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INTRODUCTION

For diagnosis, therapy, or imaging of certain disease, spe-
cifi c targeting is an important issue. To this end, antibodies 
have been widely used to target molecules of interest and 
made a tremendous contribution to a wide range of applica-
tions based on molecular recognition (Jayasena, 1999). The 
IgG2a CD3-specifi c transplant rejection drug OKT3 (mu-
romonab) was the fi rst FDA-approved therapeutic antibody 
(Hooks et al., 1991). Subsequently, diverse therapeutic an-
tibodies have been applied to treat diseases (Knight et al., 
1993; Mazumdar and Greenwald, 2009; Pageau, 2009; Ban-
aszynski and Kolesar, 2013). However, many limitations have 
been identifi ed, including diffi culties with production, immuno-
genicity, expensiveness, reoptimization with each new batch, 
sensitivity to temperature, and irreversible denaturation. Re-
cently, chemical antibody called aptamer has emerged as a 
new targeting molecule.

Aptamers consist of nucleic acids that bind to diverse targets 
with high affi nity and selectivity. They are screened through an 
in vitro process and usually have higher binding affi nity than 
traditional antibody. Aptamers are produced chemically, and 

no or little batch-to-batch variation is observed during aptamer 
production. Furthermore, aptamers can be easily modifi ed to 
chemically conjugate with other molecules. Aptamer can also 
undergo reversible denaturation at high temperature, making 
it a very versatile tool for drug loading and antidote application. 
Moreover, aptamers elicit little or no immunogenicity in thera-
peutic applications (Eyetech Study Group, 2002; Foy et al., 
2007; Zhu et al., 2012a). The fi rst aptamer-based drug called 
Macugen (pegaptanib) was FDA-approved in 2004 (Ruckman 
et al., 1998), and many studies proceeded to test effi cacy.

Here, the up-to-date methods for SELEX processes are 
introduced. Moreover, diverse strategies to increase aptamer 
stability in biological fl uid are discussed. Also, its utility as a 
targeting molecule for imaging, diagnosis, therapy and target-
ed drug delivery are discussed.

WHAT IS AN APTAMER?

Aptamer is a single-stranded nucleic acid oligomer made 
of RNA or DNA which can bind to specifi c target molecule 
with high affi nity and selectivity. Secondary or tertiary struc-
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tures of aptamers allow target binding and determine target 
specifi city and affi nity (Ellington and Szostak, 1990; Tuerk 
and Gold, 1990; Schneider et al., 1995; Mosing et al., 2005; 
Chen et al., 2009). In the early 1990s, several research lab-
oratories were independently experimenting with what Jack 
W. Szostak’s group termed “in vitro selection” (Ellington and 
Szostak, 1990). To describe molecular recognition properties 
for what were nucleic acid-based ligands, they coined the term 
‘aptamer’ using the Latin word “aptus”, meaning “fi tting” and 
the Greek word ‘‘meros’’, meaning “particle”. But naming ap-
tamers was not nearly as interesting as discovering that their 
properties compete quite well with those of antibodies. Tar-
gets of aptamer may include, but are not limited to, metal ions 
(Kawakami et al., 2000), small organic compounds (Mann et 
al., 2005), biological cofactors (Lauhon and Szostak, 1995; 
Holland et al., 2000), metabolites (Bruno et al., 2008), proteins 
(Ruckman et al., 1998; White et al., 2001; Savla et al., 2011) 
and whole organisms such as a virus (Tang et al., 2009), bac-
teria (Hamula et al., 2011), yeast (Kolesnikova et al., 2010), or 
mammalian cell (Chen et al., 2009). Aptamers can be easily 
modifi ed by various chemical reactions to introduce functional 
groups and/or nucleotide extensions. Aptamers can be eas-
ily conjugated to therapeutic molecules such as drugs, drug 
containing carriers, toxins, or photosensitizers. Thus, aptam-
ers are promising escort molecules for drug delivery systems.

       

NEW METHODS FOR IN VITRO SELECTION OF AP-
TAMERS 

SELEX is an in vitro selection method designed to iden-
tify aptamers that are selectively bound to target molecules 
with high affi nity. Substantive studies on aptamers have pro-
gressed since the in vitro selection process called SELEX 
was fi rst reported by Gold’s and Szostak’s groups (Ellington 
and Szostak, 1990; Tuerk and Gold, 1990). First, the nucleic 
acid library, which consists of 1014-1015 random oligonucle-
otide strands, is incubated with a target molecule. Then, the 
target-bound oligonucleotide strands are separated from the 
unbound strands. The target-bound DNA or RNA strands are 
eluted from the target molecule and amplifi ed via polymerase 
chain reaction to seed a new pool of nucleic acids. This se-
lection process is continued for 6-15 rounds with increasingly 
stringent conditions, which ensure that the nucleic acid ob-
tained has the highest affi nity to the target molecule (Fig. 1). 
SELEX method can be modifi ed in a variety of ways to in-
crease the specifi city of aptamer and effi ciency of SELEX. 

