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Abstract: To enable the full benefits from MU-MIMO (Multiuser-Multiple Input Multiple Output)
and OFDMA (Orthogonal Frequency Division Multiple Access) to be achieved, the optimal use of
these two technologies for a given set of network resources has been investigated in a rich body of
literature. However, most of these studies have focused either on maximizing the performance of
only one of these schemes, or have considered both but only for single-hop networks, in which the
effect of the interference between nodes is relatively limited, thus causing the network performance
to be overestimated. In addition, the heterogeneity of the nodes has not been sufficiently considered,
and in particular, the joint use of OFDMA and MU-MIMO has been assumed to be always available
at all nodes. In this paper, we propose a cross-layer optimization framework that considers both
OFDMA and MU-MIMO for heterogeneous wireless networks. Not only does our model assume that
the nodes have different capabilities, in terms of bandwidth and the number of antennas, but it also
supports practical use cases in which nodes can support either OFDMA or MU-MIMO, or both at the
same time. Our optimization model carefully takes into account the interactions between the key
elements of the physical layer to the network layer. In addition, we consider multi-hop networks, and
capture the complicated interference relationships between nodes as well as multi-path routing via
multi-user transmissions. We formulate the proposed model as a Mixed Integer Linear Programming
(MILP) problem, and initially model the case in which each node can selectively use either OFDMA
or MU-MIMO; we then extend this to scenarios in which they are jointly used. As a case study,
we apply the proposed model to sum-rate maximization and max–min fair allocation, and verify
through MATLAB numerical evaluations that it can take appropriate advantage of each technology
for a given set of network resources. Based on the optimization results, we also observe that when
the two technologies are jointly used, more multi-user transmissions are enabled thanks to flexible
resource allocation, meaning that greater use of the link capacity is achieved.

Keywords: MU-MIMO; OFDMA; heterogeneous networks; cross-layer optimization

1. Introduction

Remarkable advances in radio technology over the past few decades have ushered
in a new era of wireless communications. IEEE 802.11ax [1], the newest Wi-Fi standard,
is theoretically able to support a link rate of 11 Gbps with 160 MHz bandwidth and eight
spatial streams, and 3GPP has aimed to provide a downlink peak data rate of 20 Gbps and
latency of <1 ms for cellular systems since Release 15 [2]. These achievements can primar-
ily be attributed to the two innovative technologies of OFDMA (Orthogonal Frequency
Division Multiple Access) and MU-MIMO (Multiuser-Multiple Input Multiple Output).
By dividing a transmission into multiple subchannels, OFDMA can fully use the available
radio resources in both the time and frequency domains, and the network capacity can be
greatly increased using MU-MIMO without requiring additional bandwidth. Moreover,
these technologies enable multiple network entities to communicate simultaneously, which
in turn offers great opportunities for enhancing the flexibility of wireless networking.
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To benefit fully from the potential of these two technologies, researchers have long
been interested in their optimal use under conditions of constrained network resources.
With MU-MIMO, nodes can transmit or receive as many spatial streams as the number of
antennas, and thus the DoF (Degree of Freedom) has been regarded as a key element in
optimization [3–7], while in the field of OFDMA research, the appropriate scheduling of
resource blocks (scheduling units consisting of a set of subcarriers) has been investigated
for diverse network scenarios and objectives [8–11]. One valuable tool for optimal resource
allocation is cross-layer optimization [3–15], as this can take advantage of the collaborative
operation among the upper and lower layers of the traditional OSI (Open Systems Intercon-
nection) network model, and thus help reduce the wastage of resources when exchanging
information between them. In addition to MIMO/OFDMA networks, cross-layer opti-
mization is actually being used for various network scenarios. For example, a reactive
link layer acknowledgement mechanism has been proposed in which the transport layer is
considered together to achieve high reliability of data delivery in IEEE 802.15.4/6LoWPAN
networks [16]; an optimal multi-path routing method for wireless sensor networks is taken
into account in conjunction with duty-cycle at MAC layer [17]; in network systems allow-
ing for flexible and fine control over network elements, such as SDN (Software Defined
Network), cross-layer optimization can be more effective [18,19].

