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A B S T R A C T   

Chicken meat spoilage is a significant concern for food safety and quality, and this study aims to predict the 
spoilage point of chicken breast meat through various attributes and metabolites. Chicken meat was stored in 
anaerobic packaging at 4 ◦C for 13 days, and various meat quality attributes (pH, drip loss, color, volatile basic 
nitrogen [VBN], total aerobic bacteria [TAB], and metabolites) were examined. First, the spoiled point (VBN >20 
mg/100 g and/or TAB >7 log CFU/g) of the chicken breast meat was determined. Using univariate and multi-
variate analyses, twenty-four candidate metabolites were identified. A receiver operating characteristic (ROC) 
analysis was used to validate the obtained binary logistic regression model using nine metabolites (proline, 
methionine, glutamate, threonine, acetate, uridine 5′-monophosphate, hypoxanthine, glycine, and glutamine). 
The results showed a high area under the ROC curve value (0.992). Thus, this study confirmed the predictability 
of spoilage points in chicken breast meat through these nine metabolites.   

1. Introduction 

Chicken, as representative white meat, contains abundant amino 
acids, essential fatty acids, vitamins, and minerals (Mussa et al., 2022). It 
is a healthy food with a high percentage of unsaturated fatty acids 
(Sujiwo et al., 2018; Jung et al., 2022; Bae et al., 2014). However, 
because of its high percentage of unsaturated fatty acids, as well as 
sufficient water and dense nutrients, chicken can spoil quickly (Sujiwo 
et al., 2018). The use-by date of a food item refers to the period within 
which it must be eaten or thrown away to avoid spoilage (Kim et al., 
2018). This period is calculated based on the spoilage point of each food 
type. 

Indicators for the spoilage point of chicken meat include physico-
chemical, microbial, and metabolic measures such as torrymeter, total 
aerobic microbial counts (TAB), volatile basic nitrogen (VBN) content 
(Sujiwo et al., 2019). Particularly, VBN and TAB have been used as 
general spoilage standard because they highly correlated with sensory 
properties (Bekhit et al., 2021). The VBN value increase due to the 
breakdown of proteins by microbial growth, resulting in the production 

of ammonia and amino acids (Bekhit et al., 2021). However, some 
studies have reported that VBN values and TAB do not always accurately 
represent meat spoilage (Lee et al., 2018; Seleshe and Kang, 2021). 
Different microbial compositions can affect the production of VBN. For 
example, some microorganisms, such as lactic acid bacteria, do not al-
ways correlate with spoilage (Seleshe and Kang, 2021). Therefore, there 
is a need to verify various indicators for estimating the spoilage points of 
meat. 

Metabolomics, which involves the study and classification of me-
tabolites produced by biochemical reactions in cells, has been used in 
foodomics with respect to food quality and safety (Jung et al., 2022; Kim 
et al., 2021). Metabolites in meat can be changed by growth of spoilage 
microorganisms or endogenous enzymatic reactions (Kim et al., 2020; 
Wang et al., 2021; Hambrecht et al., 2005; Bae et al., 2014). One study 
used metabolomics to identify spoilage markers of chicken meat through 
multivariate analysis, which included amino acids, biogenic amines, and 
organic acids (Rukchon et al., 2014). In addition, metabolites can be 
used to distinguish between fresh chicken and frozen/thawing using 
selected biomarkers through multivariate analysis (Kim et al., 2021, 
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2022). Therefore, metabolomics can be an effective technique for 
identifying fingerprints related to biological and chemical changes 
related to meat spoilage. 

As various metabolites can contribute to the meat spoilage system, a 
proper predictive model using them is necessary. It is established 
through biomarker selection, data augmentation, and a mathematical 
model application (Gandhi et al., 2022; Jang et al., 2020). Biomarker 
selection was performed using univariate and multivariate analyses 
(Gandhi et al., 2022; Lee et al., 2022; Jung et al., 2022). For example, 
univariate analysis has been used for t-test and multivariate analysis has 
been used for principal component analysis, partial least squares 
discriminant analysis, and random forest regression (Gandhi et al., 
2022; Lee et al., 2022; Vinaixa et al., 2012; Jung et al., 2022). Over-
fitting may occur when establishing a predictive model using insuffi-
cient sample data (Deng et al., 2021). Thus, data augmentation is 
applied to selected biomarkers to prevent overfitting of the prediction 
model (Moreno-Barea et al., 2022). Then, the mathematical model can 
be applied for prediction, such as regression models (Deng et al., 2021; 
Jang et al., 2020; Moreno-Barea et al., 2022; Mundform et al., 2011), 
which contribute to predicting the spoilage of meat. 

The main purpose of this study was to establish a prediction model 
for the spoilage point of chicken breast meat using changes in the me-
tabolites and mathematical models. First, the quality characteristics of 
chicken meat during storage were analyzed to determine the spoilage 
points. Based on the determined spoilage point, metabolites were 
selected using univariate and multivariate analyses. Finally, a predictive 
equation was established using binary logistic regression equations with 
data augmentation. 

2. Materials and methods 

2.1. Sample preparation 

Five packages (1 kg/package) of commercial broiler chicken (Ross 
strain) breast fillet (Pectoralis major) were purchased on the same day 
from the same slaughterhouse within 24 h of slaughter (Maniker Co., 
Ltd., Dongduchen, Korea). They were transported to the laboratory in an 
ice cooler. A total of 40 (N = 40) chicken breast fillets were individually 
vacuum packaged in polyethylene/nylon bags (oxygen permeability of 
4.7 g/m2 for 24 h at 100% RH/25 ◦C). Each packaged fillet was weighed 
individually and stored at 4 ◦C for up to 13 d (0, 1, 3, 5, 7, 9, 11, and 13 
d; n = 5). On the day of the analysis, the drip was removed from each 
packaged fillet and weighed for drip loss measurements. After drip loss 
and color were evaluated, the chicken breast fillet was minced using a 
chopper (CH180, Kenwood Appliances Co., Ltd., Dingguan, China). pH 
and total aerobic bacteria (TAB) assays were conducted on the same day. 
The remaining chopped samples were weighed, vacuum-packed, and 
stored at − 70 ◦C until further analysis for volatile basic nitrogen (VBN), 
and nuclear magnetic resonance (NMR). 

