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Introduction

There is growing interest in the routine use of alchemi-
cal free energy (AFE) calculations for predictions of pro-
tein–ligand binding energies in structure-based drug discov-
ery programs [1–7]. In particular building on pioneering 
work over three decades ago [8, 9], some modern alchemical 
relative free energy calculation protocols achieve in several 
diverse protein binding sites sufficiently accurate predictions 
of binding energies [root mean square deviations (RMSD) 
under 1.5 kcal mol−1; Pearson Correlation coefficient’s (R) 
of around 0.7 or better] to speed up hit-to-lead and lead 
optimisation efforts [10]. In favourable cases, AFE calcu-
lations can even reproduce subtle non-additivity of struc-
ture–activity relationships [11]. However, for a given set of 
protein–ligand complexes it remains difficult to anticipate 
the predictive power of AFE calculations. Uncertainties in 
binding modes [12–14] protonation/tautomeric states [15, 
16], binding site water content [17–19], and choice of poten-
tial energy functions [20, 21], can profoundly influence the 
outcome of such calculations. Accordingly, there is much 
interest in defining as much as possible a domain of appli-
cability for the technology [22].

Blinded prediction competitions, whereby participants 
submit physical properties computed by a model in the 
absence of knowledge of the actual experimental data, have 
been instrumental in driving methodological progress in 
a wide range of scientific fields [23–26]. Blinded predic-
tions reduce the impact of unconscious biases on the design 
of protocols, and allow evaluation of molecular model-
ling methods in a context closer to their intended use in 
drug discovery. This is advantageous for academic groups 
that have expertise in computational methodologies, but 
lack resources to carry out prospective studies. It is also 
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beneficial for the field to evaluate different methodologies 
applied to the same dataset with identical analysis protocols.

This report focuses on the predictions submitted by our 
group within the context of the second Drug Design Data 
Resource (D3R) Grand Challenge, that ran between Septem-
ber 2016 and February 2017. The D3R Grand challenge 2 
was the second blinded prediction challenge organised by the 
D3R consortium in this case looking at predicting binding 
poses, binding affinity ranking, and free energies for a series 
of 102 ligands of the Frasenoid X Receptor (FXR). This 
complements previous reports from our group on blinded 
predictions of protein–ligand poses, rankings, binding free 
energies [27], distribution coefficients [28], and host–guest 
binding free energies [29], within the frame work of the first 
D3R challenge in 2015 and the SAMPL5 challenges [30, 
31]. The dataset of 102 inhibitors of FXR, both crystal 
structures and affinity data, were provided by Roche. The 
competition featured pose predictions, dataset rankings, and 
relative binding free energy predictions for two subsets of 15 
and 18 compounds referred to as set1 and set2 respectively. 
Our group only submitted predictions of the relative binding 
free energies for the set1 and set2 subsets. Submissions were 
made before (stage1) and after (stage2) information about 
binding poses of representative set1 or set2 compounds were 
made available. This enabled an analysis of the impact of 
the available experimental data on the performance of the 
protocols. All input data download and submissions upload 
were conducted via the website of the D3R consortium [32].

Theory and methods

Datasets

Blinded datasets

At the start of the challenge (stage1), the organisers released 
the pseudo apo-protein structure of ligand 10 as provided by 
Roche, as well as 36 ligands in SDF format to be used for 
the prediction of crystallographic poses, and an additional 
set of 66 ligands that should be used in affinity rankings. 
There were two subsets identified among these 102 ligands, 
set1 with 15 compounds and set2 with 18 compounds, for 
which relative binding free energies could be calculated. 
Ligand subsets set1 and set2 are depicted in Fig. SI2. For 
the second stage of the challenge, 36 X-ray structures were 
released, meaning that they could be used to prepare input 
files for alchemical free energy calculations. Once the com-
petition was over a set of IC50 data for the entire dataset was 
released. The data stems from a scintillation proximity assay 
using only the FXR binding domain and a radioactive tracer. 
More information on the experimental binding assay as well 
as a study on other FXR inhibitors can be found in a series 

of publications [33–36]. Experimental relative binding free 
energies were estimated by Eq. 1

where L1 and L2 represent two ligands for which a relative 
energy difference is computed and kB and T are the Boltz-
mann constant and temperature respectively.

Literature datasets

In order to test the computational protocols before submis-
sion of blinded predictions, retrospective studies were car-
ried out using available literature data. A set of inhibition 
and structural data for 3-aryl isoxazole analogs of the non-
steroid agonist GW4064 had been previously published [34, 
36]. The data consists of two different ligand series, where 
the first series contains eight compounds (LitSet1) and the 
second series 17 (LitSet2). The same experimental IC50 
assay as described for the blinded dataset was used. Rela-
tive binding free energies were computed from the reported 
IC50s with Eq. 1. A summary of the compounds present in 
LitSet1 and LitSet2 can be found in Fig. SI1.

