in ref 43 in which the
basis functions and the diagonal elements of the Hamiltonian
are adopted as pretabulated Gaussian expansions of occupied
atomic HF orbitals and their orbital energies, respectively.
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Note that this approach is in line with Hoffmann’s original
proposal,39 since HF orbital energies are approximations to the
ionization potential according to Koopmans’ rule.44

In the present work, we employ an extension of Norman and
Jensen’s approach for the extended Hückel guess. However,
instead of relying on pretabulated orbitals and orbital energies
as Norman and Jensen do, in the present work the atomic
orbitals and orbital energies are calculated directly in the used
basis set, employing the same machinery as is used for the SAD
guess. The present Hückel approach is easy to implement,
completely parameter-free, requires no orbital projections, and
is directly applicable to both all-electron and effective core
potential calculations.
In addition to the aforementioned approaches, calculations

may be initialized recursively by reading in a converged density
computed in a smaller basis set. Such a procedure has recently
been advocated for real-space calculations;13 the use of
confinement potentials has also been found to help SCF
convergence in the case of extended real-space basis sets.45 In
some cases it is also possible to decompose the system into
either single molecules or chemically meaningful molecular
fragments,28,46,47 and “glue” the orbitals together to form a
good guess density for the original calculation. However, the
problem of the proper choice of the guess orbitals is not solved
by either of these approaches, but rather just moved to the
additional calculation(s) in the smaller basis set, or delegated
to the isolated molecular fragments.
Having reviewed existing methodologies, what else could be

done? In the present work, we study the superposition of
atomic potentials (SAP) guess, which can be used within both
atomic orbital as well as real-space basis set approaches. We
will describe how to generate the atomic potentials used in the
SAP guess for all of the chemically relevant part of the periodic
table, and how to implement the guess efficiently in
nonrelativistic or scalar-relativistic molecular calculations.
The SAP guess is extensively benchmarked against the core
Hamiltonian guess and its GWH modification, two variants of
the SAD guess (SAD and SADNO) as well as the extended
Hückel guess variant that were outlined above. The non-
relativistic benchmark calculations comprise 259 molecules
consisting of first to fourth period elements, employing a
variety of basis sets.
The organization of the manuscript is the following. Next, in

the Theory section, we will present the theory behind the SAP
approach. Then, in the Methods section, we describe the
benchmark data set, the SCF calculations, and the guess
assessment. The Computational Details section outlines how
the atomic potentials were calculated and how the SAP guess
can be efficiently implemented in molecular calculations using
nonrelativistic or scalar-relativistic approaches. Then, in the
Results section, we will present extensive benchmarks of the
core, GWH, extended Hückel, SAD, SADNO, GSZ, and SAP
guesses employing various potentials. Finally, the article
concludes in a brief Summary and Discussion section. Atomic
units are used throughout the manuscript.

2. THEORY
As molecules are formed from atoms, in which a sometimes
overwhelming fraction of electronsthe core statesare but
spectators in chemistry, an atom-focused guess indeed makes
the most sense, as it is simple, and as it yields the correct
zeroth order solution. As such, there are two ways in which the
aim of an atomic guess could be realized.

First, the target could be to reproduce the atomic orbitals or
the atomic electron density itself, as is done in the SAD guess.
In calculations employing linear combination of atomic orbitals
(LCAO) basis sets, it is trivial to perform atomic calculations
at the beginning of a molecular calculation, because the atomic
basis sets are small−especially since no polarization functions
are necessary in the atomic calculations. However, on-the-fly
atomic calculations are intractable for molecular calculations
employing real-space methods, as performing the atomic
calculation in the three-dimensional molecular basis set is
inefficient. Thus, pretabulated atomic orbitals should be used
instead, requiring projections of the N atomic orbitals onto the
molecular grid, followed by a construction of the density
matrix in the real-space basis set. We wish to point out here
that although ref 12 argued that the SAD guess only solves half
the problem for real-space electronic structure calculations by
yielding only a guess density but no guess orbitals, the
approach we have outlined here can be used to produce
suitable guess orbitals for real-space calculations. Namely, after
projection of the numerical atomic orbital SAD guess,
molecular orbitals could be obtained with the SADNO scheme
by employing, e.g., a pivoted Cholesky decomposition of the
SAD density matrix which is feasible even for large systems.48

