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A B S T R A C T

WHO classified Helicobacter pylori as a Group I carcinogen for gastric cancer as early as 1994. However, despite 
the high prevalence of H. pylori infection, only about 3 % of infected individuals eventually develop gastric 
cancer, with the highly virulent H. pylori strains expressing cytotoxin-associated protein (CagA) and vacuolating 
cytotoxin (VacA) being critical factors in gastric carcinogenesis. It is well known that H. pylori infection is divided 
into two types in terms of the presence and absence of CagA and VacA toxins in serum, that is, carcinogenic Type 
I infection (CagA+/VacA+, CagA+/VacA-, CagA-/VacA+) and non-carcinogenic Type II infection (CagA-/VacA- 
). Currently, detecting the two carcinogenic toxins in active modes is mainly done by diagnosing their serological 
antibodies. However, the method is restricted by expensive reagents and intricate procedures. Therefore, 
establishing a rapid, accurate, and cost-effective way for serological profiling of carcinogenic H. pylori infection 
holds significant implications for effectively guiding H. pylori eradication and gastric cancer prevention. In this 
study, we developed a novel method by combining surface-enhanced Raman spectroscopy with the deep learning 
algorithm convolutional neural network to create a model for distinguishing between serum samples with Type I 
and Type II H. pylori infections. This method holds the potential to facilitate rapid screening of H. pylori infections 
with high risks of carcinogenesis at the population level, which can have long-term benefits in reducing gastric 
cancer incidence when used for guiding the eradication of H. pylori infections.
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1. Introduction

Helicobacter pylori is one of the most common human infectious 
agents globally. A recent meta-analysis examining the prevalence of 
H. pylori infections across 62 countries found that 48.5 % of the in-
dividuals tested positive for the infection [1]. H. pylori exhibits greater 
prevalence in Asia, South America, and Africa compared to North 
America and Oceania [1,2]. For instance, the infection rate in Australia 
is 24.6 %, while Nigeria’s is 87.7 % [3]. Infection rates are notably 
elevated in low- and middle-income nations compared to high-income 
countries [4]. These findings imply a robust association with 
socio-economic factors that can either enhance or diminish the trans-
mission of H. pylori infections. Enhanced socio-economic conditions, 
marked by improved household sanitation, proper sewage disposal, and 
clean water sources, significantly limit the spread of H. pylori [5]. China 
is a country with a high prevalence of H. pylori infection. Ren et al. 
meta-analyzed 412 eligible studies and assessed the prevalence of 
H. pylori infection in mainland China as 44.2 % [6]. Based on these 
findings, it is evident that H. pylori infection remains a significant global 
health problem. Within this context, an international consensus has 
been reached to recommend including universal screening and eradi-
cation of H. pylori infection in national health priorities to optimize 
healthcare resources [7].

Long-term infection with H. pylori is associated with many gastric 
diseases, such as chronic gastritis, peptic ulcer disease, gastric intestinal 
metaplasia, and gastric cancer or mucosa-associated lymphoid tissue 
(MALT) lymphoma[8,9]. Therefore, early diagnosis and effective treat-
ment of infection caused by this pathogen are essential. Diagnosing 
H. pylori can be divided into two main categories: invasive and 
non-invasive, each presenting advantages and disadvantages [10]. 
Direct (invasive) histological testing of gastric mucosal biopsy speci-
mens is preferred for patients requiring endoscopy. With appropriate 
sampling and interpretation, histological testing for H. pylori in gastric 
tissues has a sensitivity of approximately 90 % and a specificity of 
95–100 % [11].

In contrast, non-invasive testing methods are recommended for those 
without endoscopy but with symptoms generally associated with 
H. pylori infection. The urea breath test (UBT) is the most popular non- 
invasive diagnostic test. According to a 2015 meta-analysis on patients 
with dyspepsia, the UBT demonstrates a diagnostic sensitivity of 96 % 
and a specificity of 93 % [12]. As an alternative non-invasive method, 
stool antigen testing (SAT) also shows an excellent sensitivity and 
specificity of 94 % and 97 %, respectively [13]. The detection of H. pylori 
antigens in fecal samples is primarily accomplished by SAT through the 
utilization of enzyme immunoassay (EIA) or immunochromatographic 
assay (ICA). Furthermore, serological tests for detecting antibodies 
against H. pylori antigens provide quick and easy diagnostic options and 
are often used in epidemiological studies. However, due to differences in 
strains and antigens in different geographic regions, serological tests 
need to be validated in the appropriate area [13], and reliable thresholds 
for serological tests must be established on a case-by-case basis [14]. In 
addition, as serological tests cannot differentiate between active and 
previous infections, additional confirmatory tests are necessary after 
undergoing eradication therapy.