Counter-SELEX
The counter-SELEX method was introduced to increase 

the effi ciency of aptamer selection by traditional SELEX (Fig. 
1) (Jenison et al., 1994). Compared to traditional SELEX, 
counter-SELEX has a pre-clearing step using closely related 
structural analogs of the target to effectively discard non-spe-

•

•
•

Fig. 1. Overview of SELEX scheme. Aptamers can be obtained through an iterative selection process known as SELEX (systematic evolu-
tion of ligands by exponential enrichment) by using single-stranded DNA or RNA. An initial pool of 1014-1015 random oligonucleotide (ONT) 
strands are subjected to binding with the target. Unbound ONTs are discarded and RT-PCR or PCR is performed to amplify the target-
bound ONTs. This selection process is repeated 6-15 times using amplifi ed ONTs as a new pool. This way, aptamers having high specifi c-
ity and affi nity are screened. Diverse molecules can be the target of the SELEX, including metal ion, protein, organic compound and cell. 
Toggle-SELEX performs SELEX with two different target molecules to obtain bispecifi c aptamers.
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cifi c aptamers. This allows dramatic improvement in aptamer 
selection and can also be applied to other modifi ed SELEX 
methods. 

Cell-SELEX
The SELEX target is not limited to an individual molecule. 

The cell-SELEX strategy has been described that utilizes liv-
ing cells as the SELEX target (Fig. 1). Although traditional 
SELEX is typically carried out using purifi ed target molecules, 
whole live cells are also employed as selection targets. Not 
only normal/abnormal mammalian cells such as virus-infected 
and cancer cells but also live pathogenic organisms such as 
bacteria and viruses have been utilized as cell-SELEX targets 
(Tang et al., 2009; Hamula et al., 2011). The aptamers gener-
ated are functional with an original conformation of the target 
molecule on live cells. Compared to aptamers selected us-
ing a purifi ed target, a cell-SELEX-derived aptamer has more 
possibility to be used directly for in vivo and clinical applica-
tions. A screened aptamer resulting from cell-SELEX using 
abnormal cells can be used to detect disease or cancer. More-
over, biomarkers can be used to identify the aptamer target 
for a specifi c abnormality (Blank et al., 2001). Many strategies 
are available to select an anti-virus aptamer. First, SELEX 
can be performed using the virion directly (Wang et al., 2000). 
Second, aptamers can be generated that specifi cally bind to 
virus-infected cells. Through virus infection, viral proteins ex-
ist on the host cell surface due to the viral gene or enveloped 
protein. SELEX provides screening of virus-specifi c aptamers 
that recognize virus infected cells. Furthermore, aptamers can 
be selected for host cell proteins if their expression levels are 
upregulated upon viral infection. Lastly, stable cell lines can be 
generated that express viral protein as a cell-SELEX target, 
and the aptamer obtained can be used to detect virus infected 
cells (Chen et al., 2009). Furthermore, novel biomarkers can 
be discovered using the cell-SELEX technique. Because the 
target molecules of the aptamers generated by cell-SELEX 
may be previously unrecognized as cell-specifi c surface mol-
ecules, they could be novel biomarkers. Thus, cell-SELEX can 
be applied for de novo discovery of novel biomarkers for a de-
sired cell by identifying the aptamer binding partner. The cell-
SELEX concept can be extended for in vivo selection, which 
was fi rst designed using a hepatic tumor xenograft mouse 
model (Mi et al., 2010). Oligonucleotides were injected intra-
venously, liver tumors were harvested, and the injected RNA 
molecules were extracted and amplifi ed. A tissue-specifi c ap-
tamer can be more easily screened through this in vivo selec-
tion process. So, a screened aptamer may be a useful target 
for a tissue of interest without non-specifi c biodistribution in 
the in vivo application. 