Although various network scenarios and factors have been considered in previous
studies, most of these have several limitations. First, a few studies have considered
interactions between OFDMA [8–11] and MU-MIMO [3–7]; instead, most have focused on
maximizing the performance of only one of these technologies. Several recent studies have
addressed the joint use of these within optimization models, but have considered only
single-hop networks [12–15,20,21]. In this network model, the effect of interference between
nodes is relatively limited, which causes the network performance to be overestimated,
and as a result, these approaches may not be applicable to various multi-hop network
scenarios. The importance of research on multi-hop networks has been much emphasized
thus far. There are a growing number of applications deployed on multi-hop networks,
due to the desirable features, such as easy deployment and maintenance, and extended
coverage via relay nodes. Above all, the multi-hop network enables a more comprehensive
and fundamental understanding of communication technologies, so that the theoretical
performance limits and characteristics of the network can be uncovered.

Secondly, even though the types and capabilities of network devices are becoming
more diverse, this heterogeneity has not been sufficiently considered in relation to optimiza-
tion; the same available bandwidth is assumed [13–15,20,21], or even the same number
of antennas of nodes [14], and in particular, the joint use of OFDMA and MU-MIMO is
generally assumed to be always available at all the nodes [13–15,20,21]. These assumptions
may have the advantage of simplifying the model, but they are somewhat different from
the conditions in actual networks; for example, although OFDMA has now been introduced
to Wi-Fi systems through IEEE 802.11ax [1], the joint use of MU-MIMO and OFDMA is
not allowed, and most legacy devices, including IoT (Internet of Things) products, are
unable to operate with a wide band of 160 MHz and large number of antennas, due to the
form factor and the processing power required. Regardless of how quickly high-capacity
devices that fully use both technologies can penetrate the market, they will co-exist with
low-capacity devices for a long time, and this heterogeneity should therefore be considered
to allow for more practical and realistic resource allocation.

In this paper, we propose a cross-layer optimization framework that considers both
OFDMA and MU-MIMO in heterogeneous wireless networks. Our approach assumes
not only that nodes have different capabilities in terms of bandwidth and the number of
antennas, but also supports practical use cases in which nodes can operate with either
OFDMA or MU-MIMO, or both at the same time. The resultant resource allocation allows
these technologies to be appropriately combined and exploited in a given network. In our
optimization model, we carefully consider the interactions between the key elements of
the physical layer to the network layer. In particular, we consider multi-hop networks,
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and capture the complicated interference relationships between nodes as well as multi-
path routing via multi-user transmissions. We formulate the proposed model as a Mixed
Integer Linear Programming (MILP) problem. Since there are a few devices that can
support the combined use of OFDMA and MU-MIMO, we first model a case in which each
node can selectively use either OFDMA or MU-MIMO. Next, we demonstrate that this
model can be easily extended to scenarios where OFDMA and MU-MIMO are jointly used.
As reported in many cross-layer optimization studies [9,10,12–15], one challenging issue
when designing the model relates to the tightly coupled variables between layers, which
are inherently nonlinear. We transform all the constraints of this nonlinear relationship
into linear constraints, meaning that integer programming algorithms such as branch-and-
bound can be easily applied to our model. In addition, we show that a little extra analysis of
the given network can be of great help in reducing the size of the problem and thus making
it more feasible. As a case study, we apply the proposed model to sum-rate maximization
and max–min fair optimization, and verify through MATLAB numerical evaluations that it
can take appropriate advantage of each technology for a given set of network resources.
We also analyze how the joint use of MU-MIMO and OFDMA affects the results of resource
allocation and the overall performance. From the optimization results, we can observe that
when the two technologies are used in combination, more multi-user transmissions are
enabled thanks to flexible resource allocation, hence giving better use of the link capacity.

The main contributions of this paper can be summarized as follows:

1. We propose a cross-layer optimization framework for heterogeneous MU-MIMO/OFDMA
multi-hop networks. Our model takes into account the heterogeneity in the node
capabilities in terms of the bandwidth, the number of antennas, and the modes of
transmission. Moreover, the interactions between the key elements of the physical
layer to the network layer for multi-hop networks are considered in the model.

2. We develop the proposed model using MILP, and formulate optimization models
for two cases: one in which the node selectively uses either MU-MIMO or OFDMA,
and one where it can use both at the same time. We also provide a method of reducing
the problem size.

3. We verify the feasibility of the proposed model through MATLAB numerical eval-
uations. By applying it to two different optimization problems, we show that the
proposed model can be effectively used for diverse network scenarios. The optimiza-
tion results provide insight into how the joint use of MU-MIMO and OFDMA affects
the overall performance.

The remainder of this paper is organized as follows. In Section 2, we summarize
previous works related to this paper. Section 3 explains the network model, and the
proposed optimization framework is described in Section 4. Section 5 presents the results
of the MATLAB evaluations, and the paper is concluded in Section 6.