2.2. Physicochemical characteristics and total aerobic microbial counts of 
chicken breast meat during storage 

2.2.1. Drip loss 
Drip loss in chicken breast meat was determined as described by Bae 

et al. (2014). To determine the drip loss, each chicken breast fillet was 
weighed before packaging. After storage, the fillets were weighed again, 
and drip loss was calculated as follows:  

2.2.2. Color 
Color analysis of the surface color of chicken breast meat was per-

formed using a chromameter (CR-310, Konica Minolta, NJ, USA), 
following the methodology outlined by Bae et al. (2014). A calibration 
plate was used for standardization prior to the analysis (Y = 92.8, x =
0.3134, y = 0.3193). The results were read three times per sample after a 
blooming period (30 min). Average lightness (L*), redness (a*), and 
yellowness (b*) were calculated from the readings. 

2.2.3. pH 
One gram of chicken breast meat was homogenized (T25 basic, Ika 

Co., Staufen, Germany) in 9 mL of distilled water and centrifuged 
(2265×g for 10 min at 4 ◦C). This procedure was slightly modified based 
on the methodology described by Lee et al. (2022). The supernatant was 
filtered using a Whatman No. 4 filter paper. The pH was measured using 
a pH meter (Seven2Go S2, Mettler-Toledo International Inc., Schwer-
zenbach, Switzerland). 

2.2.4. TAB counts 
TAB in chicken breast meat was determined as described by Bae et al. 

(2014). Minced chicken breast meat (3 g) was diluted with 27 mL of 
sterile saline (0.85% NaCl) for 2 min using a stomacher (BagMixer 400 
P; Interscience Ind., St. Nom, France). Appropriate dilutions were spread 
on plate count agar (Difco Laboratories, USA), and agar plates were 
incubated at 37 ◦C for 48 h. Microorganisms were counted, and the 
results were expressed as log CFU/g. 

2.2.5. Volatile basic nitrogen (VBN) 
The VBN content of chicken breast meat was measured according to 

Lee et al. (2022) using the Conway micro-diffusion technique. Chicken 
breast meat (5 g) was homogenized in 20 mL distilled water for 30 s. The 
homogenate was filtered through Whatman No. 1 filter paper. The 
filtrate (1 mL) and 1 mL of K2CO3 were added to the outer space of the 
Conway tool (Sibata Ltd., Sitama, Japan), and 1 mL of 0.01 N H3BO3 was 
added to the inner space with Conway’s reagent (0.066% methyl red: 
0.0066% bromocresol green, 1:1; v/v) to the inner space, and then 
sealed the Conway tool with grease. The sealed Conway was incubated 
at 25 ◦C for 1 h. Following incubation, the samples were titrated with 
0.01 N NaOH after incubation. The VBN values were expressed as 
follows: 

VBN (mg / 100 g sample)= 0.14 × (a − b) × F × 28.014 × 100 / S  

where a is the titration volume of 0.01 N HCl (mL) in the sample and b is 
the titration volume of 0.01 N HCl (mL) in the blank. F is the stan-
dardization index of 0.01 N NaOH, and S is the sample weight (g). 

2.3. Metabolites of chicken breast extract, identification, and 
quantification using nuclear magnetic resonance (NMR) 

2.3.1. Extract metabolites of chicken breast meat for NMR analysis 
Metabolite extraction was performed using the method described by 

Kim et al. (2022), with slight modifications. Chicken breast meat (5 g) 
was thawed at 4 ◦C for 24 h before analysis. After thawing, the samples 
were homogenized at 1720×g for 30 s with 20 mL of 0.6 M perchloric 
acid. The homogenate was centrifuged (Continent 512R; Hanil Co., Ltd., 
Incheon, Korea) at 3000×g for 20 min at 4 ◦C. After centrifugation, the 
supernatant was transferred to a fresh test tube. Each supernatant 
sample was neutralized with potassium hydroxide. The neutralized 
samples were centrifuged (3000×g for 20 min at 4 ◦C) and filtered using 

Drip loss (%)= (original sample weight − sample weight after storage)/(original sample weight) × 100   
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Whatman No. 1 filter paper. The filtrate samples were lyophilized 
(Freezer dryer 18, Labco Corp., Mo, USA) and reconstituted using 1 mM 
3-(trimethylsilyl)propionic acid-2,2,3,3-d4 (internal standard, TSP) in 
D2O (pD 7.4, 20 mM phosphate buffered). The samples were vortexed 
and stored in a water bath at 37 ◦C for 10 min. Thereafter, the solution 
was centrifuged (3000×g, 20 min, 4 ◦C) to eliminate insoluble sub-
stances. The supernatant was loaded into a 5 mm NMR tube for NMR 
acquisition. 