While approximately 80 % of H. pylori infections are asymptomatic, 
all infected individuals develop different types of gastritis [15,16], 
which results from a complex interaction of bacterial virulence factors, 
host genetics, and environmental factors. Among these, vacuolating 
cytotoxin A (VacA) and cytotoxin-associated gene A (CagA) are two 
important virulence factors of H. pylori [17]. VacA is an oligomeric 
self-transporter protein toxin that forms anion-selective membrane 
channels [18]. It enables H. pylori to escape the host immune system 
mainly by inducing epithelial cell vacuolization [19] and autophagy and 
inhibiting lymphocyte proliferation [20], leading to chronic infection. 
CagA is encoded by the Cag Pathogenicity Island (PAI) and is injected 
into host epithelial cells [21]. Both phosphorylated and 

unphosphorylated forms of CagA proteins regulate signaling pathways 
by interacting with multiple host proteins [22–24], which may ulti-
mately lead to carcinogenesis. Abdullah et al. revealed synergistic ef-
fects between VacA and CagA, suggesting that CagA may accumulate in 
VacA-induced damaged autophagosomes [25]. The study conducted by 
Karami et al. has provided additional evidence that the risk of gastric 
cancer was nearly five times higher in patients infected by H. pylori 
strains expressing both CagA and VacA proteins, as confirmed by sero-
logical tests (ELISA and Western blot). These findings highlight the 
importance of CagA and VacA proteins as reliable markers of the risk of 
developing gastric cancer, offering the potential to be used to identify 
individuals with high-risk H. pylori infections by non-invasive serolog-
ical testing. However, in settings with limited resources where con-
ducting serological tests is difficult due to the lack of specialized 
personnel, advanced equipment, and cost-effectiveness, there is a 
growing urgency for a rapid, simple, and cheap diagnostic method to 
determine antibody typing against its major virulence factors during 
H. pylori infection.

Surface-enhanced Raman Scattering (SERS) has garnered substantial 
recent attention in sensing applications due to its ability to amplify the 
Raman effect signals for molecules adsorbed on nanostructures. The 
convergence of this amplification effectively positions SERS as an up- 
and-coming option for various applications. In recent years, SERS has 
been widely applied in clinical settings, successfully identifying bio-
molecules [26], pathogenic microorganisms [27], body fluid samples 
[28], and cancer tissues [29]. However, the differences between SERS 
fingerprints are difficult to observe with the naked eye when detecting 
complex components, which poses a challenge to extracting and inter-
preting detailed sample information. The emergence of machine 
learning methods has introduced a new avenue for addressing these 
challenges [30]. In a study on lung cancer screening, Fan et al. proposed 
a machine learning-driven blood-SERS analytical technique utilizing a 
self-position detection platform to rapidly and accurately differentiate 
lung cancer from benign lesions [31]. The AdaBoost classifier achieved a 
diagnostic accuracy of 96.3 % for distinguishing lung cancer from 
benign and normal cases [31]. Lin et al. studied early cancer screening 
through serum SERS analysis. A deep learning model was employed to 
analyze the SERS spectra of 203 healthy volunteers, 77 leukemia M5 
patients, 94 hepatitis B virus patients, and 321 breast cancer patients, 
achieving a classification accuracy of 100 % [32]. Therefore, combining 
SERS and machine learning algorithms is a powerful strategy for 
assisting in disease diagnosis and can be utilized to develop 
high-throughput, rapid, and label-free disease screening tools.

In this study, we report the exploration of human serum using SERS 
technology. We successfully distinguished Hp-negative and Hp-positive 
serum samples, as well as Type I (CagA +, VacA ±) and Type II (CagA -, 
VacA-) H. pylori infections using SERS combined with a deep learning 
algorithm convolutional neural network (CNN), in a rapid, non- 
disruptive, and label-free manner. Subsequently, the generated model 
was employed to detect unknown samples, exploring the feasibility of 
implementing SERS strategies in clinical settings. Finally, we developed 
a serum SERS spectral analysis software for detecting H. pylori infection 
status and the two immune-response types, which can automatically 
analyze input spectra and provide prediction results along with accuracy 
values. The proposed method and further research could give conve-
nient measures for diagnosing and screening H. pylori in resource- 
limited settings.

2. Material and methods

2.1. Serum sample collection and detection

4 mL of fasting venous whole blood samples were collected from the 
study subjects in the morning, which was then centrifuged at 4000 r/ 
min for 5 min using a bench-top centrifuge (model type: XZ-P5, 
Changsha Xiangzhi Centrifuge Instrument Co., Ltd., China). The serum 
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was separated from the blood samples and stored at 4 ℃ for subsequent 
measurements. Quantum dot immunofluorescence assay was employed 
for qualitative detection of H. pylori antibodies of Urease, Cytotoxin- 
associated protein A (CagA), and vacuotoxin-associated protein A 
(VacA) in human serum samples (Chongqing Xin Saiya Biotechnology 
Co., Ltd., China). During the testing process, 80 μL of serum sample was 
vertically added to the sample well, the detection card was inserted into 
the dry fluorescence immunoanalyzer AFS2000A (AmonMedCAS, 
China), and automatic timing was selected. The testing was completed 
within 15 min, and the results were recorded. Guidelines for deter-
mining H. pylori infection status and serologic typing are listed below 1) 
Urease < 8 (non-H. pylori infection); 2) Urease ≥ 8 and either CagA ≥ 6 
or VacA ≥ 4 (Type I H. pylori infection); 3) Urease ≥ 8 and CagA < 6 and 
VacA < 4 (Type II H. pylori infection). The baseline information of 
participants was provided in Supplementary Table S1 and Supplemen-
tary Table S2. The sample collections and experimental procedures were 
conducted according to the approved protocols of the Huai’an Fifth 
People’s Hospital Ethics Committee. Informed consent was obtained 
from all participants involved in this clinical study, and the acquisition 
of serum samples was carried out following the approval of the Ethics 
Committee at Huai’an Fifth People’s Hospital (HAWY-KY-2023–006- 
01). All experiments strictly adhered to the guidelines and regulations 
set forth by the Ethics Committee at Huai’an Fifth People’s Hospital.