Methods

The methodology used for the calculations of relative 
binding free energies of FXR ligands was a single topol-
ogy molecular dynamics alchemical free energy approach. 
Several operations are necessary to produce a set of output 
relative free energies of binding, based on a input set of 
protein antom coordinates and 2D descriptions of ligands. 
Currently this is implemented by a semi-automated work-
flow as depicted in Fig. 1.

Initial protein and ligand structure setup

For the two sets of literature data, the crystal structure with 
PDB ID 3FXV (FXR in complex with compound 7a) was 
used for the ligands taken from Feng et al. [34], and the crys-
tal structure with PDB ID 3OKI (FXR in complex with com-
pound 1a) was used for data taken from Richter et al. [36].

Due to the plasticity of the binding site of FXR and the 
differences in shape between compounds in set1 and set2, 
two different protein structures were needed to build com-
plexes between FXR and compounds of set1 and set2. Each 
structure required a different preparation protocol. For set1 
the FXR structure provided by the organizers was chosen as 
an initial template. For the docking calculations, that mainly 
consider residues delineating the binding site, the standard 
protein preparation workflow in Maestro 11 (beta) and con-
version to the appropriate format with the utility fconv was 

(1)��GL1→L2 = kBT ln
IC50(L2)

IC50(L1)

,
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sufficient. To use the resulting structure in alchemical free 
energy simulations, however, it was necessary to model the 
missing region comprised between residues A459 and K464. 
Visual analysis of crystallographic structures available in 
the PDB revealed that fragments of the region comprised 
between M450 and N472 are missing in several structures 
(i.e: 3FXV), or are arranged in at least two slightly differ-
ent conformations. The first conformation displays a slightly 
kinked alpha helix spanning from residue N432 to residue 
N461 with a loop connecting residues D462 to T466 (as in 
structure 3OKH). In the second conformation the kinked 
alpha helix is shorter (N432 to S457) and the loop is longer 
(W458 to T466) and adopts a different orientation (as in 
structure 3OKI). After superimposing the structure provided 
by the organizers with representative structures of each con-
formation, 3OKH was deemed as a suitable template to build 
the missing fragment of the structure. Subsequently, appro-
priate capping groups were added to residue M247 of the 
main chain and to residues D743 and D755 of the co-acti-
vator fragment. For set2, the 3OKI structure was used as an 
initial template and the preparation process was significantly 
simpler. The standard protein structure preparation workflow 
of Maestro 11 (beta) with addition of capping groups was 
sufficient to generate structures suitable for both docking 
and FEP calculations.

Ligand 3D structures compatible with the assay condi-
tions were generated from 2D SDF files provided by the 

organizers using MarvinTools scripts available in Marvin 
Sketch 15.3.30 software package. The pKa predictor avail-
able in the same package was used to evaluate the major 
protomer/tautomer for these compounds bearing ionizable 
substituents. No crystallographic water molecules were 
retained for the docking calculations.

Generation of ligand binding modes

Binding modes for the literature data were manually build 
in Maestro 11 (beta) by means of an overlay with the bind-
ing mode of compounds 7a and 1a as observed in the X-ray 
crystal structures 3FXV and 3OKI respectively.

For set1 of the blind datasets, a putative binding mode for 
the series was obtained by docking the compounds bearing 
the smallest (hydrogen, 91) the bulkiest (morpholino amide, 
102) substituent, as well as compound 101 to probe the effect 
of an ionized carboxylic acid on the binding mode. Consist-
ent binding modes were obtained for the three molecules in 
the crystallographic structure provided by the organizers. 
To minimize the differences between binding modes within 
the set1 series, the binding modes for all compounds were 
manually created from the binding mode of the largest com-
pound 102. A similar protocol was followed for compounds 
in set2, using compounds 12, 74, 76, 79 and 83 to explore 
the influence of different substituents in the sulfonamide. A 
consistent binding mode was found for these compounds in 

Fig. 1   Semi-automated work-
flow for predicting relative free 
energies of binding. Workflow 
operations are depicted by blue 
boxes. Green boxes denote soft-
ware available for automated 
execution of the workflow step. 
Red boxes denote operations 
that require human intervention
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the protein conformation displayed in PDB ID 3OKI, and 
putative binding modes for the entire series were manually 
created from the binding mode of compound 83.