2.3.2. NMR acquisition and metabolites concentration 
According to Kim et al. (2019), the NMR data were recorded at 298 K 

on a Bruker 850 MHz NMR spectrometer in D2O (Bruker Biospin GmbH, 
Baden-Wuttemberg, Germany). The standard zg30 pulse sequence was 
used to analyze 1D 1H NMR in Topspin 4.1.1 (Bruker). Pulse sequences 
were obtained using 64 K data points, sweep width of 17,007.803 Hz, 
and 128 scans. TSP resonance was used for the chemical shifts (δ). 
Baseline corrections were performed manually. The Chenomx decon-
volution program and heteronuclear single quantum coherence (HSQC) 
were used to qualify metabolites. Qualification of metabolites was per-
formed by mixing all samples (quality control samples) and measuring 
the 2D 1H–13C HSQC spectra. The measured 2D spectra of the peaks 
were identified based on the biological magnetic resonance bank BMRB 
(bmrb.wise.edu) and human metabolome database (HMDB; hmdb.ca). 
HSQC was performed with 2 K data points in the t2 domain and 512 
increments in t1, each with 8 and 32 scans, respectively. The spectral 
widths were 12.0016 ppm for the f2 dimension and 180.0045 ppm for 
the f1 dimension. Coupling constant values of 145 Hz were employed to 
set the delay duration for the short-range correlations. The peaks iden-
tified by 2D HSQC NMR were quantified using 1H NMR spectroscopy. 
The quantified dataset from the 1H NMR spectrum of each metabolite 
was processed using the Topspin 4.1.1. The internal standard for 
metabolite quantification was 1 mM TSP. Quantification of the samples 
was performed with five replicates. Metabolite concentrations were 
quantified using the following equation: 

2.3.3. Multivariate analysis and statistical analysis by storage period 
Meat quality values and quantified metabolites were statistically 

analyzed using analysis of variance (ANOVA) in SAS software (Version 
9.4, SAS Institute Inc., Cary, NC, USA). Differences among the means by 
storage date were assessed using Tukey’s multiple comparison test. 
Statistical significance was set at P < 0.05. The results of quantified 
metabolites were analyzed by multivariate analysis (principal compo-
nent analysis [PCA] and correlation analysis) using MetaboAnalyst 5.0 
(www.metaboanalyst.ca). Before the PCA and correlation analysis, the 
integrated data were log10 transformed and auto scaled. PCA analysis of 
metabolite samples was performed to distinguish the differences ac-
cording to storage days. A loading plot of the PCA was used to confirm 
the contribution to the distinction between storage days. Correlation 
analysis of the metabolite samples was performed using Pearson’s cor-
relation coefficient, and a heat map was used to visualize the relation-
ships between each metabolite. To interpret the correlation, a rule of 
thumb was applied to the Pearson correlation coefficient (r); for |r|, 
0–0.5 a weak correlation, 0.5–0.7 a high correlation and 0.7–1.0 a very 
high correlation (Jung et al., 2019). 

2.4. Selection of biomarker and establishment of predictive model for 
spoilage point 

Metabolite results from each sample were divided into fresh group =
0 (n = 20) and spoiled group = 1 (n = 20) based on the freshness 
standard, which was VBN 20 mg/100 g or TAB 7.0 log CFU/g (Sujiwo 
et al., 2018; Kim et al., 2018). Univariate analysis was performed using 
Student’s t-test with Benjamini–Hochberg False Discovery Rates (FDR) 
correction (set to 0.05) to identify differentially regulated metabolites 
between the fresh and spoiled groups (Benjamini & Hochberg, 1995). 
After cut-off, metabolites were normalized by log10 transformation and 
auto-scaling for subsequent multivariate analysis and receiver operating 
characteristic (ROC) curve (Moreno-Barea et al., 2022; Deng et al., 
2021). Various multivariate analyses (PLS-DA, partial least 
squares-discriminant analysis; RF, random forest) were conducted to 
select preliminary biomarkers using MetaboAnalyst 5.0. By calculating 
the weighted sum of the PLS regression coefficients, we identified sig-
nificant buckets with the most outstanding contribution to cluster 
segregation in PLS-DA, and assigned their metabolites (Moreno-Barea 
et al., 2022). The RF technique combines many decision trees con-
structed by classifying each tree and voting for popular classes by 
bootstrap sampling (Percival et al., 2021). The number of trees selected 
was 5000 (Gandhi et al., 2022). One-third of the samples were excluded 
from bootstrapping during the tree construction. Small clusters of input 
information were randomly used as nodes to construct a simple RF with 
a random function. A classification and regression approach was used to 
grow each tree. 

Before establishing the prediction formula, data augmentation was 
performed to prevent the overfitting of the model. Data augmentation 
was performed using the Monte Carlo simulation technique, and 1000 
samples were randomly generated on each storage day based on a 
normal distribution (Jang et al., 2020). One thousand repetitions are 
commonly used in Monte Carlo analyses to produce stable results 
(Mundform et al., 2011). Afterward, 70% of the data were randomly 

selected for the binary logistic regression (BLR) model training data and 
the remaining 30% were used for validation. Finally, BLR was applied to 
select preliminary biomarkers using SPSS software (SPSS Inc., USA). A 
step-wise algorithm was used in the Binary Logistic Regression (BLR) 
model to iteratively select the most predictive variables based on sta-
tistical criteria. Predicted regression models were validated using ROC 
curves with area under the curve (AUC) values. 

2.5. Pathway analysis 

To identify metabolite pathways related to spoilage points of chicken 
breast meat, the selected metabolites as biomarkers were assessed by 
pathway analysis using MetaboAnalyst 5.0, based on the estimated 
spoilage point on day 7. Pathway analysis was conducted using the 
metabolite results on days 0 and 7 to determine whether the types of 
pathways were changed during the initial 7 days of storage. Afterward, 
metabolite results on days 7 and 13 were used to confirm the affected 
metabolite pathway after spoilage. The results of the metabolomic 
pathway were sorted by important values (-log P value > 1 and impact 
value > 0). The sorted pathways were matched with the Kyoto 

Concentration (mg / kg)=
[

Numbers of proton (internal standard)
Numbers of proton (metabolite)

×
Intensity of peak (metabolite)

Intensity of peak (Internal standard)
× Internal standard concentration (1 mM /mL)

×Metabolite molar mass (mol / kg)
]

÷ sample volume   
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Encyclopedia of Genes and Genomes (KEGG) pathway database to 
visualize the pathways. 