2. Related Work

Numerous studies have investigated ways of fully using the potential of OFDMA and
MU-MIMO under a given set of network resources. In the OFDMA system, a resource
block (known as a resource unit in Wi-Fi), composed of a set of subcarriers and with a fixed
time length, is used as a basic unit for resource allocation. Many resource block allocation
schemes have been proposed to satisfy various network requirements and objectives.
Fathi et al. consider the joint optimization of the subcarrier and modulation rate in the
downlink of wireless mesh networks [8]. Power and subcarrier allocation methods for
uplink OFDMA networks, based on the user’s channel state, are also proposed in many
studies in the literature [9,10], and the QoE (Quality of Experience) in the application layer
is taken into account, in conjunction with the power and subcarrier allocation, in a work
by Rugelj et al. [11]. In MU-MIMO, the maximum number of spatial streams that can
theoretically be transmitted or received is the same as the number of antennas of a node,
and thus the maximization of DoF use has attracted great attention [3–7]. The optimal link
layer models developed by Hou and Blough et al. [3,4,7] carefully capture the conditions
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required for spatial multiplexing and interference cancellation to maximize the number of
spatial streams in the network. Wang et al. investigate joint bandwidth allocation and DoF
assignment [5], and Chu et al. explore integrated routing and MIMO link scheduling [6].
However, these studies are limited by the fact that they each focus on optimizing the
performance of only one of these two technologies, as mentioned earlier.

Several recent works have begun to consider OFDMA and MU-MIMO
together [12–15,20,21]. Femanias et al. examine subcarrier and power allocation as well as
stream selection for downlink networks [12]. Along this line, Gangwar et al. propose an
optimal subcarrier allocation algorithm that maximizes the total system capacity subject
to the total transmit power minimization [22]. Hamda et al. optimize the transmit power
in an uplink cooperative MU-MIMO/OFDMA network by taking into account optimal
relay selection [13]. In addition, many resource allocation methods have been proposed for
various purposes, for example user-fairness [20], QoS (Quality of Service) [21], and PSNR
(Peak Signal-to-Noise Ratio) for video communications [14]. Similar to our work, the recent
seminal work by Kordbacheh et al. models the interaction from the physical data rate to
routing in the optimization for MU-MIMO/OFDMA networks, but a different approach is
employed: greedy algorithm development from nonlinear optimization formulation [15].
Although these works consider both OFDMA and MU-MIMO, the main drawback is that
they are only applicable to single-hop networks. In this scenario, as mentioned before,
the effect of interference is limited, and thus the network performance may be overesti-
mated, meaning that these models are impractical.

In addition, the heterogeneity of the nodes has not been sufficiently considered in these
approaches; they are based on the assumption of equal available bandwidth [13–15,20,21]
or the same number of antennas for the nodes [14], and in particular, the joint use of
OFDMA and MU-MIMO is assumed to be always available at all the nodes [13–15,20,21].
Optimal resource allocation in MIMO/OFDMA heterogeneous networks in fact has at-
tracted much attention, and various heterogeneity aspects have been investigated in recent
studies. A work by Sakata et al. is motivated by the fact that concurrent transmission of
data of different transmission times could make a big waste of transmission resources [23].
Different channel conditions and queue lengths of the nodes in downlink MIMO/OFDMA
networks are taken into account in a work by Danobeitia [24]. Lee considers the hetero-
geneous maximum bandwidths of nodes in IEEE 802.11ax-based networks, and OFDMA
resource allocation is formulated as a utility maximization problem in terms of the per-
formance of both the uplink OFDMA and the downlink MU-MIMO [25]. Unfortunately,
most of them are limited to single-hop networks, and the simultaneous use of OFMDA and
MU-MIMO is also assumed.

3. Network Model and Assumptions

In this section, we present a network model and explain the assumptions made in this
paper. Consider a heterogeneous wireless network with |N| nodes and |L| links, where N
and L are sets of nodes and links, respectively. Each node i ∈ N has different communi-
cation capabilities in terms of the number of antennas (denoted as Si) and the bandwidth
(denoted as Bi). In this network, a total bandwidth of Bmax is available, consisting of K
subchannels, each of which has Bmin bandwidth. We consider a total number of flows
|F| in the network, where each flow f ∈ F is characterized by its source and destination
nodes, denoted as f src and f dst, respectively. When a data flow f passes through a link l, it
is transmitted at a certain data rate, which is determined by the transmission mode and
the allocated resources. More specifically, the number of spatial streams and the allocated
bandwidth determine the data rate of flow f on link l. In this paper, we use a unit data
rate in which one data stream with Bmin bandwidth (i.e., one subchannel) corresponds
to one unit data rate [3,4,7]. Based on this value, the actual data rate is computed as the
product of the number of allocated spatial streams and the bandwidth. We assume that
power allocation is properly conducted if the bandwidth is allocated. We use a scheduling
scheme based on time slots: within a given time slot t (1 ≤ t ≤ T), only a subset of links can
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be active. Uppercase notation is used to represent the model parameters, and lowercase
for variables. In addition, for simplicity, it is assumed that the notation for the sets also
indicates their size; for example, N is a set of nodes, and at the same time represents the
number of nodes.