All docking calculations were performed with rDock, 
generating the cavity using the two-sphere method avail-
able in the program, centering a 15 Å cavity within residues 
M294, I356, S336 and Y373 using 1.5 and 4.0 Å for the 
radius of the small and large spheres respectively. Manual 
building of the compounds was performed with Maestro 11 
(beta) and the minimizer available in the suite was used to 
avoid steric clashes. After poses were obtained, water mol-
ecules resolved in the X-ray structure provided by the organ-
izers were superimposed with the coordinates of the poses. 
Clashing water molecules were displaced to nearby posi-
tions. For the second stage of the challenge, the additional 
knowledge gained from the crystal structures was leveraged 
to prepare new input files for the alchemical free energy 
calculations.

Alchemical calculations input preparation

Once a set of satisfactory 3D poses for both set1 and set2 
was obtained, a relative free energy perturbation network 
was manually designed for both set1 and set2 ligands. The 
network was assigned in such a way that resulting perturba-
tions between structures would be minimal and as many as 
possible simple cycles would be contained in the network 
in order to allow for cross validation using cycle closure 
as a measure. Set1 included one ambiguous binding mode 
for compound 47. For set2 only three of the 18 compounds 
had a clearly preferred binding mode. Typically there was 
uncertainty in the position of ortho or meta substituents of 
a benzyl ring. Whenever there was ambiguity, the differ-
ent binding modes were included in the perturbation map. 
The perturbation networks can be found in Figs. 3–7 of the 
SI. With the perturbation networks defined, the software 
FESetup [37] release 1.3 dev, was used to parametrise set1 
and set2 ligands, setup ligands in a water box as well as 
protein environment and create the needed input for the 
alchemical free energy simulations.

Ligands  Ligands were parametrised using the generalised 
amber force field 2 (GAFF2) [38], followed by solvation in 
a rectangular box of 12 Å length using TIP3P water [39, 40]. 
An energy minimization using a steepest decent algorithm 
with 500 steps was carried out on the water box, followed by 
an NVT simulation with the ligand restrained, during which 
the system was heated to 300 K over 1000 steps. Next an 
NPT equilibration at 1 atm was run for 5000 steps, followed 
by the release of the restraint on the ligand over 500 steps. 
FESetup used the software pmemd for this equilibration. 
For each perturbation a SOMD compatible perturbation file 

was then created from the perturbation map produced by 
FESetup.

Protein–ligand complex  For the protein and ligand com-
plex the protein and previously parametrised ligands were 
combined and solvated in a rectangular box of 10 Å. The 
protein forcefield was the amber 14 SB forcefield [38]. An 
equivalent solvation and equilibration protocol was used as 
described for the solvated ligand only.

Alchemical free energy simulations

The alchemical free energy protocol used here is based 
on the SOMD software as available in the Sire 2016.1.0 
release [41]. This version of SOMD is linked with OpenMM 
7.0.1 [42] that provides a CUDA compatible integrator ena-
bling simulations to be run on a cluster of GPUs.

Details about the theoretical background are avail-
able elsewhere  [4, 6, 7, 10, 43–46]. The main idea behind 
alchemical free energy calculations is to avoid direct compu-
tation of the free energy change associated with the revers-
ible binding of a ligand to a protein. Instead one computes 
the free energy change for artificially morphing a ligand (L1)  
into another ligand (L2). By introducing a parameter �, which 
defined the change from L1 to L2. Practically, either a rep-
lica exchange algorithm is used to simulate at different � 
windows, or a set of discrete � simulations is carried out. 
Repeating this process for L1 and L2 in aqueous solution or 
bound to the protein of interest enables construction of a 
thermodynamic cycle that yields the relative binding free 
energy of the two ligands.

Each alchemical free energy calculation for a pair of 
ligands L1 and L2 consisted minimally of one forward (L1 to 
L2) and one backward (L2 to L1) computation. Ligand pairs 
that showed poor agreement between forward and backwards 
simulation were repeated up to three times. Mean free ener-
gies and standard error were estimated from the resulting 
distributions of computed relative binding free energies. 
Further details are provided in the SI [47]. All simulations 
shared the following common set of parameters. Each simu-
lation box was treated with periodic boundary conditions 
and simulations were run for 4 ns each using a 2 fs inte-
gration timestep with a Leap-Frog–Verlet integrator. Bonds 
involving hydrogens were constrained, except if the hydro-
gen atom was morphed to a heavy atom in the perturba-
tion. The temperature was maintained at 298 K using an 
Andersen thermostat and a collision frequency of 10 ps−1 
with velocities initially drawn from a Maxwell–Boltzmann 
distribution of that temperature. Pressure was kept at 1 atm 
using the Monte Carlo Barostat implemented in OpenMM 
with an update frequency of 25 MD steps. For non-bonded 
interactions an atom-based shifted Barker–Watts reaction 
field scheme was used with a cutoff of 10 Å and the reaction 
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field dielectric constant � = 82.0. The number of � windows 
for each simulation varied for different perturbations and a 
summary, as well as complete simulation parameters can 
be found in the SI. All input files are available on a github 
repository [48].

