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Objective: Through metabolomics method, the objective of the paper is to differentially screen serum
metabolites of GDM patients and healthy pregnant women, to explore potential biomarkers of GDM
and analyze related pathways, and to explain the potential mechanism and biological significance of
GDM.
Methods: The serum samples from 30 GDM patients and 30 healthy pregnant women were selected to
conduct non-targeted metabolomics study by liquid chromatography-mass spectrometry. The differen-
tial metabolites between the two groups were searched and the metabolic pathway was analyzed by
KEGG database.
Results: Multivariate statistical analysis found that serum metabolism in GDM patients was different sig-
nificantly from healthy pregnant women, 36 differential metabolites and corresponding metabolic path-
ways were identified in serum, which involved several metabolic ways like, fatty acid metabolism,
butyric acid metabolism, bile secretion, and amino acid metabolism.
Conclusion: The discovery of these biomarkers provided a new theoretical basis and experimental basis
for further study of the early diagnosis and pathogenesis of GDM. At the same time, LC-MS-based serum
metabolomics methods also showed great application values in disease diagnosis and mechanism
research.
� 2019 Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Gestational diabetes mellitus (GDM) is a disorder of glucose
metabolism, which usually happens in the third to sixth month
or sixth to nineth month of pregnancy and a common pregnancy
complication (Weinert, 2010). There is still no clear report on the
pathogenesis of GDM. Some research have shown that female with
GDM are of higher risk in suffering from type 2 diabetes after child-
birth, which may cause insulin resistance (IR) and dyslipidemia,
etc. So far, the identified risk factors for GDM are obesity,
unhealthy eating habits, and lack of physical activity (Hara et al.,
2002). Timely detection of GDM and control of blood glucose levels
can effectively reduce maternal and child complications (Shaikh
et al., 2016). At present, the screening of GDM is mainly through
the detection of blood sugar changes before and after the pregnant
women taking sugar between 24 and 28 weeks of gestation (Yang,
2013) but this method is relatively late for the diagnosis of
patients, which seriously threatens the health of mothers and chil-
dren. It is therefore necessary to find some new early biodiagnostic
markers.

As a metabolic disorder during gestation period, GDM is very
suitable for research by adopting metabolomics. Followed by geno-
mics, transcriptomics and proteomics, metabonomics is another
important life science research method (Kell, 2004). Metabolomics
as a comprehensive research model proposed by Nicholson et al is
widely used in the process of diseases pathological, clinical diagno-
sis, and evaluation of efficacy (Nicholson et al., 2011), which helps
people more comprehensively to understand the changing laws of
metabolic substances in the development process of disease
(Nicholson et al., 2002). Because the blood component contains
almost all of the body’s metabolites, it can reflect the physiological
and biochemical state of the body more comprehensively, so it is
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widely used by researchers in metabolomics analysis (Nicholson
et al., 2008). Metabolomic analysis of blood components in GDM
patients and normal controls can reveal the changes in metabolites
in GDM patients. In the diagnosis of pregnancy diseases, the anal-
ysis of metabolite components in the blood also has great clinical
significance, for example, adiponectin, reactive protein, etc. can
cause hyperglycemia, which further leads to the occurrence of
GDM, and to some extent they can make prediction for the occur-
rence of early GDM (Sawidou et al., 2010).

Clinically existing methods for diagnosing GDM are still incom-
plete and can easily lead to missed diagnosis and misdiagnosis for
patients. Although some literatures have been reported on the
application of metabolomics methods in GDM-related fields, and
some methods have been used to analyze potential markers of
metabolic in GDM, unfortunately results are not completely consis-
tent (Jamil et al., 2016). This study focused on GDM metabolomics
research, based on the LC-MS analysis method, to conduct metabo-
lomics analysis of serum of GDM patients and healthy pregnant
women. Combined with correlation network analysis, this paper
screened differential ions and explored landmark differential
metabolites of GDM patients. The metabolic pathways involved
were analyzed and the possible mechanism of action and biological
significance were explained, which provided data support and the-
oretical basis for further research on early diagnosis of GDM and
exploration of its mechanism.