Second, an atomic guess could be reproduced from a
potential that yields the correct atomic electron density. This
kind of a guess would be equivalent to SAD in the case of
noninteracting closed-shell atoms, as the ground state of the
atomic potential by definition yields the orbitals for the atom.
However, the use of a superposition of atomic potentials
(SAP) in a system of interacting atoms might produce a better
guess than that produced by the SAD method, because the
guess density will already be guided by interatomic
interactions. This can be illustrated by the following argument.
Given electron densities {nA(r)} on atoms {A} that generate
potentials {vA(r)}, respectively, the total energy of the total
system is given by

∫[ ] = [ ]r rE n n v n r( ) ( ) d3
(3)

∫ ∑ ∑=
i

k
jjjjjj
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zzzzzz
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∫∑ ∑= [ ] + [ ]
≠

r r rE n n v n r( ) ( ) ( ) d
A A B

BA A
3

(6)

where we have approximated going from eq 4 to eq 5 that the
potential is linear in the density, as is the case for the Coulomb
and exact exchange potentials. The SAD guess corresponds to
the separate minimizations of the terms in the first sum,
whereas the SAP guess minimizes the total energy including
the interatomic interactions, thus yielding an improved guess
density. However, as SAP neglects the nonlinear terms in eq 4,
the SAP guess may be worse than SAD if the SAP density
deforms a lot from the atomic limit.
Compared to the many versions of the SAD guess or

alternatives such as the extended Hückel guess, the SAP guess
is exceedingly simple to implement. First, the atomic potentials
for the SAP guess can be easily obtained from calculations near
the basis set limit, as we have done in the present work; this
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step does not need to be replicated, as nonrelativistic and
scalar-relativistic atomic potentials for 1 ≤ Z ≤ 102 are
available in the Supporting Information. Second, the formation
of the SAP potential at any point involves but a simple
summation over the tabulated atomic potentials, which can be
truncated within a finite range. As a similarly local potential is
also used in the simplest variant of DFT, i.e., the local spin
density approximation (LDA), existing DFT programs can be
easily tailored for the formation of the SAP guess. The analogy
to DFT further shows that the SAP potential matrix can be
formed in linear scaling time in large systems.49,50 Like the
SADNO guess we have proposed above, the SAP guess should
be especially powerful for real-space implementations, as in
addition to producing a suitably close guess density, it can also
be used to produce a starting guess for the orbital eigenvectors,
for instance by solving its eigenstates in a small basis of
numerical atomic orbitals, or by iterative refinement of the SAP
orbitals to finer meshes.
The SAP potential can be reformulated by replacing the bare

nuclear attraction potential in the Hamiltonian

∑= −rV
Z
r

( )
A

A

A (7)

where the sum runs over all atoms A in the system, with a
screened version

∑= −rV
Z r

r
( )

( )

A

A A

A

SAP
eff

(8)

where the effective charge in eq 8 can be trivially obtained
from the radial potential VSAP(r) produced by an atomic
calculation as

= −Z r rV r( ) ( )A A
eff SAP

(9)

The representation of eq 9 is extremely appealing, as it
removes any possible divergences of the potential at the
nucleus: as a consequence of eq 9, the numerical range of
Zeff(r) is limited and the function is smooth, making it easy to
represent numerically on a grid. Indeed, the canonical
numerical representation for the orbitals in atomic electronic
structure programs is51

ψ = ̂−r rr P r Y( ) ( ) ( )nlm nl l
m1

(10)

which leads to the use of potentials rV(r) for the radial
functions Pnl(r).
If Zeff(r) only described the classical Coulomb potential, it

would be a monotonically decreasing function, going from
Zeff(0) = Z at the nucleus to Zeff(∞) = 0. But, in order to be
exact for atoms, quantum mechanical effects need to be
included in VA

SAP(r), meaning that Zeff may not be monotonic.
However, the limit Zeff(0) = Z still holds even in the presence
of exchange and correlation, and the function is overall
decreasing.
The present SAP approach is not fully novel, as somewhat

reminiscent approaches have been suggested earlier in the
literature. It was recognized already in the 1930s by Zener and
Slater that the core electrons screen the nuclear charge non-
negligibly, and better approximate wave functions can be
obtained by employing an effective, shell-dependent screened
nuclear charge52−54