Free energy analysis and convergence

Free energy changes were estimated both with thermodynamic 
integration and the multi state Bennett’s acceptance ratio 
(MBAR) estimator, as implemented in pymbar (v 3.0.0 beta 
2) [49], which was integrated into the Sire app analyse_freenrg. 
The TI analysis served mainly two purposes; first, to ensure that 
the MBAR and TI free energy estimates for a particular pertur-
bation are consistent to within approximately 0.5 kcal mol−1 
and second, to test the convergence of the gradient �U

��
 time 

series. Stationarity of the timeseries was assessed by means of 
the augmented Dicky–Fuller test. Non-stationary gradient time-
series in the pool of over 10,000 timeseries trajectories gener-
ated in this study were identified. This served as a basic test for 
convergence, and all non-stationary trajectories were repeated. 
Convergence was also assessed by checking whether binding 
free energies from forward and backward simulations were 
consistent, as well as cycle closures in the perturbation network. 
Simulations with poor cycle closures or poorly agreeing for-
ward and backward transformations were repeated multiple 
times. The actual process of the free energy analysis for esti-
mating cycle closure and overall affinities based on MBAR is 
described in the following. The first 5% of the trajectories were 
discarded to allow for equilibration before the MBAR analysis. 
Perturbation for morphing L1 to L2 and L2 to L1 were both simu-
lated and resulting binding free energies were averaged for the 
forward and (reversed) backward perturbations. When availa-
ble, averages were calculated across multiple independent 
repeats. The individually estimated free energy differences 
were then read into a Networkx (v 1.11) digraph [50]. The error 
estimated between repeated runs of backwards/forwards simu-
lations served as the estimated error for each averaged network 
edge. Binding free energies relative of a ligand Li to a reference 
compound L0 were then estimated by enumerating all possible 
simple paths connecting Li to L0 in the network. The relative 
binding free energy and its uncertainty along a given path was 
obtained by summing relative binding free energies along each 
edge of the path and propagating errors. A simple path in a 
network is defined as the path between two vertices vp and vq, 
with no vertex repeating along the path. Therefore a path 
between ligand Lq and Lp can be written as 
Pp,q = (v1=p, v2,… , vn=q). This path is only valid if every pair 
of vertices has an entry in the weighted adjacency matrix (wij), 
which in this cases holds the free energy difference of each 
perturbation. Therefore, the relative free energy along a single 
simple path with n  ver tices, is be given by: 
�gp,q = wp,2,+⋯+,wn−1,q. The associated error of the path 

can be obtained from the error matrix �ij, which similarly to the 
weighted adjacency matrix will hold the error associated with 
each edge in the network. The error for a given simple path is 
therefore given by: ep,q =

√

(�2
p,2

+…+ �
2
n−1,q

). Based on the 

error associated with each simple path a weight of the path can 
be defined as �p,q =

∑

all paths 1∕ep,q. Therefore the relative free 
energy between ligand Lp and Lq can be defined as the weighted 
average of all paths, using �p,q as the path weight.

The corresponding error Ep,q to the estimated free energy 
is give by:

Thus paths that have smaller statistical errors contribute 
more than paths that show larger statistical errors.

If multiple binding modes for one compound were used in 
the network, they were combined into a free energy for a single 
compound using exponential averaging in the following way:

where kB is the Boltzmann constant, N the total number of 
binding modes, and BMk denotes the k-th binding mode.

Charge scaling correction

Initial analysis of literature datasets (see “Results” section) 
suggested that polarisation effects may play a significant role 
in FXR ligand binding energetics. While no polarisable force-
field was readily available to test this hypothesis, there has 
been some success in capturing polarisation effects in pro-
tein–ligand binding by QM/MM reweighting of trajectories 
computed with a classical potential energy function [51]. 
Given the time constraints posed by the competition, no 
such methodologies were used here. Rather, an ad hoc proto-
col based on empirical scaling of ligand partial charges was 
implemented.

Thus the corrected free energies were given by:

where ��Gscaled is given by:

(2)��Gpq =
∑

all paths

�p,q�gp,q

�p,q

.

(3)Ep,q =

√

∑

all paths

�p,qep,q.