2. Materials and methods

2.1. Main instruments and reagents

The main instruments and reagents used in this study were
listed as follows: Xevo G2-XS QTOF mass spectrometer (produced
by Waters, UK), 2777C UPLC system liquid chromatograph (pro-
duced by Waters, UK), high speed centrifuge (produced by Thermo,
USA), ultrapure water preparation system (produced by Milipore,
USA), ACQUITY UPLC CSH C18 chromatographic column
(100 mm*2.1 mm, 1.7 lm, produced by Waters, UK), isopropanol
(produced by Biotech Engineering Co., Ltd.), ammonium formate
(chromatographically pure, produced by DIKMA, USA), acetonitrile
(chromatographically pure, produced by Yucheng Chemical Plant
of Shandong Yuwang Industrial Co., Ltd.), formic acid (chromato-
graphically pure, produced by TEDIA).

2.2. Sample collection

All samples in this study were obtained from the obstetrics
department of the Third Affiliated Hospital of Zhengzhou Univer-
sity, including 30 healthy pregnant women (control group/health
Table 1
Comparison of general data between the two groups (x ̅±s).

General condition GDM group (n =

Age 28.8 ± 3.01
Pre-pregnancy BMI (Kg/m2) 23.57 ± 1.72

OGTT- fasting blood glucose (mmol/L) 5.71 ± 0.55
OGTT – blood glucose after 1 h (mmol/L) 10.36 ± 1.77
OGTT – blood glucose after 2 h (mmol/L) 8.72 ± 1.42

Fasting insulin (um/L) 10.99 ± 4.72
Insulin resistance index 2.78 ± 1.20

glycosylated hemoglobin (HbA1c, mmol/ml) 5.35 ± 0.18
Triglyceride (TG, mmol/L) 2.73 ± 0.63

Total cholesterol (CHOL, mmol/L) 6.17 ± 1.15
High density lipoprotein (HDL, mmol/L) 1.83 ± 0.26
Low density lipoprotein (LDL, mmol/L) 3.13 ± 0.64

Note: insulin resistance index = fasting insulin � fasting blood glucose � 22.5.
group) and 30 GDM pregnant women (GDM group). GDM was
diagnosed using the 2010 guidelines of International Association
of the Diabetes and Pregnancy Study Group (IADPSG). (1) The first
examination of fasting blood glucose during pregnancy
was � 5.1 mmol/L, and < 7.0 mmol/L. (2) During 24–28 weeks,
75 g glucose was adopted for 2 h to conduct Oral Glucose Tolerance
Test (OGTT): fasting blood glucose � 5.1 mmol/L, the blood glucose
after 1 h � 10.0 mmol/L, the blood glucose after 2 h � 8.5 mmol/L.
GDM can be diagnosed if one or both of the above two criteria meet
or exceed. Blood samples were collected at 24–28 weeks of gesta-
tion and then sent to Wuhan BGI Diagnosis Co., Ltd. for metabolo-
mics testing. Outpatient examination information were collected,
such as age, BMI and other clinical data, and statistical analysis
was conducted, as shown in Table 1. The research was reviewed
by the Ethics Committee of the Third Affiliated Hospital, and all
participants signed the consent form.

2.3. Sample pretreatment

First, the serum samples were used for metabolite extraction.
This experiment adopted the organic reagent precipitation protein
method, and the QC sample was prepared, and then the extracted
sample was detected (Khattab et al., 2016). There were 2 groups of
samples to be tested, and 30 biological replicates in each group.
The samples stored at low temperature were thawed and sorted,
40 lL of each sample was sequentially added to the corresponding
EP tube, 120 lL of cold isopropanol was added, sealed, and shaken
and mixed. After standing for 10 min in room temperature, it was
put into a refrigerator at �20 �C overnight. At 2000 g and 4 �C for
40 min, all samples were centrifuged and 25 lL of the supernatant
was added to new EP tubes respectively, and then 225 lL of each
lipid solution was added for dilution. 20 lL of each experimental
sample was mixed into a quality control (QC) sample. 60 lL of all
samples were sequentially tested in the order of loading, and one
QC sample was inserted into every 10 samples in the separation
to evaluate the reliability of the experimental data and the stability
of the state of the monitoring instrument.