= −Z Z sn n
eff

(11)

where sn is the screening constant for the shell n. Next, the use
of a radially screened nuclear potential for obtaining
approximate atomic orbitals for phenomenological studies
was studied by Green and co-workers in the late 1960s and
early 1970s.55,56 In contrast to Zener and Slater’s rules, the
approach used by Green et al. only has an implicit shell
dependence through the Schrödinger equation: shells with l >
0 experience a smaller nuclear charge, since the l(l + 1)/r2

centripetal term51 in the kinetic energy prevents them from
seeing the less-screened regions close to the nucleus; this is
also true for SAP. The Green−Sellin−Zachor (GSZ)
expression for the screened nuclear charge is given by55

= + −
+ −

Z r
Z

e H
( ) 1

1
1 ( 1)r d

Z

GSZ
/ Z (12)

= −H d Z( 1)Z Z
0.4

(13)

where dZ is a nucleus specific parameter. Values for dZ for Z ∈
[2,103] have been fitted to nonrelativistic HF orbital
energies;55,56 hydrogen is unaffected by eq 12. Slightly more
refined GSZ-type potentials in which also HZ is a free
parameter have been obtained by minimization of the HF
energy of the wave function produced by the guess,
reproducing good agreement with numerical HF energies;57−60

Figure 1. Effective charges for the noble gas atoms, computed using the BP86 functional77,78 or given by the GSZ approach55 (eq 12). Note the
logarithmic scale.
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unfortunately, these potentials are not available for all the
chemically relevant parts of the periodic table.
Although Green and co-workers found the orbitals produced

by the GSZ potential to be close to the converged HF
solutions, yielding good agreement with experiment both for
atoms55−68 as well as diatomic molecules,69−71 the GSZ
approach appears to be all but forgotten. The GSZ approach is
available in the diatomic finite-difference HF program,72,73

while the use of GSZ-inspired potentials for optimized effective
potential calculations has been studied by Theophilou and
Glushkov.74,75

At long-range, the GSZ potential (eq 12) has the asymptotic
value ZGSZ(∞) = 1. Equivalently, far away, any SAP potential
should behave as −1/r. However, approximate exchange-
correlation potentials have an incorrect asymptotic form:
potentials derived from exchange-correlation energies decay in
an exponential fashion,76 meaning that DFT potentials will
yield Zeff(∞) = 0. This behavior is illustrated in Figure 1,
which shows the effective nuclear charges given by eq 9 for the
SAP approach from a nonrelativistic spin-restricted calculation
with the BP8677,78 functional (see Computational Details
section), and for the GSZ approximation. Effective charges are
also shown in Figure 1 for a Coulomb-only screened nucleus,
based on the converged BP86 electron density. Comparison of
parts a and b of Figure 1 shows that while the classical
screening of the Coulomb charge results in a rapid decay of the
effective charge, the inclusion of exchange and correlation
effects makes the atom much more attractive at chemically
relevant distances.
More recently, apparently unaware of the work by Green et

al., Amat and Cardo-́Dorca8 suggested building guess orbitals
from an effective HF potential given by a prefitted,79

spherically symmetric density representing the atomic shell
structure, motivated by the so-called atomic shell approx-
imation (ASA).80 (A similar approach for building guess
orbitals from extended Hückel calculations was suggested by
Norman and Jensen.43) ASA potentials have been fit for H−
Ar79 and Sc−Kr8 in the 6-311G basis set. In turn, the DIRAC
program81 has employed a screened nuclear charge expressed
as a Gaussian expansion constructed from Zener and Slater’s
rules to obtain more accurate guess orbitals for systems
containing heavy atoms ever since its first release in 2004.
Another approach was suggested by Nazari and Whitten,82

who optimized effective Gaussian potentials for H, C, N, O,
and F using a set of six molecules. The potentials were then
benchmarked for a test set of 20 molecules. Nazari and
Whitten’s results were promising, showing that the model
potentials are transferable between different molecules to some
extent. The method has been recently extended to Ti, Fe, and
Ni, as well as functional group specific potentials.83 However,
as it is well-known that orbital optimization in HF and DFT
can be reformulated as a problem of finding the right
optimized effective potential,84 it is difficult to estimate how
well and how easily the results of refs 82 and83 can be
generalized to the rest of the periodic table, or even how the
method generalizes beyond the nonstandard85 “‘double-ζ”’ and
“‘triple-ζ”’ basis sets of ‘‘near Hartree−Fock atomic orbitals’’
used in the study.
As machine learning will likely soon be able to predict

accurate electron densities in a cost-efficient fashion,86 it will
thereby likely also yield excellent initial guesses for SCF
calculations. In the mean time, the present work yields suitably
accurate starting guesses for the whole of the periodic table.