Capillary Electrophoresis-SELEX
The SELEX process has disadvantages in that it is time con-

suming to repeat the rounds. Some molecular biological meth-
ods have been introduced to SELEX to overcome these disad-
vantages. Capillary electrophoresis-SELEX (CE-SELEX) was 
designed for selecting aptamers to reduce repeating rounds 
with low dissociation constants (Mosing et al., 2005). In this 
method, the nucleic acids that bind the target migrate with dif-
ferent mobilities than those of unbound sequences, allowing 
them to be collected as separate fractions. Although tradi-
tional SELEX requires 6-12 rounds, CE-SELEX signifi cantly 
reduces the number of rounds and increases binding affi nity 

(Schneider et al., 1995). CE-SELEX decreases the time, ef-
fort, and cost to screen a higher affi nity aptamer compared to 
those of traditional SELEX. Based on CE technology, a non-
SELEX method that selects an aptamer without amplifi cation 
was demonstrated (Berezovski et al., 2006). Non-equilibrium 
capillary electrophoresis of equilibrium mixtures (NECEEM), a 
highly effi cient affi nity method, has been used to partition the 
DNA-target complex from the free DNA. An aptamer with nano-
molar affi nity for the protein farnesyltransferase was selected 
in a single round of partitioning using NECEEM (Berezovski et 
al., 2005). The advantage of non-SELEX is its speed and sim-
plicity. NECEEM-based non-SELEX selection took only 1 h in 
contrast to several days or several weeks required for a tradi-
tional SELEX procedure by conventional partitioning methods. 
This procedure can be automated using a single commercially 
available capillary electrophoresis instrument. 

One step MonoLEX
The MonoLEX approach combines a single affi nity chro-

matography step with subsequent physical segmentation of 
the affi nity resin and one single fi nal exponential amplifi cation 
step of the bound aptamers (Nitsche et al., 2007). Using the 
Biomek 2000, an automatic SELEX device (Cox et al., 1998), 
Cox et al. demonstrated that 10 rounds of selection against 
eight targets in parallel can be performed in 4-5 days. 

Microfl uidic SELEX
Microfl uidic SELEX (mSELEX) was designed that com-

bines traditional SELEX with a microfl uidic system. Protein 
immobilization is the most important aspect of mSELEX. A 
mSELEX prototype device was developed and biotinylated 
lysozymes were immobilized to silica microline previously 
coated with streptavidin (Hybarger et al., 2006). In another 
study, a magnetic bead-based SELEX process with microfl uid-
ics technology and a continuous-fl ow magnetic activated chip-
based separation device was developed (Lou et al., 2009). 
Using this mSELEX method, an enriched aptamer pool was 
obtained that tightly bound to the light chain of recombinant 
Botulinum neurotoxin type A after a single round of selection 

Fig. 2. Method for obtaining Spiegelmer. SELEX is performed 
with mirror-imaged target and D-form RNA. Based on the selected 
D-form RNA sequence, L-form RNA aptamer can be synthesized. 
Now L-RNA, the chiral form of the acquired D-form RNA, can bind 
to natural target. This L-form RNA is nuclease-resistant and suit-
able for in vivo application. The world ‘Spiegelmer’ is derived from 
German ‘Spiegel’ meaning ‘mirror’. 
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Fig. 3. Structure of chemically modifi ed nucleotides (Modifi ed form Kasahara and Kuwahara, 2012). The simplest ribose 2’ modifi cation is 
widely used to increase aptamer stability in vivo. Phosphate and base modifi cation are also used for this purpose. Substitution of F, OCH3, 
SH or CH2OH for 2’-OH (H) is widely used. BNA/LNA was designed to structurally protect 2’ site. In addition, thiol (S) or borane (BH3) group 
is introduced to α phosphate to strengthen oligonucleotide backbone. Functional groups can also be introduced into the base. 
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with a 33 nM Kd value. Recently, a novel formulation of sol-
gel protein microarray material was developed, which elicited 
physical properties suitable for protein immobilization, protein-
protein interactions, and immunoassays (Kim et al., 2006). 
Based on sol-gel, the authors developed a microfl uidic device 
and method for binding nucleic acids to immobilized proteins 
and effi ciently eluting and recovering the intact nucleic acids 
(Park et al., 2009). The mSELEX system enhanced selection 
effi ciency and reduced time and effort compared to those of 
traditional SELEX.

Toggle-SELEX
Furthermore, toggle-SELEX has been established for in 

vitro animal model assays using a single aptamer (Fig. 1). 
The “toggle” selection process was repeated during SELEX 
rounds using a target applied to human thrombin for even 
rounds and porcine thrombin for odd rounds to select a spe-
cies cross-reactive aptamer (White et al., 2001). A species 
cross-reactive aptamer from the toggle-SELEX strategy may 
contribute directly to animal models and clinical applications. 
Thus, toggle-SELEX makes the aptamer technique closer to a 
“bench-to-clinic” concept. 

Based on these novel methods, high-throughput screening 

of aptamers and improved effi ciency of the SELEX process is 
possible. Moreover, consilience technology such as microfl u-
idic technology and engineering could reduce effort, time, and 
cost of aptamer selection and analysis, while increasing its ef-
fi cacy. Taken together, aptamers may play a key role in future 
theragnosis because of higher binding affi nity, lower cost, and 
ease of synthesis compared to antibodies.