2.4. Chromatographic conditions

Set column temperature and flow rate set to 55 �C and 0.4 mL/
min respectively, then the ACQUITY UPLC CSH C18 chromato-
graphic columnwas used to perform the separation. In that, mobile
phase A was ACN (acetonitrile): H2O = 60:40, 10 mM ammonium
formate and 0.1% formic acid (FA); mobile phase B was IPA (iso-
propanol): ACN = 90:10, 0.1% FA and 10 mM ammonium formate.
The metabolites were eluted as follows: 0–2 min, 40–43% mobile
phase B; 2.1–7 min, 50–54% mobile phase B; 7.1–13 min, 70–99%
30) Control group (n = 30) P value

28.53 ± 3.4 0.749
22.54 ± 2.08 0.04
4.66 ± 0.24 <0.001
6.77 ± 1.21 <0.001
6.27 ± 0.72 <0.001
6.94 ± 1.11 <0.001
1.44 ± 0.25 <0.001
4.95 ± 0.25 <0.001
2.64 ± 0.9 0.658
4.88 ± 0.59 <0.001
2.09 ± 0.31 <0.001
2.59 ± 0.55 <0.001
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mobile phase B; 13.1–15 min, 40% mobile phase B. Each sample
was taken 10 lL of it out. In the chromatographic separation
process, the samples are continuously analyzed in a random
sequence to avoid the influence of the experimental instrument
detection signal fluctuations on the results.
2.5. Mass spectrometry conditions

The high-resolution tandem mass spectrometer, Xevo G2-XS
QTOF, was used to collect the small molecules eluted from the
chromatographic column in positive and negative ion modes (Li
et al., 2019). The cone voltage and capillary voltage were set to
40.0 V and 3.0 kV in positive ion mode and 40.0 V and 2.0 kV in
negative ion mode respectively. The centroid data were collected
in MSE mode. When the first-level scan is performed, the time
was set to 0.2 s, the positive and negative ion ranges were 100–
2000 Da and 50–2000 Da, respectively, all the parent ions were
fragmented with energy of 19–45 eV and the fragment information
was collected.
2.6. Data processing and statistical analysis

The Xevo G2-XS QTOF mass spectrometer was adopted to col-
lect the raw mass spectral data in the samples in different modes,
and then the data were imported into Progenesis QI software for
peak extraction. The operation flow mainly included three steps:
peak alignment, peak extraction and peak identification. Data pre-
processing was performed using the R software package metaX. to
obtain a two-dimensional data matrix of peak area, retention time
and mass-to-charge ratio of all ions, and corrected by QC-RLSC
method. Then all the data were analyzed by PCA and PLS-DA to
screen the differential ions. The PLS-DA model was used to calcu-
late the influence intensity and explanatory ability of each metabo-
lite expression pattern on the classification and discrimination of
each group of samples by calculating the VIP value. VIP, also known
as Variable Important for the Projection, usually VIP � 1.0 was
regarded as an auxiliary condition for screening for metabolic
markers. Identification of biomarkers and analysis of metabolic
pathways were performed using the biological databases HMDB
and KEGG. Statistical analysis was performed by statistical soft-
ware SPSS21.0, and t-test was used to compare samples, P < 0.05
indicated that the difference was statistically significant.
Fig. 1. Volca
3. Results

3.1. Univariate analysis

Univariate analysis of the data was conducted through fold
change analysis and independent sample T test. After t-test analy-
sis, the difference between GDM group and healthy group was of
statistical significance (P < 0.05). After t-test analysis of the genes
differentially expressed between the two samples, Volcano plot
was drawn with the log2 (fold change) regarded as the abscissa
and the -log10 (P value) regarded as the ordinate. According to
the screening condition of Fold change �0.8333 or �1.2, P
value < 0.05, differential metabolites were screened. The results
in the final positive and negative ion mode were shown in Fig. 1.
Each point in the figure represented a metabolite, the red point
was a significant differential metabolite, and the remaining points
were blue.