The present work differs significantly from those of Green and
co-workers,55 Amat and Cardo ́-Dorca,8 and Nazari and
Whitten,82 as follows:

1. the form of our atomic potential is not restricted to a
fixed analytic form as in refs 8, 55, and 82 but is instead
determined numerically in a tabulated form;

2. we employ unoptimized atomic potentials constructed
using fully numerical calculations on atoms, not effective
potentials optimized for a molecular training set as in ref
82 or potentials fitted to reproduce atomic calculations
in a specific basis set as in ref 55;

3. unlike refs 8, 55, and 82 we present a set of potentials for
the whole chemically relevant periodic table (H−No,
i.e., 1 ≤ Z ≤ 102), in both nonrelativistic and scalar
relativistic variants, enabling practical calculations to be
performed on any system;

4. unlike refs 8 and 82, the atomic potentials are extensively
benchmarked with calculations on entirely unbiased
systems, as even the basis sets used to generate the
atomic potentials and those used in the molecular
applications are fundamentally different.

3. METHODS
3.1. Molecular Data Set. In the present work, we study

the 183 nonmultireference molecules from the high-level W4−
17 test set of first- and second-row molecules,87 which we
furthermore augment with a data set composed of 50 transition
metal complexes from refs 10 and 88 (referred to as TMC), as
well as 28 complexes containing third or fourth period
elements from the MOR41 database of single-reference
systems.89 Although the entries ED15, PR01, and PR02 in
MOR41 are also included in TMC as Ni(C3H5)2, Cr(CO)6,
and Fe(CO)5, respectively, the existence of these duplicates
should not significantly affect our results as they represent only
a small fraction of the database, and the geometries for the
molecules are also slightly different. In contrast, Cr(C6H6)-
(CO)3,CrO2F2, Fe(CO)5, VF5, and VOF3 were excluded from
ref 88, as these molecules also exist in ref 10. Moreover, as only
two molecules in the collection are charged, CrO4

2− and
Co(NH3)6

3+ (both from ref 10), they are omitted from the
analysis due to insufficient representation. The data set of the
present study thus contains 259 charge-neutral molecules in
total, 222 of which are singlets, and the remaining 37 are
nonsinglets.

3.2. SCF Calculations. Nonrelativistic HF and
revTPSSh90−92 wave functions were calculated for all the
molecules using a development version of Q-CHEM,20 employ-
ing wave function stability analysis and a (99,590) integration
grid for the exchange-correlation functional. A 10−5 basis set
linear dependence threshold, a 10−12 integrals screening
threshold, and a 10−6 SCF convergence criterion was used.
To investigate the impact of the basis set on the performance
of the guesses, calculations were performed in the minimal
STO-3G basis,40 as well as the recently published single- to
triple-ζ-level pcseg-0, pcseg-1, and aug-pcseg-2 basis sets.93,94

The motivation for this range of basis sets is that the aug-pc-2
basis set95,96 that is the parent of aug-pcseg-2 has been recently
found to be a good choice for reasonably accurate calculations
at the DFT level of theory.97

3.3. Guess Assessment. The quality of a starting guess is
determined by how close the orbitals it yields are to the true
ground state solution. Thus, the various initial guesses are
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assessed in the present work by calculating the projection of
the guess orbitals onto the converged SCF wave function as

∑= ⟨ | ⟩| =σ σ σ σ σ

=

σ

P SP SQ i j Tr
i j

N

, 1
guess SCF

2
guess SCF

occ

(14)

where i and j are molecular orbitals, the sums run over the Nocc
σ

occupied orbitals of spin σ, Pguess
σ and PSCF

σ are the guess and
SCF density matrices, and S is the overlap matrix. While the
examination of SCF convergence characteristics has been used
e.g. in the study by van Lenthe et al.,10 it is nontrivial to discern
between the effects of the initial guess and that of the SCF
algorithm in such an approach. In contrast, the projection Qσ