(4)��G = −(kBT) ln

[

N
∑

k

exp
(

−��G(BMk)∕kBT
)

]

,

(5)
��Gbind, scale(L1, L2) = ��Gbind(L1, L2) + ��Gscaled(L1, L2),

(6)

��Gscaled(L1, L2) = �Gscaled(L1, free) + �Gscaled(L2, bound)

− �Gscaled(L1, bound) − �Gscaled(L2, free),
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where the �Gscaled values are the free energy changes for 
scaling the partial charges of a ligand L1 or L2 in water, or 
bound to FXR. Such quantities were evaluated via MBAR 
analysis of trajectories for five evenly spaced � windows 
sampled for 1 ns each. Scaling factors ranged from 1 (no 
scaling) to 0.5 (50% decrease in magnitude of partial 
charges).

Errors analysis

For the comparison of computed binding free energies and 
experimental binding free energies two measures are mainly 
used in the analysis, Pearson R and mean unsigned error 
(MUE). To obtain an error estimate for both these measures 
a bootstrapping approach is used in which the mean and 
standard error of each of the computed free energy estimates 
serve as the mean and standard deviation of a Gaussian dis-
tribution. For each estimate a new value from this Gaussian 
distribution is drawn until a new artificial distribution of 
computed free energies is sampled. This resampled distri-
bution is then correlated to the experimental data. Repeat-
ing the process 10,000 times gives rise to a distribution of 
MUE and R, for which a mean and 1� confidence interval 
can be computed. This was the default protocol used to esti-
mate metric errors. The organisers, however, chose a dif-
ferent way of estimating errors in the data sets to facilitate 
comparison between different submissions. This approach 
uses bootstrapping of the dataset, for which data points (both 
experimental and computed) are resampled with replace-
ment until an artificial dataset of the same size is created. 
This is repeated 1000 times, leading to a distribution for 
Pearson R with 1� confidence intervals. All error bars in 
Fig. 6 have been generated in this fashion.

Results

Literature datasets

The robustness of the computational protocol was first tested 
with the two literature datasets LitSet1 and LitSet2. Sup-
plementary Figs. 3 and 4 depict the perturbation network 
used for LitSet1 and LitSet2 respectively [47]. A summary 
of the results, comparing the calculated and measured bind-
ing free energies is given in Table 1. While the correlation 
between LitSet1 computational and experimental data with 
R = 0.84 ± 0.05 was deemed satisfactory, the mean unsigned 
error (MUE) at 3.0 ± 0.2 kcalmol−1 was judged unexpect-
edly large. For the second dataset LitSet2 the overall cor-
relation R = 0.56 ± 0.03 is lower, however the MUE is sig-
nificantly lower at 1.7 ± 0.1 kcalmol−1.

Analysis of the pairwise alchemical free energy calcula-
tions in the two datasets suggested that calculated binding 
free energy changes for perturbations that involve substi-
tution of a non polar group by a polar group were overly 
exaggerated with respect to experimental data. Also, Lit-
Set2 contained one negatively charged compound (1R, car-
boxylic acid) which was predicted to be ca. 30 kcalmol−1 
less potent than its –H counterpart, whereas experimen-
tal data suggests weaker binding of the acid by ca. + 2.6 
kcalmol−1.

The binding site of FXR is rather apolar (see Fig. 2a), 
and it was hypothesized that changes in ligand polarisation 
upon transfer from bulk to the FXR binding site may play 
a significant role. This prompted the development of an ad 
hoc protocol in an attempt to capture polarisation effects 
as described in the  “Methods” section via  introduction of 
a set of charge scaling factors. The resulting correlation 
coefficient and MUE for scaling factors between 1 and 0.5 
are also displayed in Table 1. Figure 8a in the SI displays 
the correlation between the computed and experimental 
results, and Fig. 8b of the SI summarises the effect of 
changing the scaling corrections from 0.9 to 0.5 of the 
original charge. It was found that a scaling factor of 0.7 
was the best tradeoff to minimize MUE whilst maintaing 
a reasonable Pearson correlation coefficient. The effects 
are more pronounced for LitSet1. The one exception is 
the charged compound 1R in LitSet2, for which reason-
able agreement with experimental data required a scaling 
factor of 0.5.

Given time-constraints no further efforts were devoted 
to the literature datasets, and subsequent blinded submis-
sions were made for protocols without charge scaling cor-
rection, or with a charge scaling correction of 0.7 for free 
energy perturbations that maintain net-charge, and 0.5 if 
the net-charge varies in the perturbation.