2.2. Silver nanoparticle preparation

The preparation procedure of silver nanoparticles follows previously 
published studies [28]. In particular, a clean and sterile Erlenmeyer 
flask, pre-filled with 200 mL of deionized water (ddH2O), was supple-
mented with 33.72 mg of AgNO3 (SinoPharm Chemical Reagent Co., 
Ltd., China). The flask was heated on a magnetic stirrer MS-H-ProT 
(DLAB Pty. Ltd., China) until boiling. Subsequently, 8 mL of a 1 % so-
dium citrate solution (SinoPharm Chemical Reagent Co., Ltd., China) 
was added to the boiling solution while stirring at 650 r/min. After 
heating for 40 min, stirring was stopped, and the solution was left to cool 
at room temperature. The solution was then refilled with ddH2O to a 
total volume of 200 mL. To obtain a uniform milky gray solution with 
negatively charged AgNPs, 1 mL of the solution was transferred to a 1.5 
mL Eppendorf (EP) tube and centrifuged at 7000 r/min for 7 min using a 
Sorvall TM Legend TM Micro 21 Centrifuge. The supernatant was dis-
carded, and the pellet was resuspended in 100 μL of ddH2O. The 
resulting solution was in uniform milky gray color with negatively 
charged AgNPs stored in the dark at 4 ◦C to ensure long-term use.

2.3. SERS spectral generation

SERS spectra of the silver nanoparticle-serum mixture were collected 
using an Anton Paar Cora100™ Raman spectrometer (Anton Paar 
Shanghai Trading Co., Ltd., China) with a 785 nm laser. In the experi-
ments, the laser was operated at 25 mW, the spectral resolution was set 
to 1 nm, the spectral wave number resolution was 10 cm− 1, and the 
instrument covered a Raman shift range of 400–2300 cm− 1. For the 
calibration of all SERS spectra, the Raman peak at 520 cm− 1 was used as 
the reference peak (silicon wafer), and the integration time was 
employed to remove dark current. To prepare the samples, 20 μL AgNPs 
and 20 μL serum were mixed for 5 s using a vortex mixer. Then, 30 μL of 
the mixture was dropped onto a silicon wafer and allowed to dry natu-
rally. This study collected spectra from serum samples of 50 H. pylori- 
positive (Hp-positive) and H. pylori-negative (Hp-negative) participants 
and 50 Type I and Type II participants. Each participant had 100 SERS 
spectra collected individually.

2.4. Average SERS spectra and deconvolution analysis

To examine the overall distribution trend of serum Raman spectra, 
we generated the average Raman spectra for each category of serum 

SERS spectra. We calculated the moderate intensity of all spectra at each 
Raman shift for specific samples. The spectra standard deviation (SD) 
was also calculated to assess the data dispersion. Spectral visualization 
was accomplished in Origin software (version 2019b, OriginLab, United 
States), and the fit peaks pro function was utilized for automated fitting 
characteristic peaks of serum spectra. Given the high resemblance 
observed among the various types of serum SERS spectra, we proceeded 
with spectral deconvolution of the average Raman spectra to explore 
minute differences between the ranges. The Vogit function in Origin, 
which represents the convolution of Lorentzian and Gaussian density, 
was used to extract detailed information from each spectral character-
istic peak. The Gaussian width and Lorentzian width values were set to 1 
for all distinct peaks, and then the fitting process continued until 
convergence. Detailed methods are provided in Supplementary 
Methods.

2.5. Clustering analysis of SERS spectra from serum samples

Orthogonal Partial Least Squares Discriminant Analysis (OPLS-DA) 
was employed to extract relevant information from the spectral data to 
explore the inherent differences among serum SERS spectra. Specif-
ically, all SERS data was imported into SIMCA software (Umetrics, 
Sweden). OPLS-DA was selected as the model type, and then Autofit to 
fit the model. The model’s fit degree to the input matrix was measured 
using the explained variance (R2X), while the fit to the output matrix 
was assessed using the predicted variance (R2Y). Additionally, Q2 was 
employed as a metric to evaluate the cross-validated predictability, 
representing the model’s ability to predict unknown samples. All three 
metrics range from 0 to 1, with values closer to 1 indicating better model 
performance. It is important to note that during the clustering process, 
we observe the dispersion of spectral sample points in the OPLS-DA 
coordinate system to identify and exclude extreme outliers. This step 
enables us to remove data points significantly deviate from the general 
pattern, ensuring more reliable and robust clustering results.

2.6. Supervised machine learning analysis of SERS spectra

After removing outliers, all spectral data were normalized to elimi-
nate overall intensity differences (Supplementary Methods). This study 
used six supervised machine learning algorithms to discriminate 
H. pylori infection status and serum antibody typing. These algorithms 
include five classical machine learning (ML) algorithms: Adaptive 
Boosting (AdaBoost), Decision Tree (DT), Linear Discrimination Anal-
ysis (LDA), Random Forest (RF), Support Vector Machine (SVM), and 
one deep learning (DL) algorithms: Convolutional Neural Network. We 
divided the patients, randomly selecting 70 % of the patients as the 
training and validation set and 30 % as the test set to avoid data leakage. 
These ML algorithms were implemented by invoking the corresponding 
functions from the SciKit-Kearn version 0.21.3 library. Before training 
ML models, the parameter ranges were set in advance, and the Grid-
SearchCV function was used to train and tune the model parameters to 
achieve the best-fitting effect of each model. For details of these pa-
rameters, please refer to Supplementary Table S3 and Supplementary 
Table S4.