yields an unambiguous appraisal of initial guesses, 0 ≤ Qσ ≤
Nocc

σ ; it is also continuous rather than discrete like the number
of SCF iterations, yielding a more fine-grained ranking.
Furthermore, as only a single SCF calculation is necessary
on each system in a Qσ based approach, it is possible to explore
many kinds of initial guesses cost-efficiently with the present
methodology.
Because the SAD density matrix is nonidempotent, Qσ is not

a fully reliable estimator for the accuracy of the SAD guess. As
the largest natural orbital occupation numbers in SAD may be
many times larger than one, they may artificially inflate the
value of Qσ while representing an unphysical density.
Moreover, fractional occupation of the valence orbitals is a
well-known trick to aid SCF convergence;98,99 in this respect
the nonidempotency of SAD can actually be helpful, although
fractional occupations can be formed for other guesses as well.
Furthermore, as the SAD density matrix is typically chosen
spin-restricted and charge neutral, the projections Qσ are not
reliable estimates of the resulting SCF convergence for
nonsinglet molecules, and/or for charged molecules that
were excluded from the present study due to the scarcity of
reference geometries. However, Qσ is a reliable estimator for
the SADNO guess. As it extracts natural orbitals from the SAD
density matrix, the SADNO guess is able to form idempotent
density matrices, as well as to adapt to charged as well as spin-
polarized systems. As will be seen below, the SADNO guess
consistently yields better Qσ values than SAD.
To better be able to compare the performance of the

guesses, the projections in both spin channels are condensed
into a single criterion. Because it is clear that the number of
electrons missed by a guess will scale proportionally to system
size, the criterion should be intensive rather than extensive, lest
the largest systems dominate the analysis entirely. Thus, we
choose the fraction f of electron density covered, (worst) 0 ≤ f
≤ 1 (best),

=
∑
∑

σ
σ

σ
σf

Q

Nocc (15)

as the guess ranking criterion.
The various initial guesses are formed and assessed with the

freely available ERKALE program27,31 by reading in the basis sets
and SCF wave functions from the Q-CHEM output. The
following guesses are studied:

1. The core Hamiltonian guess, denoted as CORE.
2. The GWH guess, i.e. the GWH modification of the core

Hamiltonian.

3. The SAD guess. In the present work, the atomic
densities are formed in ERKALE with HF employing spin-

averaged, fractional orbital occupations of the valence
shells.

4. The extended Hückel guess, denoted as HUCKEL, with
the atomic orbitals and eigenvalues taken from
calculations analogous to the ones in the SAD guess.

5. The GSZ potential.55

6. The SADNO guess, where the orbitals are obtained by
diagonalizing the SAD density matrix.

7. The SAP guess, with the LDA-X, CAP-X and CHA-X
potentials, described below in the Generation of Atomic
Potentials section.

As was mentioned in the Introduction, guesses 1−3 are
commonly used approaches, whereas

• guess 4 employs a parameter-free, easily implementable
variant of the extended Hückel guess that has not been
previously considered to our knowledge,

• guess 5 has not been previously considered beyond
diatomic molecules, and

• guesses 6 and 7 have not been previously considered at
all in the literature.

4. COMPUTATIONAL DETAILS
4.1. Generation of Atomic Potentials. The atomic

potentials are generated by KS-DFT calculations with an all-
electron atomic program employing spherical symmetry (i.e.,
fractional occupations) that is available as a part of the GPAW

program package100,101 and which uses the LIBXC library102 to
evaluate the exchange-correlation functionals. The atomic
program produces self-consistent solutions of the radial
Kohn−Sham equations. The atomic calculation is initialized
with a solution in a large Gaussian basis set, after which the
solution is further refined by a finite difference calculation on a
radial grid. With a simple modification, the atomic program
was made to save the converged radial potentials to disk.
Default settings for the convergence criteria (density
converged to 10−6) were employed, while a radial grid two
times larger than the default (4000 instead of 2000 points) was
used, with the practical infinity set at the default value of 50
bohr.
Initial experimentation with various functionals in LIBXC

revealed that the best results were obtained from exchange-
only calculations, and that the best exchange functionals were
the local spin-density approximation (LDA-X),103,104 the
‘‘correct asymptotic potential’’ (CAP-X),105 as well as the
Chachiyo106 (CHA-X) generalized gradient exchange func-
tionals. Self-consistent atomic potentials were generated for
these three functionals at the nonrelativistic and scalar-
relativistic levels of theory. The atomic calculations were
spin-unrestricted, and the SAP potential was generated by
averaging over the two spin channels of the converged
potential. Next, as visual examination of the potentials
generated by GPAW revealed significant numerical noise far
away from the nucleus, the potentials were smoothed by
forcing them to decay exponentially far away from the nucleus
as