Table 1   Summary of test dataset based on GW4064 compounds

a Charged compound 1R has been omitted from the analysis

Dataset Scaling factor R MUE (kcal mol −1)

LitSet1 1.0 0.84 ± 0.05 3.0 ± 0.2
0.9 0.83 ± 0.04 2.45 ± 0.18
0.8 0.81 ± 0.04 2.24 ± 0.23
0.7 0.78 ± 0.08 1.8 ± 0.15
0.6 0.56 ± 0.09 2.2 ± 0.2
0.5 0.51 ± 0.1 1.4 ± 0.2

LitSet2a 1.0 0.56 ± 0.05 1.77 ± 0.08
0.9 0.54 ± 0.05 1.54 ± 0.09
0.8 0.51 ± 0.05 1.46 ± 0.08
0.7 0.44 ± 0.06 1.47 ± 0.09
0.6 0.37 ± 0.06 1.61 ± 1.7
0.5 0.23 ± 0.07 1.75 ± 0.08
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Blinded dataset

For the first stage of the competition binding modes for the 
FXR ligands in set1 and set2 had to be predicted by analy-
sis of available crystal structures, or docking calculations 
as described in the “Methods” section. Figure 2b top panel 
shows the structure of set1 ligand 17, and the bottom panel 
depicts predicted and later disclosed binding modes. The 
RMSD is only 0.9 Å, and the binding mode prediction can 
be considered successful. For set2 the X-ray crystal structure 
of 10 was later disclosed. The predicted binding mode devi-
ates more, whereas at 2.5 Å the RMSD is not exceptionally 
high, the thiophene ring has been positioned differently to 
the X-ray pose. This was of concern as many of the set2 
compounds feature variations in aryl sulfonamide groups. 

Table  2 shows results for the protocols submitted at stage 
1 of the competition. The expert opinion full protocol was a 

submission where binding energies were predicted by one of 
the authors (JM) by analysis of literature structure–activity 
relationships and visualisation of predicted binding modes 
for the LitD1 and LitD2 datasets. The expert opinion same 
charge protocol was not submitted but is presented to facili-
tate comparison with other protocols. The full protocol was a 
submission on the full dataset analysed as described in meth-
ods. The full guided protocol was a submission where only 
a small number of pathways in the perturbations network 
were hand-picked by one of the authors (JM) to evaluate 
binding free energies for the dataset. This was only done for 
set1. Finally the same charge protocol was a submission of 
alchemical free energy predictions restricted to the largest 
subset of compounds with the same net-charge.

For the second stage of the competition, calculations 
were repeated from a new set of poses for set2 compounds. 
Set1 poses were the same as in stage 1. Additionally 

Fig. 2   a Depiction of the FXR 
binding site, with hydrophilic 
residues shown in red and 
hydrophobic residues shown in 
blue. b Compound 17 from set1, 
and predicted (orange sticks) 
versus observed (grey sticks) 
binding modes. c Compound 10 
from set2, and predicted (orange 
sticks) versus observed (grey 
sticks) binding modes
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individual perturbations were categorised as ’easy’, 
’medium’ or ’difficult’ on the basis of the precision of the 
calculated relative binding free energies obtained at stage 
1, and this led to lambda schedule protocols with less, the 
same amount of, or more, windows as in stage 1 (see SI 
for details). The time left in the competition was used to 
carry out multiple repeats of the perturbations that showed 
higher statistical errors. Additionally, the optimisation of 
charge scaling factors on the literature datasets had been 
completed by then, and scaling factor corrections were 
also applied to set1 and set2 datasets. Table  3 shows the 
results for protocols submitted at stage 2 of the competi-
tion. Only full and same charge protocols, and their scaled 
variants, were submitted.

At stage 1 the expert opinion protocol shows R val-
ues for both set1 and set2 of ca. 0.2, and MUE values ca. 
1.7 kcal mol−1. The performance is similar or worse for 
the expert opinion same charge protocol. Alchemical free 
energy based protocols on the full dataset fare poorly with 
similar or lower R values, and higher MUE values. Submis-
sions that only considered compounds with the same net 
charge show better performance (R ca. 0.2–0.3, MUE ca. 
1.4–1.9 kcal mol−1). Overall none of the protocols show sat-
isfactory correlation with experiment.

At stage 2 of the competition, the full and same charge 
submissions show lower statistical errors because the addi-
tional repeats calculations on the noisier perturbations have 
improved convergence. For set1 the MUE decreases, but the 

R metric is no different from stage 1 submissions. The scaled 
submissions for the full dataset and the same charge dataset 
achieve similar R values, but the MUE has worsened. For set2 
lower statistical errors are also observed with respect to stage 
1. The full submission produces similarly low R values and 
high MUE values. However the full scaled submission sig-
nificantly increases R from ca. − 0.4 to + 0.4, while decreas-
ing MUE from ca. 3.8 to 1.6 kcal mol−1. The same charge 
submission shows a significant increase in R with respect to 
stage 1 (from 0.2 to ca. 0.5), but the MUE increases from 1.3 
to 1.7 kcal mol−1. Finally, the same charge scaled protocol 
achieves a poorer R value (ca. 0.4) and similar MUE value.