Due to the high feature dimensionality and slight variations of the 
serum SERS spectral, traditional ML algorithms may need help to predict 
the spectra accurately [33]. To address this issue, we employed a CNN 
known for its excellent feature extraction capabilities to analyze the 
serum SERS spectra. The framework of the CNN model mainly consists 
of an Input Layer, Convolutional Layer, Maxpooling Layer, and Fully 
connected Layer. The input_shape of the Input layer was (636, 1); con-
volutional Layers were used to learn the intrinsic feature representation 
of the SERS spectral, and nonlinear features were detected through the 
application of the Rectified Linear Unit (ReLU) activation function after 
each convolutional layer. The convolution kernel was set to 3 * 1 and 5 * 
1, while the size of filters was set to 8, 16, 32, and 64, respectively. 
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MaxPooling layers were used to compress the extracted feature infor-
mation, enabling the network to capture a broader range of features. 
This study connected a MaxPooling layer after each convolutional layer, 
and the pool size was set to 3. Following multiple convolutional and 
pooling layers, the global information was fed into the Fully Connected 
Layer for classification. The activation function Softmax was applied in 
the Fully connected Layer for classification purposes. The CNN frame-
work was developed based on Python (version 3.7.4), PyCharm (version 
2019.3.3, Community Edition), TensorFlow (version 2.4.1), and Keras 
(version 2.4.3).

2.7. Evaluation of supervised learning algorithms

Several metrics were computed for each model to evaluate the 
recognition and prediction capabilities of different supervised learning 
algorithms. These metrics include accuracy, precision, recall, F1 score, 
5-fold cross-validation, and area under the curve (AUC). In particular, 
accuracy (accuracy_score) represents the proportion of correctly pre-
dicted samples to the total number of samples. At the same time, pre-
cision (precision_score) indicates the proportion of actual positive 
samples among all samples predicted as positive by the model. In 
contrast to precision, recall (sensitivity, recall_score) is used to determine 
the proportion of samples predicted as positive by the model out of all 
actual positive samples. The F1-score (f1_score) is the harmonic mean of 
precision and recall used to assess the model’s performance compre-
hensively. Specificity determines the proportion of samples predicted as 
negative by the model out of all actual negative samples. A 5-fold cross- 
validation (CV) method was employed to prevent model overfitting 
during training. The training dataset was divided into five equally sized 
subsets using the cross_val_score function with the cv parameter set to 5. 
Receiver operating characteristic (ROC) curves were generated using the 
roc_curve process, and the area under the curve (AUC) value was 
computed using the roc_auc_score function. These evaluations provided 
insights into model performance and discriminative capabilities across 
different thresholds. Additionally, we plotted a confusion matrix for the 
best-performing models in differentiating H. pylori infection status and 
serum antibody typing tasks. The confusion matrices were generated 
using the confusion_matrix function, providing a detailed representation 
of the model’s predictions for different serum SERS spectra in matrix 
form.

2.8. Data interpretability

Addressing the interpretability of deep learning algorithms and 
providing clear evidence to explain decision outcomes are effective 
methods for improving model reliability. In this study, we aim to 
demonstrate the decision process of the CNN model on SERS finger-
prints. We introduce the Grad-CAM algorithm to observe the weight 
distribution of the CNN. Specifically, tf.keras.models.Model was 
employed to invoke the generated CNN model, the tf.GradientTape 
method was conducted to calculate the gradient vector of the last con-
volutional layer (conv1d_5, layer=5), and the channel mean was calcu-
lated using the tf.reduce_mean method. The Grad-CAM of the target SERS 
was generated according to the gradient vector and the channel mean.

2.9. Double-blind validation of model performance

To assess the model’s predictive ability on unknown samples, we 
conducted two validation tasks regarding the infection status of H. pylori 
and the antibody typing. An additional 20 Hp-positive and Hp-negative 
participants and 19 Type I and Type II participants were recruited as 
external samples. Serum samples of all participants were collected using 
the same method as the tested participants, with 30 SERS signals 
collected from each participant for external validation of the model. The 
baseline information of the participants is provided in Supplementary 
Tables S7 and S8. All participants were informed about the purpose and 

procedure of this study, and they signed consent forms to participate. 
The obtained spectral matrices from the participants were input into the 
optimal diagnostic model, and the judgment results of the model for 
each spectrum were displayed in the form of a heatmap. All participants’ 
true infection status and antibody typing were qualitatively assessed by 
quantum dot immunofluorescence to evaluate the presence of H. pylori 
urease, CagA, and VacA antibodies in the serum samples.

2.10. Software development

The standalone analytical software was developed using PyCharm 
and PyQt5 to create a convenient tool for SERS spectral analysis for users 
without a computational background. Within just a few clicks, users can 
conveniently achieve its functionalities. It is accessible free of charge on 
the GitHub webpage: https://github.com/4forfull/1DCNN_Serum. All 
software functions were implemented by calling self-written packages. 
Specifically, the find_peaks_cwt process embedded in the "OPEN" button 
was used to fit spectral characteristic peaks, which were then labeled on 
the average spectrum using the ax.text method. A pre-trained model file 
(.h5) was embedded in the “RUN” button to identify unknown SERS 
spectra, automatically predicting infection status and typing for un-
known serum samples. The prediction results were displayed in the 
QTextEdit plugin in the interface’s bottom-right corner.