γ
→

≤

−[ − ] >

l
m
ooo
n
ooo

V r
V r r r

V r r r r r
( )

( ),

( ) exp( / ),

0

0 0 0 (16)

with the onset r0 = 8a0 and the decay parameter γ = 4a0. The
GSZ potential55 was implemented by pretabulating its values
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in the same format as the potentials obtained from GPAW, thus
allowing maximal code reuse.
4.2. Implementation of SAP. The SAP potential matrix

∫∑ χ χ=μν μ νr r rV V r( ) ( ) ( ) d
A

A
SAP SAP 3

(17)

where VA
SAP(r) is the effective potential at r arising from atom A

and the sum runs over all the atoms in the system, is calculated
in ERKALE using Becke’s polyatomic integration scheme107

∫∑ ∑χ χ=μν μ ν

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑ
r r r rV w V r( ) ( ) ( ) ( ) d

B B
B

A
A

SAP SAP 3

(18)

which kills off any possible nuclear cusps in the potential. In
analogy to the SCF calculations, a (99,590) grid, i.e. 99 radial
and 590 angular points, is used for the SAP integrals (eq 18).
The SAP potential in eq 18 is calculated using eq 8, in which
linear interpolation is used for the pretabulated effective
charges ZA

SAP(r).

5. RESULTS
The statistics on the accuracy of the guesses described in the
Guess Assessment section, assessed on HF/aug-pcseg-2 and
HF/pcseg-0 wave functions, is shown in Table 1; the full set of
results is available in the Supporting Information. The analysis
in Table 1 has been performed separately for the 222 neutral
singlet molecules, and for the 39 neutral nonsinglet molecules
of the present study. Table 1 also shows data for projections of
wave functions calculated at a different level of theory to study
the accuracy of the commonly used approach of reading in
converged densities from another calculation.
As is shown by the large projection of the HF/aug-pcseg-2

and revTPSSh/aug-pcseg-2 wave functions, the level of theory
used to study the accuracy of the initial guesses in a Qσ based
approach does not matter. After all, it is well-known that HF
and KS orbitals are typically very similar (other than in
pathological multireference cases such as Cr2); analogous
results can be found in the literature.108,109 We have thus
shown that the level of theory used is not important for the
present approach: HF and KS references yield similar results.
Despite the resemblance of the orbitals at convergence,

differences in the SCF convergence characteristics of HF

theory and DFT between different initial guesses can likely be
found. This is due to the differing nature of the HF and KS
potentials. The potential is orbital-dependent in HF, whereas
in DFT all orbitals experience the same potential; however, the
Taylor expansion of the KS energy is more complicated than
that of HF which is quadratic in the density. Thus, the
differences in the convergence speed of SCF calculations
started from two guesses of a similar accuracy will be
dominated by the SCF acceleration technique, of which
there are many as stated in the beginning of the Introduction,
and which are known to behave differently even when started
from the same guess.
The results in Table 1 support the well-known procedure of

reading in an SCF solution from a smaller basis set:
unsurprisingly, a guess consisting of a converged SCF solution
yields better results than any of the ad hoc guesses considered
in the present work. On the basis of its excellent coverage, we
can recommend the single-ζ pcseg-0 basis as a guess basis for
calculations in larger basis sets. However, as discussed in the
Introduction, an initial guess is still necessary in the small basis
set. Now, we continue by studying the performance of the ad
hoc guesses in the aug-pcseg-2 and pcseg-0 basis sets.
The high quality of the SAP guess is demonstrated by the

high f values reproduced by all the three atomic potentials
chosen for the present work. The guess rankings in decreasing
accuracy are for aug-pcseg-2 as follows.
Singlets: mean f, CHA-X, CAP-X, LDA-X, HUCKEL,

SADNO, GSZ, SAD, CORE, and GWH; min f, HUCKEL,
CAP-X, LDA-X, CHA-X, GSZ, SADNO, SAD, CORE, and
GWH.
Nonsinglets: mean f, CAP-X, CHA-X, LDA-X, HUCKEL,