STABILIZATION OF THE OLIGONUCLEOTIDE APTAMER

One of the ultimate goals during aptamer selection is a clini-
cal application or an escort molecule. However, unmodifi ed nu-
cleic acids per se are unstable in biological fl uids due to enzy-
matic degradation or a short half-life. Various strategies have 
been established to increase serum stability and overcome the 
degradation of oligonucleotides by nuclease (Fig. 2, 3).

For example, the fi rst FDA-approved aptamer drug Mac-
ugen, which specifi cally binds to VEGF165, is a modifi ed oli-
gonucleotide prepared by SELEX processes (Ruckman et 
al., 1998). The RNA aptamer was screened from a library of 
modifi ed RNAs involving 2'-fl uoropyrimidine nucleotides (U, 
C) and natural purine nucleotides (A, G) in which the 2′-posi-

•

•

•

•

•

•

•

•
•
•
•
•

Fig. 4. Applications of aptamer. Aptamer can be used as therapeutics, targeted drug delivery system (DDS) and imaging. These three parts 
can be put together using aptamer and conjugation in multifunctional probe.
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tion of ribose is a nuclease attack site. Then, the natural A 
and G are properly replaced with 2'-methoxy nucleotides to 
enhance nuclease resistance and avoid a decrease in affi n-
ity. Like Macugen, 2’-fl uor or methoxy or amine substituted 
nucleotides was widely used to protect from nuclease (Zhou 
et al., 2008, 2011a, 2011b, 2013) (Fig. 3). Additionally, 2’-thio 
(-SH), 2’-azido (-N3), 2’-hydroxymethyl (-CH2OH) modifi ed 
nucleotides was developed for protection of oligonucleotide. 
Moreover, bridged/locked, S-glycerol, cyclohexenyl, and thre-
ose nucleic acid (BNA/LNA, S-GNA, CeNA, and TNA, respec-
tively) were applied to aptamer building block (Horhota et al., 
2005; Ichida et al., 2005; Kempeneers et al., 2005; Tsai et 
al., 2007; Kuwahara et al., 2008; Barciszewski et al., 2009; 
Kasahara et al., 2013) (Fig. 3). For example, Schmidt group 
reported that LNA modifi cation increased plasma stability 
more than 2’-OMe modifi cation using TTA1 aptamer which 
bind to Tenascin-C (Schmidt et al., 2004). Furthermore, for 
the substitute phosphodiester bond in backbone, 5’-(α-thio)tri-
phosphates and 5’-(α-borano) triphosphates were developed 
(Andreola et al., 2000; Lato et al., 2002), with increased stabil-
ity in the biological milieu (Yang et al., 1999). Moreover, pep-
tide nucleic acid (PNA) whose sugar-phosphate backbone is 
changed to repeating N-(2-aminoethyl)-glycine units linked by 
peptide bonds, increases biostability (Wittung et al., 1994). In 
other aspect, base modifi cation could increase aptamer stabil-
ity in novel thrombin aptamer containing 5-(1-pentynyl)-2'-de-
oxyuridine (Latham et al., 1994). In the thalidomide aptamer, a 
modifi ed deoxyuridine bearing a cationic functional group via 
a hydrophobic methylene linker at the C5 position (Shoji et al., 
2007) could improve stability against nucleases and the bind-

ing affi nity to target. Fibrinogen aptamer using boronic acid-
modifi ed thymidine-5'-triphosphate (Li et al., 2008), TNFRSF9 
aptamer using 5-tryptaminocarbonyl-dU (Vaught et al., 2010) 
were also reported (Fig. 3). Certain thermophilic and mutant 
polymerases such as Pwo, Vent (exo-), Deep Vent (exo-), and 
KOD Dash have been actively developed for incorporation of 
modifi ed nucleotides during polymerization (Gudima et al., 
1998; Kuwahara et al., 2003; Leal et al., 2006; Kuwahara et 
al., 2009; Veedu et al., 2009; Kuwahara et al., 2010). 

A chiral form of an aptamer is an alternative strategy to pre-
vent enzymatic degradation in biological fl uids by altering nu-
clease recognition. NOXXON Pharma established Spiegelmer 
(from German Spiegel “mirror”, Fig. 2) to screen nuclease-
resistant aptamers, which are RNA-like molecules built from 
L-ribose units. This Spiegelmer technology circumvents nucle-
ase activity in biological fl uids. In short, a chiral form of the 
target molecule and D-form oligonucleotides are used during 
the SELEX process. Subsequently, an L-form of the aptamer 
is synthesized that has the same sequence as the selected D-
form aptamer. Thus, an enzymatic degradation-insensitive ap-
tamer, which also binds to the original target molecule, can be 
obtained (Fig. 2) (Klussmann et al., 1996; Nolte et al., 1996; 
Williams et al., 1997; Leva et al., 2002).