3. Result

3.1. SERS spectral analysis of H. pylori infection

Average SERS spectra were initially examined to assess the distri-
bution and quality. Preliminary results indicated little difference be-
tween the average spectra of Hp-negative (Fig. 1A) and Hp-positive 
(Fig. 1B) serum samples. The gray shaded areas in the figure depicted 
the value of SD for two types of samples. The narrower the shaded error 
band, the smaller the differences between the same type of SERS signals. 
The quality assessment of SERS signals and spectral characteristic peaks 
are provided in Supplementary Fig. S1. Further refinement through 
spectral deconvolution (Fig. 1C-D) revealed that both types of SERS 
samples shared eight characteristic peaks. However, there were notice-
able variations in the intensities of these peaks. In particular, the ridge at 
1434 cm− 1, attributing to CH2 deformation in proteins and lipids, 
exhibited the most significant discrepancy, with a difference of over 2 ×
105 in the peak area [34]. Bacterial infections are associated with 
elevated levels of serum fibrinogen and lipids [35]. Persistent infection 
with H. pylori can produce pro-inflammatory cytokines, such as 
C-reactive protein, interleukin (IL)− 6, and IL-8, inducing chronic 
inflammation and immune responses. It is known that H. pylori infection 
leads to increased levels of total cholesterol, triglycerides, and 
high-density and low-density lipoproteins [36]. A different Raman shift 
was observed in the peaks associated with Guanine in Hp-negative 
(Fig. 1E) and Hp-positive (Fig. 1F) serum samples, corresponding to 
1316 cm− 1 [37] and 1320 cm− 1 [38], respectively. This change may 
stem from alterations in the relative content and conformation of 
RNA/DNA during disease progression [39]. Environmental and chemi-
cal factors can induce the formation of 8-hydroxydeoxyguanosine 
(8OHdG) from guanine in DNA, a marker that typically shows 
elevated levels in H. pylori-associated gastric diseases [40]. Moreover, 
8OHdG levels are higher in CagA-positive H. pylori patients compared to 
CagA-negative and H. pylori-negative patients. The results of this study 
indicate that the peak area under the curve differed by more than 1.5 ×
105. Further details on characteristic peaks were provided in Supple-
mentary Table S5.

3.2. SERS spectral analysis of two serological types of H. pylori infection

The SERS analysis of Type I and Type II Hp-infection revealed min-
imal differences in the average spectra of these two sets of human serum 
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samples (Fig. 2A-B). Similarly, the SD values were displayed in the 
shaded area in the graph. Spectral deconvolution processing revealed 
the presence of seven familiar characteristic peaks in the SERS spectra of 
the two types of serum samples (Fig. 2C-D). Among these peaks, the 
maximal difference in relative intensity was found for the peak formed 
by CH3CH2 wagging at 1338 cm− 1 [41], exceeding 7 × 104. In addition 
to the shared characteristic peaks, the SERS spectra of Type I and Type II 
Hp-infection displayed two distinct differential peaks. Similar to the 
Hp-negative and Hp-positive serum samples, a Raman shift was 
observed in the peak associated with Guanine. In Type I Hp-infection, it 
occurred at 1318 cm− 1 (Fig. 2E) [42], while in Type II Hp-infection, it 
occurred at 1322 cm− 1 (Fig. 2F) [43]. Additionally, Type I Hp-infection 
exhibited a unique peak at 1258 cm− 1, corresponding to the C-N 
stretching vibration [44], and Type II Hp-infection showed a peak at 
1280 cm− 1 associated with Amide III [45]. These two characteristic 
peaks may serve as potential criteria for distinguishing the two types of 
immune responses of Hp infections in serum. Further details on distinct 
peaks were provided in Supplementary Table S6.

3.3. Clustering analysis of serum SERS spectra

After several iterations of clustering and removing extreme outliers, 
the performance of OPLS-DA remains stable. When identifying the 
infection status of serum samples in the case of H. pylori (Fig. 3A), there 
is an overlap between the SERS serum sample points of Hp-positive and 
Hp-negative examples, with R2X= 0.985, R2Y= 0.329, and Q2 = 0.325. 

Similarly, this overlap exists in identifying Type I and Type II antibody 
typing tasks (Fig. 3B), with R2X= 0.963, R2Y= 0.409, and Q2 = 0.398. 
These results indicate that OPLS-DA could not effectively distinguish 
between different serum samples. Therefore, it is necessary to explore 
advanced chemometric analysis techniques to improve the accuracy of 
serum SERS spectra identification.

3.4. Prediction capacity of supervised learning models

The comparative performance of different supervised learning al-
gorithms in identifying serum infection is presented in Table 1. The 
results showed that CNN acquired a prediction accuracy of 90.37 %. 
This indicates that the CNN model can effectively identify the status of 
H. pylori infection in serum samples. In addition, the random forest al-
gorithm also showed remarkable feature extraction capabilities by 
integrating numerous weak classifiers (n_estimators) and leaf node depth 
(max _depth), achieving a good recognition accuracy of 89.25 %. How-
ever, due to the non-linear relationship of serum Raman spectra, the 
effectiveness of the SVM (Accuracy=68.26 %)could have been better.