3.2. Principal component analysis (PCA)

Unsupervised PCA analysis of the samples of health group and
GDM group, the scores of the first two principal components
PC1 � PC2 obtained in positive and negative ion mode were dis-
played in Fig. 2. In the positive ion mode, the most of sample points
of the two groups overlapped in the two-dimensional PCA dot pat-
tern, but there were still differences in the second principal com-
ponent, and some abnormal points were separated, indicating
that the metabolites of the GDM group and health group had some
differences.

Note: One point in the figure corresponded to one sample, blue
represented the quality control group, green represented the
health group, and red represented the GDM group.

3.3. Partial least squares discriminant analysis (PLS-DA)

For purpose of further verify the statistical difference between
GDM group and normal pregnant group, this study used the super-
vised PLS-DA multivariate method to re-model and analyze the
two sets of data, 200 permutation tests were conducted for the
model parameters R2 and Q2, to confirm the reliability of the
model. The scores of the first two major components PC1-PC2
obtained in the positive and negative ion modes were display in
Fig. 3. R2 and Q2 respectively represented the interpretation rate
no plot.



Fig. 2. Principal component analysis model.

Fig. 3. PLS-DA model. Note: One point in the figure corresponded to one sample, green represented the health group, and red represented the GDM group.
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and prediction rate of the model. The results showed that most
samples between the two groups were separated in positive ion
mode, R2 = 0.605, Q2 = 0.208; in the negative mode, the two
groups completely separated, R2 = 0.870, Q2 = 0.425. Theoretically,
the closer R2 and Q2 are to one, the better the effect is, and the
more stable and reliable the model is. However, the clinical sam-
ples are large and uncontrollable due to individual differences,
especially for large samples, it is acceptable when the values of
R2 and Q2 are 0.2 approximately. In this study, both R2 and Q2 val-
ues in the positive and negative modes were greater than 0.2, indi-
cating that the model quality was good and the stable prediction
rate was high. Through permutation test, it was found that the
model did not show a fitting, which indicated that the model
was reliable.
3.4. Differential ion screening and cluster analysis

The VIP values of the first two principal components of the PLS-
DA model were analyzed by multivariate analysis, combined with
P values and fold-change (differential multiples) to screen differen-
tial metabolites. Screening conditions: (1) P-value < 0.05; (2)
VIP � 1; (3) fold-change� 0.8333 or � 1.2, taking the intersection
of the three to obtain the shared ion, which is the differential
ion. Compared with the healthy group, the GDM group identified
719 differential ions in positive ion mode, and 206 differential
metabolites were identified by two-stage mass spectrometry;
227 differential ions were identified under negative ions, and 38
differential metabolites were identified by two-stage mass spec-
trometry. On behalf of more intuitively and comprehensively dis-
play the relationship between the samples, and to evaluate the
rationality of the candidate metabolites and the differences in
the expression patterns of the metabolites in different samples,
this paper used a qualitatively significant difference in the amount
of metabolite expression to perform hierarchical clustering analy-
sis of each group of samples. Fig. 4 showed the hierarchical cluster-
ing of significant differences between two groups in positive and
negative ion mode. The results demonstrated that serum differen-
tial metabolites between the two groups had a certain clustering
trend.
3.5. Identification of potential biomarkers

The above-selected differential ions were searched for the exact
molecular weight of the difference by online database HMDB, and
the mass spectrometry information was used to identify the sub-
stances with significant differences, At the same time, according
to the contribution degree of the compound to the group (VIP
value), combined with clinical and biological significance, 36 com-



Fig. 4. Differential ion clustering analysis. Note: Each row in the graph represented a differential ion, and each column represented a sample. The different colors represented
different intensities, of which the green meant intensity was low and the red meant intensity was high.

Table 2
Identification results of potential biomarkers.