3. Results and discussion 

3.1. Physicochemical and microbial characteristics of chicken breast 
during storage 

Meat color is an essential quality parameter that influences consumer 
choice (Sujiwo et al., 2018; Jung et al., 2022). The storage period 
significantly increased lightness (L* value) and decreased redness (a* 
value) and yellowness (b* value) (Fig. 1a and b, P < 0.05). Changes in 
meat color have been reported to occur because of the oxidation of 
myoglobin, which converts myoglobin to metmyoglobin, turning the 
meat brown (Sujiwo et al., 2018). Jung et al. (2022) reported that an 
increase in exudate during storage might affect meat brightness. 
Therefore, meat color is influenced by oxidation of myoglobin and 
increased drip loss. 

pH is related to the freshness of the chicken, as it reflects the degree 
of protein degradation and accumulation of spoilage metabolites (Lee 

et al., 2022). However, as shown in Fig. 1c, the pH value of chicken 
breast meat ranged from 6.10 to 6.16 during storage, with no significant 
differences among storage days in the present study. 

Refrigeration may affect the structure of proteins and the amount of 
drip exudation (Hong et al., 2015). The cumulative drip loss increased 
with storage over time (Fig. 1d). On days 9, 11, and 13, the cumulative 
drip loss percentage was significantly higher (P < 0.05) than that on the 
first day. 

VBN is an indicator of meat quality. A higher VBN value indicates 
increased microbial spoilage because VBN compounds, such as ammonia 
and biogenic amines, are formed mainly by the action of microorgan-
isms and proteolytic enzymes (Lee et al., 2022). Meat with a VBN value 
of 20 mg/100 g or higher is considered spoiled meat (Sujiwo et al., 
2018). In this study, the VBN values of chicken breast meat were 
significantly increased by storage, and the VBN value exceeded 20 
mg/100 g on day 7 (Fig. 1g, P < 0.05). 

The initial TAB count (day 0) was 4.10 log CFU/g (Fig. 1e). The 
storage period significantly affected the TAB count (P < 0.05). After day 
nine, the TAB count exceeded 7.0 log CFU/g. Meat with a microbial 
count more than 7.0 log CFU/g is considered spoiled by the International 

Fig. 1. Change in quality characteristics of the chicken breast during storage at 4 ◦C (N = 40, n = 5). The changes in appearance (a), color changes by CIE value (b), 
pH value (c), cumulative drip loss (d), total aerobic bacterial count (TAB) (e), and volatile basic nitrogen (VBN) (f) (mg/100 g) of chicken breast during storage. a-f 

Means with different letters indicate significant differences (P < 0.05). (For interpretation of the references to color in this figure legend, the reader is referred to the 
Web version of this article.) 
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Food and Microbiology Commission (Kim et al., 2018). Additionally, the 
change in microbial composition of chicken breast meat on days 0, 7, 
and 13 was confirmed by 16S rRNA analysis (Fig. S1; Table S1). As the 
storage period increased, the relative abundances of Carnobacterium, 
Lactococcus, Serratia, and Hafnia tended to increase, while those of Aci-
netobacter and Chryseobacterium species tended to decrease (Fig. S1). 
Carnobacterium is a type of lactic acid bacteria frequently appearing as 
the predominant species in meat, fish, and dairy products (Leisner et al., 
2007). Lactococcus is a type of lactic acid bacteria that can contribute to 
protein hydrolysis, including protein degradation, peptide transport, 
peptide degradation, and amino acid catabolism (Vesanto et al., 1996). 
It produces organic acids via anaerobic metabolism (Wang et al., 2021). 
Serratia is an abundant microorganism in moist environments that can 
grow under refrigerated conditions (Bhadra et al., 2005). Hafnia species 

area thermophilic microorganisms found in seafood, meat, and dairy 
products (Li et al., 2019). Among them, Hafnia alvei has been reported to 
inhibit the growth of other microorganisms without altering the pH or 
lactic acid concentration (Delbès-Paus et al., 2013). In this study, the 
composition of lactic acid microorganisms such as Carnobacterium and 
Lactococcus increased; however, there was no significant difference in 
pH during storage (Fig. 1c). This could be explained by the volatile 
nitrogenous compounds produced by Carnobacterium, Lactococcus, Ser-
ratia, and Hafnia (Bhadra et al., 2005; Li et al., 2019; Vesanto et al., 
1996) (Fig. 1g). In addition, the increased decarboxylase secreted by 
these microorganisms may be partially responsible for the increase in 
the VBN value. 

Therefore, the quality of chicken breast meat decreased during 
storage for 13 days and, in particular, day 7 was considered the spoilage 

Fig. 2. Principal component analysis (PCA) (a), loading plot (b). and correlation analysis (c) of metabolites in chicken breast meat during storage at 4 ◦C (N = 40, n 
= 5). The PCA, loading plot, and correlation analysis were calculated for log10 transformed ratios of the auto-scaling. *P < 0.05. **P < 0.0001. UMP, uridine 5′- 
monophosphate; IMP, inosine 5′-monophosphate; NAD, nicotinamide adenine dinucleotide; Pro, proline; Ala, alanine; Asp, aspartate; Fum, fumarate; Ace, acetate; 
Asn, asparagine; Ile, isoleucine; Leu, leucine; Tyr, tyrosine; Trp, tryptophan; Phe, phenylalanine; Val, valine; Hyp, hypoxanthine; Glu, glutamate; Met, methionine; 
Ino, inosine; Ser, serine; MMA, methylmalonate; Thr, threonine; Gly, glycine; Ura, uracil; NAM, niacinamide; Gln, glutamine; Guo, guanosine; Cre, creatine; Myo, 
myo-inositol; Glc, glucose; Urd, uridine; Suc, succinate; Bet, betaine; DMG, N,N-dimethylglycine; Ans, anserine; EtOH, ethanol; Car, carnosine; Lac, lactate. 
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point because it exceeded the freshness standard for VBN value (>20 
mg/100 g; MFDS, 2022). The samples were divided into the fresh group 
(0, 1, 3, and 5 day) and the spoiled group (7, 9, 11, and 13 day). Af-
terward, we examined the metabolites during the storage period and 
analyzed the correlation between each metabolite. 