Apart from assessing the presence of H. pylori in the serum, we also 
identified the antibody types to provide more precise diagnoses and 
treatment plans when analyzing the serum of the infected patients. The 
results showed that (Table 2), the CNN model consistently achieves the 
highest identification results, with an accuracy of 93.18 %, underscoring 
its effectiveness in identifying serum SERS spectra. Furthermore, except 
for SVM, the prediction accuracy of all other algorithms exceeded 80 %, 

Fig. 1. Average and deconvoluted SERS spectra of Hp-positive and Hp-negative serum samples. (A) Average SERS spectra of Hp-negative serum samples, (B) Average 
SERS spectra of Hp-negative serum samples. (C) Deconvoluted SERS spectra of Hp- negative serum samples, (D) Deconvoluted SERS spectra of Hp-positive serum 
samples. (E) Characteristic peaks of Hp-negative samples and biological significance. (F) Characteristics of Hp-positive samples and biological significance. The X-axis 
represents Raman shifts in the 530–1800 cm− 1 range, while the Y-axis represents the relative Raman intensity. a.u. is an arbitrary unit, referring to the relative value 
of each data under the same measurement conditions.
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which may be attributed to the reduction in the number of SERS data 
samples.

To further validate the performance of various supervised learning 
models in identifying serum infection status and antibody typing, ROC 
curves were utilized to assess the specificity and sensitivity of each 
model (Fig. 4A-B). Additionally, we evaluated the models based on the 
Area Under the Curve (AUC) value, which quantifies their overall per-
formance. Meanwhile, we used confusion matrices to compare the pre-
dicted results of the optimal classification model with the true labels. In 
the ROC curve, the closer to the upper left area, the higher the true 
positive rate (TPR) and the lower the model’s false positive rate (FPR). 
Simultaneously, we also calculated the AUC value of the area under the 
ROC curve to measure the models’ performances. The results revealed 
that the CNN model exhibited the highest performance in infection 
identification (AUC=0.9711) and antibody typing (AUC=0.9790). 
Given these outcomes, we calculated and plotted the confusion matrix 
for the CNN model. In detecting H. pylori infection (Fig. 4C), the CNN 
model incorrectly classified 9 % of positive and 11 % of negative sam-
ples as positive. While performing antibody typing (Fig. 4D), the model 
misclassified 5 % of Type I and 9 % of Type II samples. These findings 
comprehensively assessed the supervised learning models and high-
lighted the CNN model’s superior performance in identifying H. pylori 
infection status and profiling of carcinogenic and non-carcinogenic 
types of H. pylori infection.

3.5. Interpretability of deep learning analysis

To improve the interpretability of the model, we employed the Grad- 
CAM algorithm to examine the distribution of model classification 
weights in each category of SERS spectra. When analyzing Hp-positive 
and Hp-negative serum (Fig. 5A), partial weightings will be allocated 
to essential fingerprint regions. For example, regardless of positive or 
negative samples, more attention was given to the characteristic peaks at 
1216, 1338, and 1434 cm− 1 and their adjacent regions. However, pos-
itive samples received more weight. Notably, not all significant char-
acteristic peaks received attention. For instance, the peak at 1588 cm− 1 

did not play a crucial role in model decision-making when distinguish-
ing Hp-positive from Hp-negative. Furthermore, weights were also 
allocated to non-characteristic fingerprint regions at 706–738 cm− 1 and 
1636–1674 cm− 1. Similarly, in the tasks of identifying Type I and Type II 
serum samples of H. pylori infection (Fig. 5B), significant Raman char-
acteristic peaks in the 1110–1480 cm− 1 region received more attention, 
while four non-characteristic fingerprint regions at 600, 708, 808, and 
1544 cm− 1 also received higher weights. Additionally, unlike the 
negative/positive identification tasks, the model did not distribute much 
weight in the region beyond 1588 cm− 1. These results indicate that the 
model considers a combination of multiple characteristic peaks in the 
decision-making process rather than solely relying on significant ones.

Fig. 2. Average and deconvoluted SERS spectra of the type of serum H. pylori. (A) Average SERS spectra of Type I serum samples, (B) Average SERS spectra of Type II 
serum samples. (C) Deconvoluted SERS spectra of Type I serum samples, (D) Deconvoluted SERS spectra of Type II serum samples. (E) Characteristic peaks of Type I 
serum samples and biological significance. (F) Characteristics of Type II serum samples and biological significance. The X-axis represents Raman shifts in the 
530–1800 cm− 1 range, while the Y-axis represents the relative Raman intensity. a.u. is an arbitrary unit, referring to the relative value of each data under the same 
measurement conditions.
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3.6. Validation analysis of the CNN model

To validate the performance of our testing model and extend this 
method to new clinical settings for the identification of H. pylori infec-
tion and serum antibody types in blind samples, Fig. 6 presents the re-
sults of applying our best diagnostic model in this new clinical setting. 
Fig. 6A depicts the accuracy heatmap of the CNN model in identifying 
unknown infection status, with an average identification accuracy of 
88 %. In Fig. 6B, the accuracy heatmap of the CNN model in identifying 
unknown antibody types was presented, with an average identification 
accuracy of 89 %. The color intensity of the squares in the figure rep-
resents the model’s prediction probability for the SERS signals. In the 
blind test dataset, although some samples were misclassified, most 
samples showed high recognition accuracy, affirming the robustness and 
reliability of our approach. Additionally, qualitative examples of 
correctly and incorrectly classified spectra are provided in Supplemen-
tary Fig. S2.

3.7. Standalone analytical software

In this study, we developed standalone software that enables the 
prediction of SERS spectra from serum samples. The software includes a 
user-friendly graphical user interface (GUI), as depicted in Fig. 7. This 
interface lets users click the "OPEN" button to input their unknown SERS 
spectra. The software will then automatically visualize the spectra and 
generate characteristic peaks. The "RUN" button incorporates the CNN 
model to predict the infection status and typing of the input serum SERS. 
It should be noted that because there are potential system deviations 
between different Raman spectrometers, the current software can only 
detect the spectral data generated by the handheld Anton Paar™ 
Cora100 Raman spectrometer.