When a node is in communication, it can operate in one of two modes: OFDMA or
MU-MIMO. Initially, we assume that the nodes cannot use both OFDMA and MU-MIMO
at the same time, and in Section 4.4, we relax this restriction and show that the proposed
model can be easily extended to the case of joint MU-MIMO and OFDMA optimization. If a
node uses OFDMA, it uses only a single antenna, meaning that only a single spatial stream
can be activated. Conversely, if it uses MU-MIMO, it can exploit multiple spatial streams,
but these share the same network bandwidth, which generally requires a sufficient value
for the channel bandwidth (e.g., at least 20 MHz [26,27]). We adopt different minimum
bandwidth requirements for OFDMA and MU-MIMO, denoted as Bmin and B(MIMO-min),
respectively. Nodes can deal with multiple outgoing and incoming streams via OFDMA
or MU-MIMO if the total bandwidth and the DoFs consumed by the outgoing/incoming
streams do not exceed the given limits. In addition, we assume that streams with different
transmission modes cannot be processed together.

The illustrations in Figure 1 show three transmission modes: OFDMA, MU-MIMO,
and joint OFDMA and MU-MIMO. In each figure, the four blocks on the left show the four
subchannels, and T is set to one. For node 0 with three antennas that wants to transmit
frames, Figure 1a shows an example of resource allocation when it chooses OFDMA. We
can see that node 0 concurrently transmits three frames: for flow 1, via link 0 → 1; for
flow 2, via link 0→ 2; and for flow 3, via link 0→ 3. All three OFDMA transmissions are
conducted through a single spatial stream (and hence s = 1), but with different bandwidths:
20 MHz for flows 1 and 2, and 40 MHz for flow 3. Assuming that Bmin is 20, the sum-rate
in this case is 4 (= 1 + 1 + 2). We now turn to the case of MU-MIMO shown in Figure 1b.
In this case, node 0 transmits two frames for flow 2 and flow 3 via links 0→ 2 and 0→ 3,
respectively. Unlike in OFDMA, both frames are transmitted with the same bandwidth
(i.e., b = 80), but the numbers of allocated spatial streams are different. A single spatial
stream is allocated to flow 2 on link 0→ 2, while two spatial streams are allocated to flow
3. In this case, the sum-rate becomes 12 (= 4 + 8), which is larger than that for OFDMA.
Figure 1c shows the case of joint use of MU-MIMO and OFDMA. In this case, each OFDMA
transmission can have multiple spatial streams. For example, over subchannel 1, node 0
transmits two types of data to node 1: the data for flow 1 with one spatial stream, and the
data for flow 2 with two spatial streams. In this case, the sum-rate is 12 (= 3 + 3 + 6).
Since the maximum bandwidth is 80 MHz (i.e., four subchannels) and the number of
antennas for the transmitter is three, the maximum achievable capacity of the network in
this example is 12, which is obtained both using MU-MIMO (Figure 1b) and OFDMA and
MU-MIMO jointly (Figure 1c). Although this result suggests that the joint use of OFDMA
and MU-MIMO does not give any advantage in terms of increasing the network capacity,
and does not seem to be of much benefit, it enables a more flexible resource allocation
than when only one of the two technologies is used, thereby helping increase the overall
performance, as will be discussed later in Section 5.2.
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(a) OFDMA (b) MU-MIMO (c) Joint OFDMA and MU-MIMO

Figure 1. Comparison of OFDMA, MU-MIMO, and joint OFDMA and MU-MIMO operation, where f ,
s and b represent the index of the flow, the number of spatial streams and the bandwidth, respectively.

4. Optimization Framework

In this section, we elaborate the proposed optimization framework in detail. We
first explain the decision variables used in the model and constraints imposed on them
in Section 4.1, and then add more constraints to model the OFDMA and MU-MIMO
operations in Section 4.2. In Section 4.3, we discuss the complexity of the model and a
method of reducing the model size, and we describe the extended model for the joint
MU-MIMO and OFDMA case in Section 4.4.