3.2. Metabolites identification and multivariate analysis of metabolites in 
the chicken breast during storage 

NMR spectroscopy is an analytical technique that leverages the 
atomic nuclear characteristics, specifically spin, along with chemical 
shifts influenced by a molecule’s local electronic environment. While 
generally considered less sensitive than Mass Spectrometry (MS)-based 
methods, NMR spectroscopy can identify and quantify metabolites 
without the limitations of polarity, volatility, or chromophore content 
(Kim et al., 2022). NMR spectroscopy has several advantages compared 
to chromatography, such as easy sample preparation, short run times, 
and only one reference compound (Kim et al., 2020). Also, Kim et al. 
(2019) revealed that metabolite quantification using NMR spectroscopy 
has less than 5% of the relative standard deviations compared to HPLC 
quantification in chicken breast meat. In this study, a total of 38 me-
tabolites were identified in the chicken breast meat during storage by 
NMR spectroscopy (Table S2). The identified metabolites were quanti-
tatively analyzed using 1D 1H NMR spectroscopy (Table S3). PCA results 
showed that each storage day cluster (days 0, 1, 3, 5, 7, and 9) could be 
clearly distinguished by principal component (PC) 1 (60.8%) and PC 2 
(6.8%) (Fig. 2a). On day 0, the sample had the lowest value for PC 1, 

which increased with the storage period. Loading plots showed that the 
contribution of the variables under investigation for the discrimination 
of storage days was evaluable by loading 1 (Fig. 2b). By comparing the 
loading plot, it was found that phenylalanine, hypoxanthine, fumarate, 
valine, leucine, tyrosine, acetate, methylmalonate, glutamine, inosine, 
niacinamide, tryptophan, guanosine, isoleucine, methionine, aspara-
gine, glutamate, serine, uracil, threonine, glycine, alanine, aspartic acid, 
and proline substantially contributed to positive loading 1, However, 
uridine 5′-monophosphate (UMP), inosine 5′-monophosphate (IMP), and 
NAD + contributed prominently to the negative loading 1. These results 
were similar to those of our previous study (Kim et al., 2022). 

The values of the Pearson pairwise correlation coefficient among the 
selected metabolites were calculated and visualized in a heat map 
(Fig. 2c). A total of 703 correlations were analyzed, of which 658 were 
significant (P < 0.01). Of these 658 significant correlations, 502 were 
positive and 156 were negative with correlation values. Among them, 
252 positive correlations and 49 negative correlations have a high cor-
relation (r > 0.5 or − 0.5 > r) according to Jung et al. (2019). The highest 
correlation was between valine and phenylalanine (r = 0.938), and the 
lowest value of correlation was between acetate and IMP (r = − 0.889). 
To simplify the elucidation, metabolites were grouped by compound 
class (nucleotides: UMP, IMP, NAD, hypoxanthine, inosine, uracil, 
niacinamide, guanosine, and uridine; amino acids: proline, alanine, 
aspartate, asparagine, isoleucine, leucine, tyrosine, tryptophan, 
phenylalanine, valine, glutamate, methionine, serine, threonine, 
glycine, glutamine, betaine, N,N-dimethylglycine, anserine, and carno-
sine; organic acids: fumarate, acetate, methylmalonate, creatine 

Table 1 
Quantified metabolites in chicken breast meat (μg/mL) and their univariate analysis.  