Several authors have inhibited in vivo clearance to increase 
half-life of aptamers. An anti-platelet derived growth factor ap-
tamer was conjugated with 40 kDa polyethylene glycol (PEG) 
to slow down renal clearance (Floege et al., 1999). In another 
study, Healy et al. reported an aptamer conjugated with 20 and 
40 kDa PEG to prolong aptamer half-life in circulation (Healy 
et al., 2004). Furthermore, the DNA aptamer ARCC1779, 

Table 1. Undergoing aptamer clinical trials.

Name Target Condition Phase 

Pegaptanib sodium (Macugen) VEGF Age-Related Macular Degeneration Approved 

EYE001 VEGF Macular Degeneration / 
Choroidal Neovascularization 

Phase 2/3 

E10030 PDGF Age-Related Macular Degeneration Phase 2 

Pegaptanib sodium (Macugen) VEGF Diabetic Macular Edema Phase 2 

AS1411 Nucleolin Acute myeloid leukemia Phase 2 

ARC1779 A1 domain of von Willebrand Factor von Willebrand Disease / Purpura / 
Thrombotic Thrombocytopenic 

Phase 2 

REG1
(RB006 and RB007) 

Coagulation factor IXa Coronary Artery Disease Phase 2 

NOX-E36 CCL2 Chronic Infl ammatory Diseases / 
Type 2 Diabetes Mellitus / 
Systemic Lupus Erythematous 

Phase 1 

NOX-A12 CXCL12 Autologous or Hematopoietic
Stem Cell Transplantation 

Phase 1 

ARC19499 tissue factor pathway inhibitor (TFPI) Hemophilia Phase 1 

ARC1905 Complement Component 5 (C5) Age-Related Macular Degeneration Phase 1 

EYE001 VEGF von Hippel-Lindau Disease Phase 1 
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which binds to the A1 domain of the von Willebrand factor, 
was also 5′-conjugated with a 20 kDa PEG to reduce renal 
fi ltration (Diener et al., 2009). Many studies are underway to 
increase the biostability and half-life of aptamers in different 
settings. However, post-SELEX modifi cation can infl uence tar-
get binding affi nity or secondary and tertiary structure forma-
tion, which, in turn, can alter aptamer function.

       
APTAMERS AS AGONISTS/ANTAGONISTS

Individual aptamers can be equipped in a modular man-
ner with additional functions and can be specifi cally tailored 
for many potential applications in biotechnology and molecu-
lar medicine (Fig. 4). In most cases, aptamers not only bind 
their cognate protein but also effi ciently inhibit the function of 
target as an antagonist. Many aptamer therapeutic studies 
have been conducted to treat certain diseases by inhibiting 
therapeutic target activity and decreasing the partner binding 
property (Holahan et al., 2011; Gissel et al., 2012; Siller-Mat-
ula et al., 2012; Vater et al., 2013). Macugen, the fi rst FDA-
approved aptamer drug for age-related macular degeneration, 
is a typical antagonistic aptamer (Zhou and Wang, 2006). 
Macugen (pegaptanib) is a 28-base RNA oligonucleotide with 
two branched 20 kDa PEG moieties (Ruckman et al., 1998). 
It selectively binds to the vascular endothelial growth factor 
(VEGF)165 isoform when introduced intravitreally. Thus, the 
intracellular signal cascade is inhibited by the pegaptanib-
VEGF165 complex, which cannot bind to the VEGF receptor. 
Thus, pegaptanib has the potential to inhibit growth of blood 
vessels and vascular leakage by inhibiting the intracellular 
signal cascade induced by the pegaptanib-VEGF165 complex. 
Diverse therapeutics based on antagonistic functions of ap-
tamers are undergoing clinical trials (Table 1). They inhibit the 
signaling cascade by decreasing activity of the target protein 
or altering binding with the physiological binding partner. 