4.1. Decision Variables
4.1.1. Data Rate

We summarize the decision variables of the proposed model in Table 1. Let us begin
with the model for the rate of flow. In our framework, the rate of flow f , denoted as r f ,
is defined as the achievable end-to-end data rate of flow f , and similarly, rl f denotes the
rate of flow f on link l. Then, from the property of flow conservation [3,6], we have the
following constraints:

∑
l∈Lout

i

rl f = r f , ∀ f , i = f src (1)

∑
l∈Lout

i

rl f = ∑
l∈Lin

i

rl f , ∀ f , i 6= f src, f dst (2)

∑
l∈Lin

i

rl f = r f , ∀ f , i = f dst (3)

where Lout
i and Lin

i are the sets of outgoing links and incoming links for node i, respectively.
Please note that constraint (3) is automatically met if constraints (1) and (2) are satisfied [3,6].

Table 1. Decision Variables.

Variable Description

r f rate of flow f
rl f rate of flow f on link l

clt f s capacity of flow f on link l at time slot t, when s spatial streams are allocated
zlt f s indicates whether s spatial streams are allocated to flow f on link l at time slot t
zlt f k indicates whether subchannel k is allocated to flow f on link l at time slot t

mlt f , olt f indicate whether flow f on link l at time slot t is activated in MU-MIMO/OFDMA mode
mx

it, my
it indicate whether node i is in MU-MIMO transmission/reception mode at time slot t

ox
it, oy

it indicate whether node i is in OFDMA transmission/reception mode at time slot t
mx

itk, my
itk indicate whether node i is in MU-MIMO transmission/reception mode in subchannel k at time slot t

ox
itk, oy

itk indicate whether node i is in OFDMA transmission/reception mode in subchannel k at time slot t
sx

itk, sy
itk indicate the number of outgoing/incoming spatial streams of node i in channel k at time slot t
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Since before reaching the destination, the data in flow f may pass through multiple
links with different capacities, we need to consider the capacity of each individual link.
As mentioned earlier, the capacity is related to the number of spatial streams and the
bandwidth, and these may vary for each time slot depending on the scheduling result.
To take these aspects into consideration, we define two variables, zlt f s and clt f s: for flow
f on link l at time slot t, the binary variable zlt f s indicates whether or not the number of
allocated spatial streams is s, and clt f s is a continuous variable that denotes the correspond-
ing capacity. Then, because the value of rl f cannot exceed the average capacity of link l for
flow f over the whole time slot, we can impose the following constraint:

rl f ≤
1
T ∑

t,s
clt f s, ∀l, f . (4)

In addition, based on the definition of clt f s, we have:

clt f s = blt f · zlt f s, ∀l, t, f , s (5)

where blt f is the bandwidth allocated to flow f on link l at time slot t, which is computed
as the total number of assigned subchannels. Let zlt f k be a binary variable that indicates
whether or not subchannel k is allocated to flow f on link l at time slot t. Then, using zlt f k,
we can derive blt f as follows:

blt f = Bmin ∑
k

zlt f k ≤ Bmax
l · zlt f , ∀l, t, f (6)

where the rightmost term means that the value of blt f is limited to the maximum bandwidth
of the link, denoted as Bmax

l . Here, zlt f is a binary variable indicating whether flow f is
active on link l at time slot t. This value has the following relationship to the variables zlt f s
and zlt f k:

zlt f = ∑
s

zlt f s ≤ 1, ∀l, t, f (7)

zlt f = maxk(zlt f k), ∀l, t, f , k. (8)

For the flow f on link l to be activated at time slot t, it should be allocated to at least
one spatial stream (constraint (7)) and one subchannel (constraint (8)). Please note that
constraint (8) is expressed in a nonlinear form, and we therefore convert it to the following
linear constraint:

zlt f k ≤ zlt f ≤∑
k

zlt f k, ∀l, t, f , k. (9)

Although the variables for the link capacity have now been defined, one remaining
problem is that constraint (5) is expressed as the product of two variables, and is therefore
inherently nonlinear. However, it can be also equivalently represented as a set of linear
constraints, as follows:

Bmin · clt f s ≤ s · Bmax
l · zlt f s, ∀l, t, f , s (10)

s
(

blt f − Bmax
l · (1− zlt f s)

)
≤ Bmin · clt f s ≤ s · blt f , ∀l, t, f , s. (11)

Please note that Bmin is multiplied with clt f s, since we assume a unit data rate, which
is achieved when a single spatial stream (i.e., s = 1) and a bandwidth of Bmin are used.