4. Discussion

Helicobacter pylori infection remains a significant global public health 

Fig. 3. Clustering analysis of SERS spectra of serum samples via OPLS-DA. (A) Clustering scatter plot of positive and negative serum samples of Hp-infection. (B) 
Clustering scatter plot of serum samples with Type I and Type II Hp-infection.

Table 1 
Comparison of the predictive abilities of six supervised machine learning algorithms in the analysis of positive and negative serum SERS data.

Positive & Negative Accuracy Precision Sensitivity Specificity F1 5Fold

CNN 90.37 % 90.37 % 90.35 % 91.40 % 90.37 % 89.51 %
RF 89.25 % 89.25 % 89.24 % 89.41 % 89.25 % 87.73 %
DT 78.14 % 78.14 % 78.12 % 79.44 % 78.14 % 76.71 %
AdaBoost 77.65 % 77.65 % 77.65 % 77.99 % 77.65 % 78.18 %
LDA 76.57 % 76.57 % 76.51 % 79.71 % 76.54 % 75.03 %
SVM 68.26 % 68.26 % 68.20 % 60.52 % 68.21 % 68.40 %

Table 2 
Comparison of the predictive abilities of six supervised machine learning algorithms in analyzing serum SERS data of Type I and Type II H. pylori infections.

Type I & Type II Accuracy Precision Sensitivity Specificity F1 5Fold

CNN 93.18 % 93.18 % 93.08 % 94.97 % 93.15 % 91.25 %
RF 92.31 % 92.31 % 92.23 % 94.08 % 92.30 % 89.86 %
AdaBoost 84.54 % 84.54 % 84.47 % 86.09 % 84.53 % 82.94 %
LDA 83.69 % 83.69 % 83.50 % 88.31 % 83.64 % 81.27 %
DT 81.62 % 81.62 % 81.53 % 83.58 % 81.60 % 79.99 %
SVM 76.15 % 76.15 % 75.76 % 85.50 % 75.88 % 72.77 %
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problem, particularly severe in developing countries. Several H. pylori 
virulence factors are important in its pathogenesis [4]. In particular, 
CagA and VacA are two toxin proteins that are closely associated with 
gastric carcinogenesis [46]. Conventional methods for detecting 
H. pylori infection status and antibody typing in serum, such as ELISA 
and Western blot, rely on specialized personnel and expensive equip-
ment. In some resource-limited settings, these tests may not be feasible 
[47]. Therefore, there is an urgent need to develop a simple, economical, 
rapid, and accurate method for identifying H. pylori infection and anti-
body typing.

In this study, we developed a rapid and accurate detection method 
for determining H. pylori serostatus and identifying serum samples with 
immune responses to CagA and VacA using Raman spectroscopy and 
machine learning algorithms. SERS can provide detailed information 
about the chemical composition of tissues at the molecular level. Using 
noble metal nanoparticles (silver, gold, and copper), SERS is an effective 
tool for analyzing the vibrational properties of analytes at low concen-
trations down to the single molecule level [48]. In addition, it can 
identify unique fingerprint regions in individual cells and tissues, 

making it a promising clinical diagnostic tool [49,50]. We obtained in-
formation about the H. pylori serostatus and antibody typing of all serum 
samples using quantum dot immunofluorescence. Based on the sero-
logical test results, an initial classification of the modeled samples was 
completed. The spectra were first preprocessed to transform the raw 
SERS spectral features into a feature matrix, which was then used as 
input to a machine-learning predictive model to detect H. pylori seros-
tatus (Hp-positive, Hp-negative) and to discriminate Hp-positive serum 
samples (carcinogenic Type I, non-carcinogenic Type II). Our results 
demonstrated that simple average SERS spectral analysis did not 
discriminate biological samples due to significant variations in charac-
teristic peaks [51]. Therefore, SERS spectroscopy for differentiating 
H. pylori serostatus and profiling immune responses of Hp-positive 
samples is challenging due to the complex composition of serum sam-
ples. To overcome this limitation, we used deconvolution spectra based 
on fine molecular vibrations, shown in previous studies, to help detect 
subtle differences between samples [52,53]. As shown in Figs. 1 and 2, 
these deconvolution peaks explained the subsequent decision-making 
process of supervised learning algorithms for serum sample 

Fig. 4. ROC curve for different supervised learning algorithms and confusion matrix of best performance model. (A-B) ROC curve, according to the comparison, CNN 
achieved the best performance in positive/negative and Type I/Type II classification tasks of H. pylori infections. (C-D) The confusion matrix number in the confusion 
matrix represented the percentage of correctly classified (diagonal) or misclassified (off-diagonal) spectra, respectively.
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classification.
Although much effort is put into removing undesirable effects during 

Raman spectroscopy measurements, such as normalization, curve 
smoothing, and baseline correction, the main challenge remains that the 
spectral signal is subject to many additional contributions from the in-
strument or the sample. So, we must do our best to mitigate the effects of 
live elimination when analyzing the data. Overlapping of SERS sample 
points occurs in the OPLS-DA clustering algorithm, distinguishing be-
tween Hp-negative and Hp-positive samples and differentiating Type I 

and II Hp-positive samples (Fig. 3). Therefore, there is a need to explore 
advanced Raman spectroscopy data analysis methods. Ho et al. pio-
neered integrating SERS with artificial intelligence algorithms to iden-
tify 30 common pathogenic bacteria [54]. Building on our previous 
research, in which we demonstrated the applicability of machine 
learning in diagnosing pathogenic microbes [33] and body fluid samples 
[55], we constructed six integrated learning methods using decision tree 
algorithms as weak classifiers. These models, including CNN, RF, SVM, 
AdaBoost, LDA, and DT, were trained using preprocessed spectral data 

Fig. 5. Weight distribution of CNN model. (A) Weight distribution heatmap of Hp-positive and Hp-negative serum samples. (B) Weight distribution heatmap of Type 
I and Type II Hp-positive serum samples. For heatmaps, the deeper the color, the more attention is allocated to the CNN model.