The fi rst report about aptamers as agonists came from the 
study that reported agonistic use of an aptamer with 4-1BB, 
which is a major costimulatory receptor (McNamara et al., 
2008). 4-1BB increased expansion and survival of activated 
T cells. Dimerization of the anti-4-1BB aptamer treated with 
the CD3 antibody not only increased T-cell activation and 
interferon-γ in vitro but also tumor regression in vivo. More-
over, Dollins et al. designed an aptamer-based agonist by 
dimerizing the OX4 RNA aptamer, which targets one of the tu-
mor necrosis factor receptor families (Dollins et al., 2008). Two 
2′-fl uoropyrimidine-modifi ed RNA aptamers were selected 
that bind to CD28 (CD28Apt2 and CD28Apt7) (Pastor et al., 
2013). That study suggested that an agonistic dimerized anti-
CD28 aptamer increases costimulatory effi cacy and reduces 
therapeutic dose and toxicity compared to conventional ago-
nistic anti-CD28 antibodies. Similar research on aptamers for 
use as costimulatory agonistic molecules is being conducted 
(Suntharalingam et al., 2006; Römer et al., 2011). Moreover, 
not only homodimerization of an aptamer for agonistic use 
but also heterodimerization of two individual aptamers that 
recognize different targets for dual purposes, specifi c target-
ing and stimulating, have been reported (Gilboa et al., 2013). 
Two individual aptamers were heterodimerized including a 
4-1BB binding aptamer to stimulate the immune response and 
a prostate-specifi  c membrane antigen (PSMA) binding ap-
tamer for prostate cancer targeting. This bispecifi c aptamer 

was developed to regress prostate tumors through the host 
immune response. A bispecifi c aptamer is more effective than 
and synergizes with vaccination and exhibits a superior thera-
peutic index compared with nontargeted costimulation with 
4-1BB antibodies or 4-1BB aptamers. Agonistic/antagonistic 
aptamers offer signifi cant advantages over antibodies in terms 
of synthesis, cost, and immunogenicity as well as conjugation 
chemistry.

       
TARGETED DRUG DELIVERY

Targeted drug delivery is one of the most important areas 
in therapeutic research. Aptamers exhibit many desirable 
properties for targeted drug delivery such as ease of selec-
tion and synthesis, high binding affi nity and specifi city, low im-
munogenicity, and versatile synthetic accessibility. The thera-
peutic agents that have been delivered using aptamers as the 
targeting ligands can be categorized into three major classes 
of drugs, toxins, and small interfering RNAs (siRNAs) (Fig. 4) 
(Zhang et al., 2011). 

Doxorubicin (Dox) used in chemotherapy for hematologi-
cal malignancies, carcinomas, and soft tissue sarcomas can 
intercalate within the double-stranded CG sequences of DNA 
and RNA. Based on the intercalation property of Dox to the 
aptamer, targeted Dox delivery for targeting cancer and Dox-
mediated cancer therapy has been actively studied (Liu et al., 
2012; Meng et al., 2012; Subramanian et al., 2012). A Dox 
intercalated aptamer that binds to PSMA, which is abundantly 
expressed on the cell surface of a human prostatic adenocar-
cinoma (LNCaP) metastatic lesion has been studied. PSMA 
expressing LNCaP-specifi c cell death was observed by treat-
ment of Dox-intercalated PSMA-specifi c 2′-fl uoropyrimidine 
aptamer, but not in PSMA-negative PC3 cells (Bagalkot et al., 
2006). Covalent conjugation of aptamer harboring the drug is 
relatively stable such that drug release during transport is pre-
vented before the drug localizes at its cellular target. Drugs 
can be chemically modifi ed to form stable ester, amide, and di-
sulfi de bonds that serve to conjugate the drug to the aptamer. 
The sgc8c DNA aptamer which specifi cally binds to protein 
tyrosine kinase 7 (PTK7) was covalently conjugated with Dox 
using hydrazone (Huang et al., 2009). As a result, PTK7 ex-
pressing CCRF-CEM cell-specifi c Dox delivery and cell death 
were observed. Other chemotherapy drugs such as daunoru-
bicin, thalidomide, and dactinoimycin can also intercalate to 
double-stranded oligonucleotides. They are expected to show 
a good therapeutic effect in specifi c cancers, and their applica-
tion in various aptamers is actively sought. 

The small size and lipid bilayer structure of liposomes make 
them an excellent drug delivery carrier. Aptamer-tagged lipo-
somes were established that contained the anticancer drug 
paclitaxel and a fl uorescent dye (Nile Red) for tumor-specifi c 
drug delivery and imaging (Aravind et al., 2012). In another 
study, Cy3-labeled, carboxylated, thiolated oligonucleotide 
aptamer (thioaptamer) against E-selectin (ESTA, E-Selectin 
ThioAptamer) was designed. This modifi ed ESTA was coupled 
to an amino PEGylated stealth liposome to make the vascula-
ture targeting ESTA-conjugated liposome (Mann et al., 2011), 
which achieved tumor vasculature-specifi c drug delivery. Simi-
larly, this aptamer can be covalently coupled via NHS chemis-
try to toxic proteins. The targeting properties of the anti-PSMA 
aptamer can also be combined with the toxic characteristics 
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of gelonin, a ribosomal toxin (Chu et al., 2006a). Moreover, a 
photosensitizer-aptamer conjugate was developed for cancer-
specifi c delivery to be used in photodynamic cancer therapy 
(Yang et al., 2011; Han et al., 2013). 