4.1.2. Transmission Mode

Thus far, we have defined the variables related to the data rate. In the following, we
will discuss the variables related to MU-MIMO and OFDMA transmission modes. Since at



Sensors 2021, 21, 2744 8 of 19

this stage, we are assuming that nodes cannot use MU-MIMO and OFDMA at the same
time, it is necessary to introduce some variables to indicate the transmission mode of the
currently active link or node. To do this, we define several variables that begin with m
and o. Two binary variables, mlt f and olt f , are used to indicate whether flow f on link l
at time slot t is invoked in MU-MIMO mode or OFDMA mode, respectively. Since the
nodes cannot activate MU-MIMO and OFDMA at the same time, we have the following
constraint:

mlt f + olt f = zlt f , ∀l, t, f . (12)

Recall that zlt f is already limited to one by constraint (7). Similarly, we introduce the
following variables: mx

it, ox
it, my

it and oy
it, each of which indicates whether node i at time slot

t is a MU-MIMO transmitter, an OFDMA transmitter, a MU-MIMO receiver, or an OFDMA
receiver, respectively. Then, assuming the property of half-duplex transmission, we have:

mx
it + my

it + ox
it + oy

it ≤ 1, ∀i, t. (13)

We can readily see that these variables are defined using mlt f and olt f , as follows: mx
it =

maxl∈Lout
i , f (mlt f ), my

it = maxl∈Lin
i , f (mlt f ), ox

it = maxl∈Lout
i , f (olt f ), and oy

it = maxl∈Lin
i , f (olt f ).

By employing the same technique used in constraint (9), we can convert them to the
following linear constraints:

mlt f ≤ mx
it ≤∑

l, f
mlt f , ∀i, l ∈ Lout

i , t, f (14)

mlt f ≤ my
it ≤∑

l, f
mlt f , ∀i, l ∈ Lin

i , t, f (15)

olt f ≤ ox
it ≤∑

l, f
olt f , ∀i, l ∈ Lout

i , t, f (16)

olt f ≤ oy
it ≤∑

l, f
olt f , ∀i, l ∈ Lin

i , t, f . (17)

In addition, to model the behavior of the node in each subchannel, we introduce the
following set of binary variables: mx

itk, my
itk, ox

itk and oy
itk. Each of these indicates whether

node i transmits or receives data over subchannel k at time slot t using MU-MIMO or
OFDMA, respectively. Similarly, we can also express them in terms of the variables defined
above; for example, mx

itk is equivalent to maxl∈Lout
i , f (zlt f k) && mx

it. The relevant constraints
are given below:

mx
itk ≤ mx

it, ∀i, t, k (18)

my
itk ≤ my

it, ∀i, t, k (19)

ox
itk ≤ ox

it, ∀i, t, k (20)

oy
itk ≤ oy

it, ∀i, t, k (21)

zlt f k + mx
it − 1 ≤ mx

itk ≤ ∑
l∈Lout

i , f

zlt f k, ∀i, l ∈ Lout
i , t, f , k (22)

zlt f k + my
it − 1 ≤ my

itk ≤ ∑
l∈Lin

i , f

zlt f k, ∀i, l ∈ Lin
i , t, f , k (23)

zlt f k + ox
it − 1 ≤ ox

itk ≤ ∑
l∈Lout

i , f

zlt f k, ∀i, l ∈ Lout
i , t, f , k (24)

zlt f k + oy
it − 1 ≤ oy

itk ≤ ∑
l∈Lin

i , f

zlt f k, ∀i, l ∈ Lin
i , t, f , k. (25)



Sensors 2021, 21, 2744 9 of 19

From the assumption that streams of different transmission modes cannot be processed
together, we have the following constraints:

my
itk + ox

jtk ≤ 1, ∀i, j ∈ Nint
i , t, k (26)

oy
itk + mx

jtk ≤ 1, ∀i, j ∈ Nint
i , t, k (27)

where Nint
i is a set of nodes within the interference range of node i.

The remaining variables, sx
itk and sy

itk, indicate the number of spatial streams allocated
to node i in subchannel k at time slot t, and will be discussed in the following subsection.

4.2. Constraints on MU-MIMO and OFDMA Operation

In this subsection, we explain the constraints on the operations related to MU-MIMO
and OFDMA transmission.