Mode Retention time /min m/z ratio VIP Differential metabolites Class

+ 1.18 370.2356 1.48 2.15 TXB2 Fatty acyls
+ 1.20 228.1355 1.42 1.91 Traumatic acid Fatty acyls
+ 2.13 357.2045 1.42 1.66 PGC2 Fatty acyls
+ 2.13 357.2045 1.42 1.66 PGJ2 Fatty acyls
+ 2.13 357.2045 1.42 1.66 PGB2 Fatty acyls
+ 2.13 357.2045 1.42 1.66 PGA2 Fatty acyls
+ 1.72 425.2542 1.72 3.34 Pravastatin Fatty acyls
+ 2.82 395.2153 1.49 2.13 PGD2-d4 Fatty acyls
+ 2.82 395.2153 1.49 2.13 PGE2-d4 Fatty acyls
+ 3.64 874.1028 1.68 1.86 Crotonoyl-CoA Fatty acyls
+ 3.64 874.1028 1.68 1.86 Methacrylyl-CoA Fatty acyls
+ 6.12 386.2537 0.66 1.86 PGG2 Fatty acyls
+ 6.12 386.2537 0.66 1.86 6-keto PGE1 Fatty acyls
+ 6.12 386.2537 0.66 1.86 11-dehydro-TXB2 Fatty acyls
� 0.60 103.0395 1.66 3.34 2S-Hydroxybutanoic acid Fatty acyls
� 0.60 103.0395 1.66 3.34 D(-)-beta-hydroxy butyric acid Fatty acyls
� 0.60 103.0395 1.66 3.34 4-hydroxy-butyric acid Fatty acyls
� 2.00 329.2477 2.13 2.40 DPA Fatty acyls
� 2.72 281.2477 1.50 2.90 Oleic acid Fatty acyls
± 8.31 263.2367 1.31 1.33 Rumenic acid Fatty acyls
± 8.31 263.2367 1.31 1.33 Linoleic acid Fatty acyls
+ 1.23 347.2215 1.45 2.27 Urocortisone Sterol lipids
+ 1.23 347.2215 1.45 2.27 corticosterone Sterol lipids
+ 1.23 347.2215 1.45 2.27 11-deoxycortisol Sterol lipids
+ 1.28 349.2376 1.23 1.29 Tetrahydrocortisol Sterol lipids
+ 1.34 287.1637 1.53 2.28 2-Hydroxyestrone Sterol lipids
+ 9.58 369.3517 0.69 1.38 Cholesterol Sterol lipids
+ 9.58 369.3517 0.69 1.38 Lathosterol Sterol lipids
� 1.90 353.1419 1.54 2.14 Dehydroepiandrosterone sulfate Sterol lipids
� 2.72 49.2352 1.74 2.93 Tetrahydrocorticosterone Sterol lipids
+ 1.69 411.2525 1.71 4.03 LPA (0:0/16:0) Glycerophospholipids
� 1.01 528.3087 1.35 1.95 LysoPC (20:4) Glycerophospholipids
+ 1.29 461.3335 1.41 2.02 Psychosine Sphingolipids
+ 9.00 880.7184 0.80 1.51 Coenzyme Q10 Prenol lipids
+ 6.96 569.4366 0.61 2.85 Lutein Prenol lipids
+ 6.96 569.4366 0.61 2.85 Zeaxanthin Prenol lipids

Note: mode was ion detection mode, ‘‘+” was positive ion mode, ‘‘�” was negative ion mode, ‘‘±” was common to positive and negative ion mode; ratio was fold change
(differential multiple), according to the sample in the file, the ratio between the two groups (GDM group/health group) was obtained, for instance, 1:2, and its ratio = 1/2.
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pounds with the largest difference between the groups were
selected as potential biomarkers. The identification results of these
potential markers such as mass-to-charge ratio and VIP value were
shown in Table 2. These 36 metabolites were mainly classified into
several major categories: prenol lipids, sterol lipids, fatty acyls,
sphingolipids, glycerophospholipids, etc.



Table 3
Analysis of potential biomarker pathways.