SADNO, GSZ, SAD, CORE, and GWH; min f, CAP-X, CHA-
X, LDA-X, HUCKEL, GSZ, (SAD,) SADNO, CORE, and
GWH.
For pcseg-0, they are as follows.
Singlets: mean f, CHA-X, CAP-X, HUCKEL, LDA-X,

SADNO, GSZ, SAD, CORE, GWH; min f, HUCKEL, CAP-
X, LDA-X, CHA-X, SADNO, GSZ, SAD, CORE, GWH.
Nonsinglets: mean f, CHA-X, LDA-X, CAP-X, HUCKEL,

SADNO, GSZ, (SAD,) CORE, GWH; min f, HUCKEL, CAP-
X, SADNO, LDA-X, CHA-X, GSZ, (SAD,) CORE, GWH.
This shows that on average, the SAP guess yields the best

starting point for calculations. The guess performances in the

Table 1. Statistics for the 222 Neutral Singlet Molecules and the 37 Neutral Non-Singlet Molecules at the HF/aug-pcseg-2 and
HF/pcseg-0 Levels of Theory

aug-pcseg-2 singlets nonsinglets singlets nonsinglets pcseg-0

guess min f mean f min f mean f min f mean f min f mean f guess

GWH 0.000 0.443 0.285 0.450 0.405 0.587 0.458 0.558 GWH
CORE 0.435 0.585 0.417 0.610 0.523 0.680 0.557 0.662 CORE
SAD 0.700 0.901 0.730 0.864 0.711 0.908 0.739 0.871 SAD
GSZ 0.726 0.926 0.802 0.939 0.752 0.935 0.809 0.947 GSZ
SADNO 0.701 0.964 0.715 0.946 0.758 0.973 0.861 0.959 SADNO
HUCKEL 0.910 0.970 0.847 0.955 0.950 0.979 0.868 0.974 HUCKEL
LDA-X 0.893 0.974 0.849 0.969 0.898 0.979 0.901 0.964 LDA-X
CAP-X 0.896 0.974 0.898 0.973 0.901 0.979 0.851 0.975 CAP-X
CHA-X 0.892 0.976 0.920 0.974 0.897 0.980 0.843 0.976 CHA-X

HF/STO-3G 0.920 0.984 0.893 0.977 0.917 0.985 0.899 0.983 HF/STO-3G
HF/pcseg-0 0.932 0.996 0.929 0.991 0.974 0.998 0.976 0.997 revTPSSh/pcseg-0
revTPSSh/aug-pcseg-2 0.977 0.999 0.931 0.992
HF/pcseg-1 0.963 0.999 0.994 0.999
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pcseg-0 and aug-pcseg-2 basis sets are also similar, underlining
the quality of the proposed approaches.
The extended Hückel variant described in the present work

is also a good performer, especially in the small pcseg-0 basis.
The extended Hückel guess can be seen as an approximation to
SAP: in the version described in the present manuscript, the
atomic Hückel Hamiltonian coincides with the atomic Fock
operator that is diagonal in the Hückel basis; note that the
single-center atomic orbitals are orthonormal, Sij = δij.
However, the Hückel guess approximates the interatomic
elements of the Hamiltonian with the generalized Wolfsberg−
Helmholz rule (eq 2).
Furthermore, as the Hückel guess is limited to a minimal

basis (even though the basis functions themselves can
constitute the exact solution to the free atom), it yields a
spectrum consisting mostly of zeros for the virtual orbitals. In
contrast, the SAP guess yields a full spectrum for the virtual
space also in a large basis set. However, it is likely exactly the
limitation to the minimal basis that allows the Hückel guess to
work so well: in contrast to the other ad hoc guesses considered
here, the Hückel guess only mixes low-lying states for the
individual atoms, which means it can never stray very far from
a physical solution.
The differences between the top performers can be studied

in more detail with the scatter plots shown in Figure 2. The
GSZ potential, which has but a single parameter per atom,
exhibits a rapidly decaying accuracy with increasing system

size. The SAD guess, represented here through the SADNO
guess, generally offers a good starting point for calculations,
with some notable outliers in the case of small systems. The
extended Hückel variant is an improvement over SADNO,
although the scatter plots for the two methods share striking
similarities; after all, both guesses employ the same atomic
calculations.
The three SAP methods are also strikingly similar to each

other. Although the SAP results show considerably more
scatter than the SADNO or the extended Hückel guesses, SAP
yields a more accurate initial guessf values closer to 1for a
large number of molecules.