4.2.1. Number of Spatial Streams

Let us first define slt f as the number of spatial streams allocated to flow f on link l at
time slot t. We can easily see that this is derived using zlt f s, as follows: slt f = ∑s s · zlt f s.
In the case of MU-MIMO, it is clear that the total number of spatial streams on a link
cannot exceed the maximum number of spatial streams available on that link, while for
OFDMA case, slt f is simply bounded at one. We can then combine these constraints into
one, as follows:

mlt f + olt f ≤ slt f ≤ Smax
l ·mlt f + olt f , ∀l, t, f (28)

where Smax
l is the maximum number of spatial streams for link l, and determined as

min(Si, Sj), where i and j are the source and destination for link l, respectively.
We now discuss the constraints on sx

itk and sy
itk. First, in the case of OFDMA, since

the number of spatial streams is limited to one, the existing variables ox
itk and oy

itk can be
used as they are to denote this. We will therefore regard the variables sx

itk and sy
itk here as

the number of spatial streams when MU-MIMO is used. Then, from the constraint on the
maximum number of spatial streams, we have:

∑
l∈Lout

i , f

zlt f k ≤ sx
itk ≤ ox

itk + Si ·mx
itk, ∀i, t, k (29)

∑
l∈Lin

i , f

zlt f k ≤ sy
itk ≤ oy

itk + Si ·m
y
itk, ∀i, t, k. (30)

To model the requirement that all spatial streams of the same MU-MIMO transmission
share the same bandwidth, we use the idea that the number of spatial streams allocated
to each subchannel should be the same: that is, sx

itk = ∑l∈Lout
i , f slt f and sy

itk = ∑l∈Lin
i , f slt f .

This gives the following constraints:

−U(1−mx
itk) ≤ sx

itk − ∑
l∈Lout

i , f

slt f ≤ U(1−mx
itk), ∀i, t, k (31)

−U(1−my
itk) ≤ sy

itk − ∑
l∈Lin

i , f

slt f ≤ U(1−my
itk), ∀i, t, k (32)

where U is a large constant that ensures the constraints are valid. Please note that these
constraints are relaxed in the case of joint MU-MIMO and OFDMA operation, which will
be discussed later.

We also need to consider the effect on interfering streams. In the case of OFDMA,
interfering streams can only be handled by allocating different channels, while in the case
of MU-MIMO, even interfering streams coming through the same channel can be handled,
if there exist remaining DoFs:
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∑
j∈Nint

i

sx
jtk ≤ Si ·m

y
itk + U(1−my

itk), ∀i, t, k (33)

∑
j∈Nint

i

ox
jtk ≤ oy

itk + U(1− oy
itk), ∀i, t, k. (34)

It is worth noting that U in the above constraints plays the same role as U in constraints
(31) and (32), but their values do not have to be the same. Considering the other parameters
given, such as N and L, it is possible to determine the U values for each constraint, which
in turn helps to reduce the search space. Since it is straightforward to find appropriate U
values for each constraint, this part will be omitted for simplicity in this paper.

4.2.2. Bandwidth

The total bandwidth allocated to node i at time slot t cannot exceed the maximum
available bandwidth (i.e., Bi). Due to the different minimum bandwidth requirements for
MU-MIMO and OFDMA, we also have the following constraint:

B(MIMO-min) · (mx
it + my

it) + Bmin · (ox
it + oy

it) ≤ Bmin
i ∑

k
(mx

itk + my
itk + ox

itk + oy
itk)

≤ Bi · (mx
it + my

it + ox
it + oy

it), ∀i, t. (35)

In addition, since the range of subchannels allocated to the nodes cannot exceed the
available bandwidths of the nodes, we have:

Bmin · (k1 − k2 + 1)− Bi ≤ U · (2−mx
itk1
−mx

itk2
), ∀i, t, (1 ≤ k1, k2 ≤ K) (36)

Bmin · (k1 − k2 + 1)− Bi ≤ U · (2−my
itk1
−my

itk2
), ∀i, t, (1 ≤ k1, k2 ≤ K) (37)

Bmin · (k1 − k2 + 1)− Bi ≤ U · (2− ox
itk1
− ox

itk2
), ∀i, t, (1 ≤ k1, k2 ≤ K) (38)

Bmin · (k1 − k2 + 1)− Bi ≤ U · (2− oy
itk1
− oy

itk2
), ∀i, t, (1 ≤ k1, k2 ≤ K) (39)

where k1 and k2 are subchannel indices and k2 ≤ k1. Please note that we can combine the
above constraints into one since mx

itk + my
itk + ox

itk + oy
itk ≤ 1 is guaranteed.