Differential metabolites Pathway KEGG. ID Change direction

TXB2 Arachidonic acid metabolism; bile secretion C05963 "
Traumatic acid Linolenic acid metabolism C16308 "

PGC2 Arachidonic acid metabolism C05955 "
PGJ2 Arachidonic acid metabolism C05957 "
PGB2 Arachidonic acid metabolism C05954 "
PGA2 Arachidonic acid metabolism C05953 "

Pravastatin Bile secretion C01844 "
PGD2-d4 Arachidonic acid metabolism C00696 "
PGE2-d4 Arachidonic acid metabolism C00584 "

Crotonoyl-CoA Amino acid metabolism; Butyric acid metabolism; fatty acid metabolism C00877 "
Methacrylyl-CoA Amino acid metabolism C03460 "

PGG2 Arachidonic acid metabolism C05956 ;
6-keto PGE1 Arachidonic acid metabolism C05962 ;

11-dehydro-TXB2 Arachidonic acid metabolism C05964 ;
2S-Hydroxybutanoic acid Propionic acid metabolism C05984 "

D(-)-beta-hydroxy butyric acid Butyric acid metabolism C01089 "
4-hydroxy-butyric acid Butyric acid metabolism C00989 "

DPA Biosynthesis of unsaturated fatty acids C16513 "
Oleic acid Fatty acid biosynthesis C00712 "

Rumenic acid Linoleic acid metabolism C04056 "
Linoleic acid Linoleic acid metabolism C01595 "
Urocortisone Steroid hormone biosynthesis C05470 "
corticosterone Steroid hormone biosynthesis C02140 "

11-deoxycortisol Steroid hormone biosynthesis C05488 "
Tetrahydrocortisol Steroid hormone biosynthesis C05472 "
2-Hydroxyestrone Steroid hormone biosynthesis C05298 "

Cholesterol Lipid metabolism; bile secretion C00187 ;
Lathosterol Steroid biosynthesis C01189 ;

Dehydroepiandrosterone sulfate Steroid hormone biosynthesis; bile secretion C04555 "
Tetrahydrocorticosterone Steroid biosynthesis C05476 "

LPA(0:0/16:0) Glycerolipid metabolism; Glycerolphospholipid metabolism C00416 "
LysoPC(20:4) Glycerolphospholipid metabolism C04230 "
Psychosine Sphingolipid metabolism C01747 "

Coenzyme Q10 Ubiquinone and other biosynthesis C00399 ;
Lutein Metabolic pathway C08601 ;

Zeaxanthin Metabolic pathway C06098 ;

Note: Pathway is the path name, and KEGG. ID is the serial number of the metabolite in the KEGG database.
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3.6. Analysis of potential biomarker pathways

Metabolic pathway analysis is a very important part of metabo-
lomics research, which helps to understand the signaling pathways
and metabolic pathways involved in metabolites, and then related
metabolites and genes were explored (Nielsen and Jewett, 2007).
This study was based on the KEGG database to analyze the meta-
bolic pathways and content changes of the potential biomarkers
obtained, as shown in Table 3. The results showed that the 36
potential markers obtained in GDM group and health group were
involved in multiple pathways, mainly in pathways such as fatty
acid metabolism, metabolism of amino acid, steroid hormone
biosynthesis, metabolism of arachidonic acid , butyric acid meta-
bolism and bile secretion.
4. Discussion

Gestational diabetes mellitus (GDM) is the first type of diabetes
discovered or occurred during pregnancy, which is a common
medical complication during pregnancy and extremely harmful
to mothers and children. Non-targeted metabolomics based on
LC-MS technology can analyze the metabolic information and
pathogenic mechanism of gestational diabetes from a comprehen-
sive and holistic perspective, providing a new analytical method
for the pathogenesis of GDM (Sun, 2017). At present, metabolomics
has been increasingly used in the search of biomarkers for the diag-
nosis of diseases. Although there are more and more studies on
pregnancy-related diseases in metabolomics, but only related mar-
ker differential metabolites were selected in most cases. The rele-
vant metabolic pathways of these metabolites have not been
studied in depth, and the holistic metabolic network has not been
constructed for such disease (Syngelaki et al., 2015). Due to the
complex pathogenesis of GDM, there are no known markers for
early prediction of GDM, and no single indicator can be used for
high-specific screening in patients who meet the GDM diagnostic
criteria. In order to increase the ability to predict GDM, most stud-
ies have tried to use a combination of serological and clinical indi-
cators, but the effect is still limited (Abell et al., 2015), and as a
screening method, it may obviously increase the cost of medical
care, which is relative infeasible.