Overall the most significant improvement at stage 2 is 
observed for the set2 same charge dataset. This could be 
because the predicted binding modes at stage 1 were not in 
agreement with the subsequently disclosed X-ray structures. 
The scaling protocol appears to yield large improvements 
on set2, but this actually comes at the expense of decreased 
predictive power for the subset of compounds that carry the 
same net-charge (see below).

Figure 3 depicts detailed results for the full dataset of set1 
compounds at different stages of the competition. Figure 3a 
shows at stage 1 the relative binding free energy of charged 
compound 101 is significantly overestimated with respect to 
all other neutral compounds. Compound 45 is also a signifi-
cant outlier. Figure  3b shows that at stage 2 there is a trend 
towards better agreement with experiment, apart from 101 
and 45 that remain significantly off. Figure  3c shows that 

Table 2   Performance of the 
protocols submitted at stage 1 of 
the D3R competition

Dataset Protocol ID R MUE (kcal mol −1)

Set1 Expert opinion full pbjwu 0.16 ± 0.04 1.71 ± 0.08
Expert opinion same charge N/A  0.17 ± 0.04  1.76 ± 0.09
Full a3c8k  0.16 ± 0.1 2.6 ± 0.1
Full guided bolbu 0.14 ± 0.03  1.9 ± 0.04
Same charge 0psyy 0.29 ± 0.04  1.9 ± 0.1

Set 2 Expert opinion full fxtpq 0.23 ± 0.05  1.79 ± 0.09
Expert opinion same charge N/A  0.03 ± 0.05  1.72 ± 0.1
Full qvnq5 − 0.57 ± 0.04 3.18 ± 0.22
Same charge f6een  0.2 ± 0.1 1.35 ± 0.12

Table 3   Performance of the 
protocols submitted at stage 2 of 
the D3R competition

Dataset Protocol ID R MUE (kcal mol −1)

Set1 Full 07tpe 0.13 ± 0.02 2.20 ± 0.08
Same charge olv52 0.3 ± 0.02 1.41 ± 0.08
Full scaled inspj  0.12 ± 0.02 2.32 ± 0.09
Same charge scaled 4botu  0.13 ± 0.02 2.4 ± 0.1

Set2 Full qt771  − 0.44 ± 0.02  3.79 ± 0.1
Same charge 0jz8u  0.54 ± 0.03  1.67 ± 0.08
Full scaled jzrt5  0.41 ± 0.06 1.65 ± 0.09
Same charge scaled c1nbt 0.41 ± 0.05 1.56 ± 0.1
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the full scaled submission considerably improves free energy 
estimates for compound 101, but also drastically decreases 
the accuracy of estimates for neutral compounds 102, 48, 
95, 96. It is not clear why predictions for 45 consistently 
perform so poorly.

Some highlights for the binding free energy estimations 
of set2 are shown in Fig. 4. The stage 1 full submission 

Fig. 3   a Stage1 full submission for set1(ID a3c8k) showing clear 
overestimation of the relative binding free energy of charged com-
pound 101. b Stage 2 full submission (ID 07tpe). c Stage 2 full scaled 
submission (ID inspj)

Fig. 4    a Stage 1 full submission for set2 compounds (ID qvnq5). b 
Stage 2 full submission for set2 compounds (ID qt771)

Fig. 5   Stage 2 same charge submission (ID 0jz8u)
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is depicted in Fig. 4a. The poor estimation of the relative 
binding free energy of neutral compounds (38, 41, 73, 75) 
with respect to other compounds in the dataset that carry 
one negative charge is very apparent. Figure 4b shows the 
full submission at stage 2 of the competition. Estimates for 
the charged compounds improve, however the binding free 
energies of the neutral compounds are still poorly estimated. 
This is more apparent by inspection of Fig. 5, which shows 
the same charge submission where only charged compounds 
were considered. This is the best performing protocol overall 
in terms of correlation coefficient of R = 0.54 ± 0.03 and 
MUE = 1.67 ± 0.08 kcal mol−1.

Comparison to other submissions

The organisers released data for all binding free energy pre-
diction submissions shortly after the end of stage2, and a 
summary of the correlation coefficients can be seen in Fig. 6. 