Fig. 6. Validation of the CNN model performance. (A) Accuracy heatmap for identification of Hp-positive and Hp-negative serum samples. Red squares represent Hp- 
positive samples; blue squares represent Hp-negative samples. (B) Accuracy heatmap for identification of Type I and Type II Hp-positive serum samples. Orange 
squares represent Type I Hp-infection, while green squares define Type II Hp-infection. Color intensities represent the level of accuracy.
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as the input. Next, tuning the hyperparameters becomes an essential task 
for machine learning models. The primary task is to find the best com-
bination of hyperparameters to obtain the best predictive model. Com-
mon types of hyperparameters include (i) κ in κ-NN, (ii) regularization 
constant, kernel type, and constants in SVMs, and (iii) number of layers, 
number of units per layer, and regularization in a neural network [56]. 
Tuning methods such as grid search, random search, and Bayesian 
optimization can be used to find the optimal values of the hyper-
parameters. In this study, we analyzed the quality of the hyper-
parametric combinations using a grid search approach. Each model’s 
parameter combination with the highest final score was selected to 
examine the SERS data for all samples. Among the six diagnostic models, 
the CNN model showed high predictive accuracy for diagnosing H. pylori 
serostatus (88.15 %) and for immune response typing (90.46 %). To 
further confirm the diagnostic performance of the different models, we 
used ROC curves to assess the specificity and sensitivity of each model, 
as well as the area under the curve (AUC) values to quantify the overall 
performance, and the results indicated that the CNN model was the most 
effective. Still, it is worth noting that this model also suffered from 
misclassification. In addition, we additionally collected 39 external 
validation samples to assess the performance of the CNN model under 
double-anonymized testing. The results showed that the model effec-
tively identified unknown infection statuses (88 %) and immune 
response typing (89 %).

Although the CNN algorithm achieved satisfactory results in this 
study, there are still some things that could be improved. First, the 
infection status of the participants included in this study was confirmed 
by serological methods, and the current infection status of the patients 
remains to be confirmed. Second, although the study successfully 
distinguished different carcinogenic and non-carcinogenic Hp-positive 
infections based on SERS signals, the changes in serum involve alter-
ations in various host proteins and signaling pathways. The specific 
reasons SERS can differentiate between different serum subtype samples 
still need further exploration. Additionally, the number of participants 
in the study cohort was relatively small, limiting the model’s ability to 
thoroughly learn the internal patterns of the same type of SERS signals. 

Larger-scale cohort studies could effectively enhance the model’s 
generalization capability. Furthermore, the model and independent 
software developed in this study were based on the Anton Paar™ Cora 
100 Raman spectrometer, and their cross-platform capability and 
generalizability are limited. Developing analysis software for multi- 
platform SERS signals will be a focus of our future research. In conclu-
sion, our work promotes the clinical application of the SERS-CNN 
method. The analysis software developed based on the Anton Paar™ 
Cora 100 provides a simple and convenient tool for analyzing SERS 
signals, providing a valuable and practical tool for healthcare 
professionals.

5. Conclusion

In conclusion, this study successfully demonstrated the potential of 
using the SERS spectra to diagnose H. pylori serostatus and differentiate 
serum samples with immune responses to CagA and VacA. Combined 
with CNN, we achieved robust classification results for serum SERS 
spectra. We also validated our prediction model efficacy by conducting 
double-anonymized experiments. Although our model showed a slight 
decline in sensitivity, we achieved significantly higher diagnostic ac-
curacies of 80 % and 86 % for predicting serostatus of H. pylori in-
fections and the immune response typing of Hp-positive serum samples, 
respectively. We also developed user-friendly software for spectral data 
generated by an Anton Paar™ Cora100 handheld Raman spectrometer 
that can predict H. pylori infection status and toxins-related immune 
response typing. Like other serological tests, our diagnostic technique 
also has the limitation of distinguishing between a current and past 
H. pylori infection. However, when combined with other diagnostic 
tests, such as UBT and qPCR, it can be a perfect diagnostic tool for 
screening carcinogenic H. pylori infection at the population level. This 
novel deep learning-based serum SERS intelligent analysis model holds a 
significant potential to positively impact clinical practice, particularly in 
settings with limited resources where it is crucial to have cost-effective 
and efficient methods for screening H. pylori infection and assessing its 
associated risks. Our study significantly contributes to the ongoing 

Fig. 7. The GUI of the standalone software for rapid and accurate discrimination and prediction of H. pylori infection status and serological types based on the 
analysis of SERS spectra of human serum samples.
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efforts to address health challenges related to H. pylori. By offering a 
robust and easily accessible diagnostic tool, we move closer to 
enhancing the management and prevention of the detrimental outcomes 
caused by this pathogen, specifically its correlation with gastric cancer.
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