Metabolite Freshness Spoilage t-test FDR ANOVA 

t-value p-value F-value p-value 

Acetate 248.689 ± 316.007 316.007 ± 37.645 − 102.789 <0.0001 0.00132 53.8180 <0.0001 
Alanine 85.066 ± 26.095 176.971 ± 43.625 − 115.287 <0.0001 0.00132 70.7558 <0.0001 
Asparagine 290.681 ± 42.159 592.076 ± 141.308 − 132.898 <0.0001 0.00132 110.2997 <0.0001 
Aspartate 8.122 ± 1.254 8.297 ± 1.177 − 132.043 <0.0001 0.00132 101.7319 <0.0001 
Fumarate 250.431 ± 56.167 368.283 ± 23.875 − 88.688 <0.0001 0.00132 37.8765 <0.0001 
Glutamate 966.141 ± 298.709 1185.097 ± 281.126 − 141.789 <0.0001 0.00132 110.9478 <0.0001 
Glutamine 50.699 ± 3.694 61.194 ± 2.725 − 77.318 <0.0001 0.00132 32.2485 <0.0001 
Glycine 111.801 ± 23.830 190.157 ± 23.233 − 77.616 <0.0001 0.00132 38.3771 <0.0001 
Guanosine 4461.769 ± 310.159 4670.743 ± 260.777 − 101.765 <0.0001 0.00132 53.7403 <0.0001 
Hypoxanthine 298.166 ± 39.890 361.186 ± 31.822 − 116.001 <0.0001 0.00132 67.1264 <0.0001 
IMP 424.626 ± 89.210 634.660 ± 57.662 109.276 <0.0001 0.00132 56.8843 <0.0001 
Inosine 106.972 ± 29.063 183.383 ± 24.283 − 122.993 <0.0001 0.00132 83.1489 <0.0001 
Isoleucine 9.827 ± 2.310 15.888 ± 3.007 − 126.504 <0.0001 0.00132 83.1432 <0.0001 
Leucine 1183.548 ± 203.091 730.347 ± 161.744 − 118.974 <0.0001 0.00132 66.2471 <0.0001 
Methionine 3206.861 ± 251.107 3382.191 ± 254.628 − 148.671 <0.0001 0.00132 119.4979 <0.0001 
Methylmalonate 311.500 ± 52.771 464.027 ± 65.480 − 142.782 <0.0001 0.00132 119.5845 <0.0001 
NAD 109.151 ± 22.847 91.414 ± 42.132 91.536 <0.0001 0.00132 38.8420 <0.0001 
Niacinamide 85.463 ± 9.433 87.447 ± 12.711 − 73.413 <0.0001 0.00132 29.2467 <0.0001 
Phenylalanine 77.613 ± 11.240 81.226 ± 12.306 − 147.919 <0.0001 0.00132 121.3030 <0.0001 
Proline 32.611 ± 5.003 66.074 ± 20.611 − 144.096 <0.0001 0.00132 150.8123 <0.0001 
Serine 503.302 ± 110.330 841.432 ± 101.661 − 122.867 <0.0001 0.00132 78.2253 <0.0001 
Threonine 2.391 ± 0.794 4.533 ± 1.331 − 129.937 <0.0001 0.00132 100.7048 <0.0001 
Tryptophan 170.660 ± 31.154 274.534 ± 39.141 − 146.734 <0.0001 0.00132 124.3470 <0.0001 
Tyrosine 2517.473 ± 331.987 2546.035 ± 250.215 − 145.133 <0.0001 0.00132 113.7579 <0.0001 
UMP 56.820 ± 3.484 62.673 ± 3.638 133.768 <0.0001 0.00132 88.0218 <0.0001 
Uracil 78.899 ± 30.171 32.763 ± 6.321 − 91.173 <0.0001 0.00132 43.4488 <0.0001 
Valine 37.741 ± 5.775 40.234 ± 4.821 − 148.490 <0.0001 0.00132 119.4142 <0.0001 
Succinate 19.433 ± 6.051 4.865 ± 2.940 − 33.894 <0.0001 0.03684 5.8198 0.0208 
Carnosine 303.408 ± 42.096 407.210 ± 31.875 − 33.606 <0.0001 0.03816 4.6149 0.0381 
Lactate 89.246 ± 19.953 147.614 ± 14.434 − 32.342 <0.0001 0.03947 6.3831 0.0158 
Anserine 181.286 ± 20.146 266.084 ± 31.864 − 30.947 <0.0001 0.04079 3.9236 0.0549 
Glucose 24.919 ± 6.076 45.295 ± 6.330 23.807 <0.0001 0.04211 2.7032 0.1084 
DMG 27.688 ± 8.018 34.191 ± 9.141 − 20.777 <0.0001 0.04342 4.5918 0.0386 
Betaine 237.558 ± 38.386 347.011 ± 36.629 − 13.720 <0.0001 0.04474 1.5737 0.2173 
myo-Inositol 13.223 ± 3.560 13.440 ± 7.204 − 7.990 <0.0001 0.04605 0.3116 0.5800 
Ethanol 5.806 ± 2.228 11.313 ± 3.147 − 6.421 <0.0001 0.04737 0.0166 0.8981 
Creatine 127.445 ± 34.941 233.194 ± 27.677 − 4.293 <0.0001 0.04868 0.0567 0.8130 
Uridine 136.764 ± 29.144 221.416 ± 21.881 − 1.747 0.0808 0.05 0.0524 0.8201 

NAD, nicotinamide adenine dinucleotide; IMP, inosine 5′-monophosphate; UMP, uridine 5′-monophosphate; DMG, N,N-dimethylglycine. 
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succinate, ethanol, lactate, myoinositol, and glucose). Among the 252 
positive correlations, 118 were highly correlated between two amino 
acids (0.516 < r < 0.938), 47 between amino acids and organic acids 
(0.558 < r < 0.906), 74 between amino acids and nucleotides (0.501 < r 
< 0.906), and 13 between nucleotides and organic acids (0.519 < r <
0.870). Among the 49 negative correlations, 33 were between nucleo-
tides and amino acids (− 0.880 < r < − 0.509), seven were between 
nucleotides and organic acids (− 0.893 < r < − 0.526), and nine were 
between two nucleotides (− 0.889 < r < − 0.507). 

Thus, it was confirmed that the metabolites detected in the chicken 
meat extracts could be distinguished by the storage period. Next, we 
established a metabolite-based spoilage point prediction formula. 

3.3. Uni- and multi-variate analysis for selecting biomarkers 

First, potential biomarkers were first identified through both uni-
variate and multivariate analyses. Univariate analysis is important for its 
ability to compare the means of individual variables, revealing signifi-
cant differences that are often overlooked in multivariate analysis 
(Gandhi et al., 2022; Vinaixa et al., 2012). In this study, the t-test 
identified 37 metabolites that showed significant differences between 
the fresh and spoiled meat groups (Table 1, P < 0.01). All of these me-
tabolites had False Discovery Rate (FDR) values below 0.05. Specifically, 
metabolites such as proline, methylmalonate, methionine, asparagine, 
tryptophan, phenylalanine, glutamate, tyrosine, valine, aspartate, thre-
onine, NAD, serine, hypoxanthine, acetate, isoleucine, alanine, leucine, 

IMP, inosine, guanosine, fumarate, glycine, glutamine, niacinamide, 
uracil, and UMP, exhibited low FDR values of 0.00132. Further valida-
tion using one-way ANOVA confirmed these findings; specifically, those 
metabolites exhibiting low FDR values of 0.00132 also yielded p-values 
below 0.001, thus confirming their differential expression across the 
fresh and spoiled meat groups. 