Different researchers described metabolomics analysis of possi-
ble GDMmarker metabolites, but their results did not show consis-
tency (Liu et al., 2010). Wang argued that the metabolism of
tryptophan was affected when GDM occurred, which was very sim-
ilar to the results of Law, Bentley-Lewis and Daniel studied the
early serum of GDM patients and normal pregnant women, respec-
tively, they both found that the amino acid metabolites of GDM
patients in serum were different from those of normal pregnant
women, but the differential metabolites in these two studies were
not completely the same, which may be due to different sample
collection periods or different gestational weeks in the two groups.
In this study, a metabonomics method based on LC-MS was used to
analyze the metabolic profile changes between the samples of
GDM group and health group. A total of 36 potential biomarkers
and their multiple metabolic pathways involved were obtained
by screening differential metabolites and performing KEGG meta-
bolic pathway analysis, which were primarily concentrated in fatty
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acid metabolism, metabolism of amino acid, steroid hormone
biosynthesis, arachidonic acid metabolism, butyric acid metabo-
lism and bile secretion. It indicated that GDM not only affected
the metabolism of organism lipids, amino acids and sugars, but
also caused disturbances in other metabolic systems, which was
consistent with previous studies (Zhou et al., 2014).

Using isotopically labeled tandem mass spectrometry proposed
by Enquobahrie et al. the researchers measured several levels of
sterol hormones in the blood during pregnancy and found that
levels of 11-deoxycortisol, 17a-hydroxyprogesterone, and proges-
terone increased throughout the whole period of pregnancy. Corti-
sol and androstenedione levels remained stable after an increase in
early pregnancy, whereas dehydroepiandrosterone sulfate levels
decreased during the third trimester (Enquobahrie et al., 2015).
In this study, the level of 11-deoxycortisol in GDM group was also
higher than that in normal group, which was consistent with the
study. However, the level of dehydroepiandrosterone sulfate was
also high in the GDM group, which may be related to the character-
istics of the population and the specimen collected from the period
of pregnancy, the type of sample, and the applied method were dif-
ferent. Daniel et al. performed metabolomics analysis of differen-
tial metabolites in early serum of GDM patients and found 17
differential metabolites including oleic acid and linoleic acid,
which mainly involved amino acid and fatty acid metabolism
(Daniel et al., 2015). Li tested the dynamic metabolism of serum
in pregnant and normal GDM patients, and finally screened 35 dif-
ferentially different substances, which were derived from steroid
hormone, pyruvate, glycerophospholipid, fatty acid and other
metabolism, which mainly related to glycolipids metabolism,
nucleotide or amino acid metabolism. However, the metabolites
in the blood analyzed in this study may be partially different from
previous studies because of the reasons of pregnancy (Li et al.,
2014). From the overall analysis, GDM had a great influence on
phospholipid metabolism, amino acid metabolism, fatty acid meta-
bolism and glucose metabolism. These differential metabolites and
related differential metabolic pathways provided some guidance
for explaining the pathogenesis of GDM.

5. Conclusion

In this study, 36 structural potential biomarkers were identified
between the GDM group and the normal group by compound
structure identification and analysis, combined with clinical and
biological significance. These potential biomarkers were mainly
classified as prenol lipids, sterol lipids, fatty acyls, sphingolipids,
and glycerophospholipids. KEGG metabolic pathway analysis
showed that these differential metabolites involved in multiple
metabolic pathways, mainly in pathways such as fatty acid meta-
bolism, steroid hormone biosynthesis, arachidonic acid metabo-
lism, butyric acid metabolism, amino acid metabolism and bile
secretion. The consequence of this study indicate that LC-MS-
based serum metabolomics can well distinguish between GDM
patients and normal pregnant women, and find specific differential
substances, which is a good reference for early diagnosis and prog-
nosis risk assessment for GDM patients. At the same time, the cor-
responding metabolic pathway analysis was carried out, which
provided a theoretical basis for the future investigation of GDM
pathogenesis. It also proved that the LC-MS-based serum metabo-
lomics method had great application value in disease diagnosis and
mechanism research.
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