siRNA delivery to specifi c cells using an aptamer has been 
actively investigated. In these studies, receptor-mediated 
endocytosis of the aptamer is necessary. In general, non-co-
valent conjugation through a connector and covalent linkage 
through formation of an aptamer-siRNA chimera are two major 
strategies for aptamer and siRNA conjugation. In 2006, two 
biotinylated anti-PSMA aptamers were linked to two biotinylat-
ed anti-lamin A/C siRNAs using streptavidin as the connector 
(Chu et al., 2006b). As a result, PSMA-positive prostate can-
cer cell-specifi c siRNA was internalized and siRNA-specifi c 
gene expression was inhibited in vitro. However, the siRNA 
release mechanism and an in vivo experiment have not been 
demonstrated. The “sticky bridge” concept was used to non-
covalently conjugate the anti-gp120 aptamer with siRNAs to 
suppress HIV replication in vitro (Horhota et al., 2005). An 
aptamer-siRNA chimera was developed using an aptamer 
consisting of single-stranded oligonucleotides. An aptamer 
was covalently linked to the passenger strands of siRNAs fol-
lowed by annealing of the siRNA guide strands to the passen-
ger strands to create a functional siRNA duplex (McNamara et 
al., 2006). That study found that aptamer-siRNA chimera-me-
diated gene silencing was dependent on Dicer and occurred 
via the RNAi pathway. Moreover, anti-PSMA aptamer-Plk1 did 
not trigger interferon responses in vitro, and promoted tumor 
regression in a xenograft model of prostate cancer. Structural 
modifi cations were introduced that increased the valency of 
the chimera aptamer to enhance therapeutic effi cacy of the 
aptamer-siRNA targeting PSMA-expressing system (Wullner 
et al., 2008). In their design, the siRNA sequence served as a 
linker to join the two aptamers, or to join the 3′ end of one of 
the aptamer dimers as a shRNA. Such modifi cations did not 
affect the critical sequence of the targeting regions and facili-
tated formation of the active conformation. Targeted siRNA de-
livery using an aptamer-siRNA chimera is being actively stud-
ied (Neff et al., 2011; Zhu et al., 2012b; Hussain et al., 2013). 

APTAMER-BASED IMAGING 

Another application of aptamers is diagnosis via in vivo and 
in vitro imaging, using an aptamer that is conjugated to a fl uo-
rophore, quantum dots, or other material such as gadolinium, 
which is useful for magnetic resonance imaging (MRI) (Fig. 4). 
Optical imaging is a cost- effective imaging method that typi-
cally uses fl uorescent or bioluminescent molecules. Aptamer-
based optical imaging can be divided into direct targeting and 
activatable probes (Hong et al., 2011). Direct conjugation with 
an aptamer and a fl uorescent molecule is widely studied (Shi 
et al., 2010; Cui et al., 2011; Talbot et al., 2011; Zhang et al., 
2012; Song et al., 2013; Zhang et al., 2013). It is the sim-
plest way to image via a visualized aptamer by fl uorescence. 
Activatable probes are based on conformational changes in 
aptamer. It is designed such that fl uorescence will “turn-on” 
when the aptamer binds to its target. Typically, a fl uorescently 
labeled substrate is designed to be maximally quenched by a 
quencher in close proximity because of FRET (McIntyre and 
Matrisian et al., 2003; Tsien, 2005). For example, Zhang et al., 
designed a bifunctional fl uorescent oligonucleotide probe for 

the detection of adenosine triphosphate (ATP) and thrombin 
(Tmb). The molecular beacon contains two hairpin loops that 
serve as the sensing elements, and a fl uorophore at one end 
and a quencher at the opposite end, as the reporter (Li et al., 
2013). “Turn-on” of fl uorescence mechanism by quenching 
is widely used in aptamer-based biosensor. Comparing to a 
conventional “always-on” probe, the activatable probe could 
substantially minimize the background signal originating from 
non-target tissues, thereby giving signifi cantly enhanced im-
age contrast (Hong et al., 2011). Not only optical imaging, but 
superparamagnetic iron oxide nanoparticle-aptamer conju-
gate was used to MR imaging (Yigit et al., 2007). T1-weighted 
MR imaging was designed that uses aptamer-gadolinium-tet-
raazacyclododecanetetraacetic acid (DOTA-Gd) (Xu and Lu, 
2011). It consists of anti-adenosine aptamer and its comple-
mentary sequence which conjugated with DOTA-Gd. Forma-
tion of adenosine-aptamer complex leads to release of DOTA-
Gd-complementary sequence, which allows MR imaging. 