Multivariate analysis complements univariate methods by capturing 
inter-related patterns among variables, providing explanations for 
otherwise ambiguous results seen in univariate analysis (Vinaixa et al., 
2012). PLS-DA results showed that the fresh and spoiled groups could be 
clearly distinguished based on component 1, which explained 60.8% of 
the variance, and component 2, accounting for 6.8% (Fig. 3a). Gener-
ally, the data set in PLS-DA is highly statistically significant when R2 and 
Q2 are more than 0.67 and 0, respectively (Henseler et al., 2009). In this 
study, PLS-DA cross-validation of the two components showed high 
significance (R2 = 0.86; Q2 = 0.76; Fig. 3c). Following the evaluation of 
model fit with high R2 and Q2 values, the significance of individual 
metabolites to the separation of fresh and spoiled clusters was assessed 
using Variable Importance in the Projection (VIP) scores. A VIP score 
above 1.00 indicates that it contributed significantly to cluster separa-
tion (Galindo-Prieto et al., 2014). Twenty-six metabolites (proline, 
asparagine, methylmalonate, methionine, tryptophan, aspartate, gluta-
mate, phenylalanine, tyrosine, threonine, valine, serine, alanine, ino-
sine, acetate, isoleucine, UMP, hypoxanthine, NAD, leucine, guanosine, 
uracil, IMP, fumarate, glycine, and glutamine) contributed to the sig-
nificant separation of fresh and spoiled clusters using the VIP score 

Fig. 3. Multivariate analysis of metabolites in chicken breast meat for selection of the spoilage point biomarkers. Partial least squares-discriminant analysis (PLS-DA) 
cluster between fresh and spoiled (a), variable influence on projection (VIP) score of PLS-DA (b), Random forest classification (RF) between fresh and spoiled (c), and 
mean decrease accuracy of RF (d). 
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(Fig. 3b). 
RF analysis was performed to identify the differentiating metabolites 

between each fresh and spoiled group (Fig. 3c–d). In the RF analysis, 
5000 trees were grown, and six features were randomly selected at each 
node (Gandhi et al., 2022). The highest RF misclassification occurred at 
the bag (OOB) error of 0.025. Based on the mean decrease in accuracy 
(MDA), 15 metabolites (leucine, proline, tryptophan, methylmalonate, 
phenylalanine, valine, asparagine, methionine, tyrosine, glutamate, 
acetate, inosine, aspartate, alanine, and isoleucine) were selected for 
variable importance (MDA>0.01; Table S4)31. Thus, 27 metabolites 
(proline, asparagine, methylmalonate, methionine, tryptophan, aspar-
tate, glutamate, phenylalanine, tyrosine, threonine, valine, serine, 
alanine, inosine, acetate, isoleucine, UMP, hypoxanthine, NAD, leucine, 
guanosine, uracil, IMP, fumarate, glycine, glutamine, and valine) were 
selected using PLS-DA and RF. 

Therefore, twenty-seven selected metabolites through univariate and 
multivariate analyses were used as variables in the regression equation 
to establish a spoilage point prediction equation. 

3.4. Estimation of potential biomarkers for spoilage point of chicken 
breast meat during storage using binary logistic regression 

The training data for establishing the prediction formula was pre-
pared by augmenting the data using the Monte Carlo simulation tech-
nique (Jang et al., 2020). Monte Carlo simulation is a practical strategy 
for creating a prediction model to avoid the risk of overfitting when 
multiple biomarkers are used (Xu & Liang, 2001). A total of 8000 
training data points were augmented by generating 1000 samples for 
each storage day (Mundform et al., 2011). After data augmentation, 27 
metabolites were selected using univariate and multivariate analyses to 
establish a spoilage point prediction model. Using the BLR algorithm, we 
identified proline, methionine, glutamate, threonine, acetate, UMP, 
hypoxanthine, glycine, and glutamine as the best predictors of spoilage 
points in the BLR model (Table S5). Finally, the estimated BLR model is 
as follows: 

Probability=
1

1 + ex  

x= − 18.7460 + 0.0096(proline) + 0.0201(methionine)

+ 0.0027(glutamtae) + 0.0057(threonine) + 0.1158(acetate)

− 0.2485(UMP) + 0.0276(hypoxanthine) + 0.0080(glycine)

+ 0.0079(glutamine)

This model was statistically significant, as determined by the likeli-
hood ratio test (χ2 = 6.443, P < 0.05). The Cox & Snell R-Square and 
Nagelkerke R-Square values were 0.697 and 0.931, respectively. Odds 
ratios greater than one are reported to have significantly higher prob-
abilities (Tsoukalas et al., 2019). The odds ratios indicated that proline 
(1.0097), methionine (1.0203), glutamate (1.0027), threonine (1.0057), 
acetate (1.1228), UMP (0.7799), hypoxanthine (1.0279), glycine 
(1.0081), and glutamine (1.0080) were associated with spoilage points 
(Table S5). The accuracy of the prediction formula is 95.3% (Table S6). 

The prediction formula was validated using the ROC curve. The re-
sults showed an AUC of 0.992 (95% CI:0.991–0.994; Fig. 4). Using a cut- 
off value of 0.391, the sensitivity and specificity were 0.948 and 0.948, 
respectively. 

Furthermore, pathway analysis was performed to determine which 
metabolic pathway affected the nine metabolites (proline, methionine, 
glutamate, threonine, acetate, UMP, hypoxanthine, glycine, and gluta-
mine) that contributed to the logistic regression analysis for predicting 
spoilage point of chicken breast meat. 