Figure 6a and b are stage 1 submissions for set1 and set2 
respectively. Results for stage 2 set1 and set2 are shown in 
Fig. 6c and d. The authors submissions are shown in green 
and can also be identified by their submission ID listed in 
Tables 2 and  3. It should be noted that the shown correla-
tion coefficients are slightly different to the ones reported 
in the Tables 2 and 3. This is down to the use of different 
error analysis methods between the authors and the organis-
ers, as discussed in the  “Methods” section. However, what 
becomes apparent from Fig. 6 is that for set1 both at stage 1 
and stage 2 there is no protocol that obviously outperforms 
another protocol and no statistically significant ranking is 
possible. For set2 and particularly stage 2 there are four 
protocols that perform better than the rest, which are a mix 
of alchemical free energy and other protocols. Submission 
81n55 is an alchemical method based on FEP+, submis-
sion xk67c uses a non-equilibrium pulling approach using 
Gromacs as the simulation framework, submission 67a3e 

Fig. 6   Summary of all submitted protocols. a Stage 1 for set1. b 
Stage 1 for set2. c Stage 2 for set1. d Stage 2 for set2. Green col-
ours denote the authors submissions and protocol IDs can be identi-
fied in Tables 2 and  3. Red colours denote other alchemical methods, 
blue colours denote MMPBSA based methods, the light blue colour 

denote quantum mechanical based methods and grey denotes any 
other methods. The ceiling entry is discussed in the text and shown in 
purple. All method descriptions are made available by the organisers 
and can be found on the www.drugdesigndata.org website

http://www.drugdesigndata.org
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uses the software MIX to perform energy minimisation of 
protein–ligand complexes, and submission x2j7p also used 
FEP+.

Figure 6 suggests, that there is no clear trend indicating a 
method that consistently outperforms others. Furthermore, 
the overall correlation between predicted free energies and 
experimental values is poor and unreliable for set1.

Conclusions

The blinded predictions on FXR ligands highlighted dif-
ficulties in reliably estimating relative binding energies 
between compounds that differ in their net-charge with the 
current workflow. This was anticipated in light of past expe-
rience and until methodological advances lift this limita-
tion, alternative ad-hoc protocols may prove more reliable. 
For instance, other groups submitted in this competition 
alchemical binding energy predictions for ligands modelled 
as protonated acids in order to maintain the same net-charge 
across the full D3R datasets. While this is an unlikely chemi-
cal state for the unbound or bound ligands given the assay 
conditions, this setup did lead to superior predictions for the 
full D3R datasets.

The relatively reasonable correlations obtained retrospec-
tively on LitSet1 and LitSet2 ligand series were encourag-
ing, but the high mean-unsigned error on the LitSet1 dataset 
prompted the development of an approximate charge scal-
ing protocol to account for potential neglect of polarisation 
effects. This had no beneficial effect on the accuracy of the 
blinded predictions and this protocol is not recommended 
for further use. Overall this indicates difficulties in reliably 
anticipating the robustness and transferability of the proto-
col across different ligand series, let alone different bind-
ing sites. In spite of the difficulties encountered it is useful 
to note that expert opinion based on analysis of literature 
SARs proved no more predictive on set1 and worse on set2 
(excluding charged compounds). While this observation 
lacks statistical relevance—presumably there would also be 
variability in different expert opinions—it does highlight the 
difficulty of the problem. By contrast, expert opinion often 
fares well for poses prediction when compared against auto-
mated software workflows [27, 52]. It was also encouraging 
that the correlation for set2 same-charge subset increased 
once experimental data about the binding mode of a repre-
sentative set2 ligand could be taken into account. By contrast 
no significant variation was observed for set1 upon repeating 
the calculations, presumably because the binding modes had 
been well predicted at stage 1 of the competition.

The D3R Grand Challenge 2016 free energy datasets 
were markedly larger than those used in the 2015 com-
petition. This enabled a more reliable comparison of the 
performance of different methodologies. Nevertheless, it is 

apparent that both set1 and set2 are still too small to reli-
ably rank a large number of submissions made by different 
groups. A general trend for alchemical free energy proto-
cols can be observed, establishing them typically in the top 
33% of submission, in particular in set2, for both correlation 
coefficient and root mean square error (RMSE), as shown in 
the SI. It is noteworthy that the features of the distribution 
of experimental binding energies for set1 (shorter span and 
uneven density) contribute to making predictions intrinsi-
cally more difficult than for set2. In addition, the precision 
of the experimental data was not determined. Assuming 
a ca. 0.4 kcalmol−1 uncertainty in experimental measure-
ments [53] together with bootstrapping suggests ceiling 
values for R of ca. 0.82 ± 0.06 and 0.97 ± 0.01 for set1 and 
set2 respectively. Thus the best performing methods are far 
from achieving high accuracy R values on set1, but show 
respectable correlation on set2. While it may be difficult 
to source significantly larger datasets amenable to alchemi-
cal free energy calculations, it may be useful to assess their 
intrinsic difficulty for the design of future competitions.
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