6. SUMMARY AND DISCUSSION

We have discussed an alternative method for obtaining an
initial guess for self-consistent field calculations that is based
on the superposition of atomic potentials (SAP), which is
equivalent to the commonly used superposition of atomic
densities (SAD) approach in the case of systems of
noninteracting closed-shell atoms, for which both guesses are
exact. In the case of either open-shell atoms or molecules,
neither the SAP nor the SAD guess is exact. However, in
contrast to SAD, the guess formed by SAP also includes
chemical interactions between the atoms in a molecule in a
linearized approximation.
The SAP approach can straightforwardly be implemented in

programs employing a linear combination of atomic orbitals, or

Figure 2. Guess accuracy scatter plots for the HF/aug-pcseg-2 singlet wave functions. Legend: nonmultireference part of W4−17 (circles),
transition metal complexes from refs 10 and 88 (diamonds), and MOR41 (squares). The raw data are available in the Supporting Information.
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a real-space basis set. Once the SAP approach has been
implemented, the choice of the employed atomic potentials
can be left to the user, greatly facilitating future studies on
better atomic potentials. Improvements on the accuracy of the
SAP approach could be obtained, e.g., by manually specifying
the charge states of the individual atoms in the system, as in
some implementations of SAD.
We have implemented the SAP approach in the freely

available ERKALE program,27,31 which we have used for guess
assessment by projecting the guess orbitals onto the ground
state wave functions of a data set consisting of 259 molecules
comprised of first to fourth period elements. At variance to the
assessment of initial guesses by comparison of the resulting
SCF convergence, the results of which are highly dependent on
the used SCF algorithm and the assessment is further
complicated by the possibility of convergence to saddle point
solutions or different minima, the presently used projection
approach yields an unambiguous accuracy score for any guess,
and also has a low computational cost that allows
benchmarking a wide variety of guesses.
In addition to SAP, we have discussed, implemented and

assessed a variant of SAD we call SADNO that produces guess
orbitals by purification of the nonidempotent SAD guess
density matrix, which does not appear to have been previously
considered in the literature, as well as pointed out and
demonstrated that an extended Hückel guess can be easily
implemented on top of a pre-existing SAD solver, based on the
procedure of ref 43.
The SAP guess was shown to yield excellent guess wave

functions in combination with the Chachiyo generalized
gradient exchange functional;106 almost as good results could
also be obtained with the CAP105 and LDA103,104 exchange
functionals.
On average, the SAP guess was best. However, there was

more scatter in the accuracy of SAP than in that of SADNO or
the Hückel guess. The accuracy of the SAP guess might be
improved by forming the atomic potentials at a better level of
theory; for instance, effective potential calculations110,111 could
be pursued in future work.
The good results of the parameter-free extended Hückel

guess variant were explained through its connection to the SAP
approach, as well as through its minimal-basis structure that
prevents it from yielding very good or very bad performance.
While its overall accuracy in the present data set was not as
good as that of SAP, its accuracy is remarkably stable. Because
it is an improvement over SAD and because it is extremely easy
to implement on top of pre-existing SAD code, we can
recommend the extended Hückel variant described in the
present work as a default choice.
While the present work considered only all-electron

calculations at the nonrelativistic level of theory, the
approaches discussed in the present work are readily applicable
to scalar-relativistic calculations, and they also can be
straightforwardly extended to calculations employing effective
core potentials. In the case of SAP, this would likely entail the
removal of the contributions from the core electrons to the
SAP potential, as the core electrons are already included in the
effective core potential.
The original motivation and driver of the present work was

to develop accurate yet easily implementable guesses for real-
space approaches.15,51 The SAP guess offers such an approach:
suitable guess orbitals can be easily obtained from a
superposition of atomic potentials, which are but simple scalar

radial functions. Alternatively, the SAD guess based on
projection of pretabulated numerical orbitals could be used
to produce a guess density. If molecular orbital coefficients are
also needed, then the SADNO approach could be used to
obtain them from the SAD density. Finally, if pretabulated
atomic orbitals and orbital energies are already available for a
SAD approach, the extended Hückel variant studied in the
present work following Norman and Jensen’s suggestion43 can
also be easily implemented, again yielding molecular orbital
coefficients and a likely improved accuracy over SAD.
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