3.5. Identification of pathways to contribute to the biomarkers 

For pathway analysis, the results of metabolites on days 0 and 7 
(initial pathway) and days 7 and 13 (late pathway) were used (Fig. S2). 
As a result, the seven metabolisms identified in the initial pathway were 
confirmed as follows: alanine, aspartate, and glutamate metabolism; 
glycine, serine, and threonine metabolism; pyrimidine metabolism; 
arginine and proline metabolism; purine metabolism; pyruvate meta-
bolism; citrate cycle (TCA cycle) (Fig. S2a). These metabolisms were also 
confirmed in the late pathway, except for glycine, serine, and threonine 
metabolism, which were not significantly different in the late pathway. 
The impact values of the initial and late pathways were similar 
(0.3–0.5), however, the -log P value was 3.39–6.57 for the initial 
pathway which was higher than the late pathway at 1.73–4.16. It can be 
interpreted that the metabolites in the initial pathway changed more 
dramatically than those in the later pathway. It has been reported that 
meat undergoes extreme metabolic changes immediately after slaughter 
(Hambrecht et al., 2005; Terlouw et al., 2021). The difference in - log P 
values appears to be influenced by the meat, which exhibits extreme 
metabolic changes after slaughter. 

The illustrated pathway results showed that metabolites affected the 
initial and late pathways (Fig. 5). The nine metabolites (proline, 
methionine, glutamate, threonine, acetate, UMP, hypoxanthine, glycine, 
and glutamine) selected by the BLR model were confirmed to be related 
to the number of 1 energy metabolism (pyruvate metabolism), 4 amino 
acid metabolism (arginine and proline metabolism, cysteine and 
methionine metabolism, alanine, aspartate and glutamate metabolism, 
glycine, serine, and threonine metabolism), and 2 nucleotide metabo-
lisms (pyrimidine metabolism and purine metabolism). 

After slaughter, the oxygen supply is stopped owing to the end of the 
blood circulation (Terlouw et al., 2021). When oxygen is depleted due to 
the stoppage of oxygen supply, oxidative metabolism by the citrate cycle 
and electron transport chain is stopped, and starts to anaerobic meta-
bolism (Terlouw et al., 2021). When glycolysis starts due to anaerobic 
metabolism, threonine and glycine are increased by glycine, serine, and 
threonine metabolism, and are used for pyruvate metabolism. This in-
creases NADH production and proton motive force by the respiratory 
chain to accumulate organic acids, such as acetate (Hambrecht et al., 

Fig. 4. Receiver operating characteristic (ROC) curve analysis for the predic-
tive power of selected biomarker model for distinguishing the spoilage point. 
The final binary logistic model included nine metabolites: proline, methionine, 
glutamate, threonine, acetate, uridine 5′-monophosphate, hypoxanthine, 
glycine, and glutamine. 
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2005; Ye et al., 2018). When energy metabolism is stopped due to 
glycogen depletion, ATP is sequentially catabolized into adenosine 
diphosphate (ADP), adenosine monophosphate (AMP), adenosine, ino-
sine, and hypoxanthine using purine metabolism (Yin et al., 2018). This 
may support an increase in the hypoxanthine levels. In addition, gluta-
mine is converted to glutamate when it produces IMP and UMP (Yoo 
et al., 2020). 

Microbial contamination can also affect the production of organic 
acids (Hambrecht et al., 2005; Terlouw et al., 2021; Wang et al., 2021). 
Carnobacterium and Lactococcus are lactic acid bacteria that produce 
acetate through anaerobic metabolism (Wang et al., 2021). When the pH 
of meat decreases, proteolytic enzymes in the lysosome are released, and 
the protein is degraded (Hambrecht et al., 2005). Carnobacterium, Lac-
tococcus and Serratia could contribute to protein hydrolysis, which af-
fects protein degradation, peptide transport, and amino acid catabolism 
(Marquis et al., 1987; Mahlen, 2011; Vesanto et al., 1996; Wang et al., 
2021). 

In this study, amino acid metabolism may have increased due to 
protein degradation by proteolytic enzymes. Anaerobic metabolism that 
occurs after slaughter generates free radicals, such as reactive oxygen 
species, in meat (Terlouw et al., 2021). Proline is involved in the regu-
lation of scavenging oxidants (Wu et al., 2011), and this antioxidant 
property may explain the increased concentration of proline caused by 
arginine and proline metabolism in response to oxidative stress in meat. 

Overall, the nine metabolites selected through the BLR model might 
be affected by one energy metabolism, four amino acid metabolisms, 
two nucleotide metabolisms, and the metabolism of contaminating 
microorganisms. 

4. Conclusion 

During the storage period, the overall quality attributes of the 

chicken breast decreased. In particular, it was judged to be spoiled after 
7 days of storage based on the VBN value. Establishing a prediction 
model for the spoilage point of chicken breast meat included selecting 
proper biomarkers and deducing formula via data augmentation. 
Twenty-four candidate metabolites were selected as biomarkers using 
univariate and multivariate analyses. A predictive regression equation 
was established using a binary logistic regression model. This equation 
contained proline, methionine, glutamate, threonine, acetate, uridine 5′- 
monophosphate, hypoxanthine, glycine, and glutamine, with a high 
AUC value of 0.992. Importantly, the predictive equation and selected 
metabolites have the potential for application in commercial slaugh-
tering to assess meat freshness and spoilage. However, it is important to 
note that the size and range of samples in this study are limited. 
Therefore, the further studies are required before implementing these 
findings in commercial slaughtering and distribution processes with a 
larger sample size and extended sample area is needed. 
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