Aptamer can also be applied for targeted ultrasound im-
aging using covalent conjugation of nanobubbles (Wang et 
al., 2011). These aptamer-conjugated nanobubbles can be 
harnessed to release certain amount of drugs upon targeted 
ultrasound-trigger (Maul et al., 2010). Another application of 
aptamer is radioisotope labeling and its use in SPECT and 
PET. The TTA1 aptamer that can bind to tenascin-C, which is 
overexpressed in many solid tumors, was labeled with 99mTc 
for SPECT imaging (Hicke et al., 2006). 99mTc-labeled TTA1 
aptamer exhibited rapid blood clearance with a circulation 
half-life of <2 min but tumor penetration in several xenograft 
models. The durable tumor retention in combination with fast 
blood clearance yielded an excellent tumor-to-blood ratio, and 
various tumors were clearly visualized by planar scintigra-
phy. Furthermore, PET imaging application was studied using 
64Cu-labeled RNA aptamer (Rockey et al., 2011). In this study, 
the choice of chelators and radiolabeling parameters such as 
pH and temperature were investigated for the development 
of 64Cu-labeled RNA aptamers for potential PET imaging. In 
other aspect, aptamer can be coupled to iodinated nanoparti-
cles (NPs) or polymer-coated Bi2S3 NPs which can be used as 
computed tomography (CT) contrast agents (Cai and Chen, 
2007). Because each imaging method has its own advantages 
and disadvantages, a multimodality imaging probe based on 
AS1411 aptamer was evaluated (Hwang et al., 2010). For this 
purpose, a cobalt-ferrite NP coated with rhodamine was modi-
fi ed with the AS1411 aptamer, which was then conjugated to a 
chelating agent and further labeled with 67Ga. This multimodal 
imaging probe could be simultaneously used for fl uorescence, 
gamma camera and MR imaging in vivo. 

There are also attempts to not only image but simultane-
ously treat the disease. Diagnosis and therapy or theragnosis 
can be much simpler and easier when the disadvantages of 
each part are complemented through conjugation with aptam-
ers. Recently, drug-loaded aptamer-gold nanoparticle (GNP) 
conjugate was designed for combined CT imaging and che-
motherapy (Kim et al., 2010). The PSMA aptamer was con-
jugated with GNP for CT imaging, and Dox was loaded as 
a chemotherapeutic drug for prostate cancer targeting. This 
conjugate has been successfully used for targeting, imaging, 
and therapy of PMSA-expressing prostate cancer cells. Simi-
larly, anti-mucin1 aptamer-QD-Dox conjugate was designed 
for optical imaging and chemotherapy of ovarian cancer (Sal-
va et al., 2011). The key to effective and successful imaging 
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would be the development of delivery platforms having high 
effi ciency and ultrasensitive molecular probes for specifi c tar-
gets of interest.

SUMMARY AND CONCLUSIONS

Aptamers have many advantages compared to traditional 
targeting molecules and antibodies including high affi nity, low 
cost and immunogenicity, thermal stability, ease of production 
and high reproducibility. Diverse molecules such as chemo-
therapy drugs, toxins, siRNAs, imaging probes, and nanoma-
terials can be conjugated to aptamers, which serves to meet 
the increasing demand for versatile applications. Many new 
SELEX methods have been developed to easily and rapidly 
select for an aptamer. Compared to the traditional SELEX 
method, microfl uidic, CE-SELEX saves time and effort in ad-
dition to providing better affi nity and selectivity. In the near 
future, high-throughput selection of aptamers will allow vari-
ous rapid aptamer selections and this will help to replace the 
role of antibodies in many applications from research to the 
clinic. Aptamers help to overcome the problem of immunoge-
nicity when using antibodies in clinical applications and have 
provided a safe therapy and/or diagnosis without an immune 
response. Furthermore, aptamers are easily obtained by an 
in vitro chemical reaction and can overcome ethical issues 
of antibodies obtained from animals at a high cost. Natural 
oligonucleotides are unstable in biological fl uids because of 
endogenous nuclease. This problem can be addressed by 
using modifi ed oligonucleotides during SELEX or by a post-
SELEX modifi cation. Although a modifi ed aptamer is obtained, 
careful consideration will be needed for post-SELEX modifi -
cations because the modifi cation can affect properties of the 
aptamer such as binding affi nity and/or function. Aptamers 
can be easily conjugated with other molecules in a chemical 
reaction. Aptamer-imaging probe conjugates can be used in 
various imaging modalities including optical imaging, MRI, 
PET, SPECT, CT, and ultrasound. Moreover, aptamers can 
also be conjugated with anti-cancer drugs. An aptamer-based 
multimodal imaging probe loaded with drug(s) will allow more 
precise real-time monitoring and therapy. The theragnostic 
potential of aptamer is gaining new momentum and will see a 
most auspicious development.
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