Lastly, based on the assumption that MU-MIMO spatial streams should share the
same network bandwidth, we have:

−(2−ml1t f −ml2t f ) ≤ zl1t f k − zl2t f k ≤ (2−ml1t f −ml2t f ),

∀i, l1 ∈ Lout
i ∪ Lin

i , l2 ∈ Lout
i ∪ Lin

i , t, f , k (40)

where l1 and l2 represent different links belonging to the same link set (i.e., Lout
i and Lin

i ).

4.3. Reducing the Model Size

Although the proposed model is a MILP problem, which is known to be NP-hard [28,29],
several methods for obtaining optimal solutions and their implementations have already
been developed. A description of the possible methods of solving a MILP problem is
beyond the scope of this paper, but we briefly explain the general concept. MILP problems
are typically solved using a branch-and-bound approach [29], in which the key idea is to
repeatedly solve several LP (Linear Programming)-relaxations of the original problem until
the optimal solution is found. We can generate LP relaxation problems by removing all the
integer restrictions on the original problem. For example, let us call the original problem
P0. A new problem obtained by removing all integer constraints from P0 now becomes an
LP problem, and we can easily solve it with conventional convex optimization techniques.
If the solution satisfies all the constraints of P0, then it is an optimal solution, so we can
stop; otherwise, we create another LP problem and try to solve it again. More specifically,
in this step, we pick a variable that is restricted to an integer, but whose value in the LP
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relaxation is fractional, and then generate two subproblems, P1 and P2, by imposing two
different constraints on that variable. After computing optimal solutions for both P1 and
P2, we can take the better of these two solutions. This process is repeated until we obtain
the optimal solution.

Several techniques have been proposed to accelerate the performance of the branch-
and-bound approach, such as presolving, cutting planes and heuristics [29]. Most of these
techniques aim to limit the size of the search space that needs to be explored by intelligently
removing duplicated constraints and unnecessary branches. It is also extremely valuable to
do a little extra work on the problem to reduce the number of constraints. In our case, we
can do this by pre-computing the candidate routing paths for the given flows. We introduce
a parameter Ql f , which indicates whether link l may belong to the possible routing paths
of flow f . By using Ql f , we not only narrow the lower and upper bounds on the decision
variables, but also exclude unnecessary nodes and links from the optimization, so that
we can further reduce the overall problem size. For example, the upper bound on the
four-dimensional binary variables zlt f s and zlt f k can be more tightly determined using
Ql f , rather than simply set to one. We can also apply this approach to the constraints in
the same way: for example, in constraint (4), if we multiply Ql f by the right side of the
constraint, then some of the rl f values quickly become zero:

rl f ≤
1
T ∑

t,s
Ql f · clt f s, ∀l, f . (41)

Ql f can be computed with a simple DFS (Depth-First Search)-based algorithm, as shown
in Algorithm 1. Please note that in line 16, we limit the maximum number of hops in the
routing paths, so that unsuitable routing path candidates can be excluded from the op-
timization. Figure 2 shows the average computation time needed to obtain the optimal
solution when Ql f is applied, for a network size represented in terms of several constraints.
We performed experiments by varying the model parameters, such as N, T, and F, and tak-
ing 100 measurements of the computation time for each parameter set. Please note that
even with the same parameters, the network is generated randomly each time, meaning
that the number of constraints also changes. We divided a range of the number of con-
straints into several equal intervals, as shown in Figure 2, and calculated the average value
for each interval. The measurements were conducted in the experimental environment
described in Section 5.1. From the results, we can see that it takes less than 5 s until the
number of constraints is lower than 5000, which is the value that can be obtained when N is
around 15. However, the time required increases rapidly with the problem size, as expected,
reaching about 140 s when the number of constraints is about 20,000, which is obtained
when N = 80, T = 3, F = 5, Smax = 4, and Bmax = 160, where Smax is the maximum
number of node antennas.

Although the use of the Ql f value can reduce the problem size to some extent, the high
complexity of some variables and constraints still limits the scalability of the model. To alle-
viate this, we may need to further restrict the range of variables, or to relax some restrictions.
For example, constraint (33) is originally imposed because the MU-MIMO receiver can
theoretically handle interfering streams coming into the same channel, but for this trans-
mission to actually be successful, a process for obtaining the channel information for the
interfering nodes is required, which creates an excessive overhead [30]. Hence, rather than
just focusing on maximizing the DoF, the allocation of potential interference streams to
different channels would be more practical and plausible. Thus far, we have assumed that
a single entity (e.g., central controller) solves the whole optimization problem, which might
be infeasible for large-scale networks, but this assumption could be relaxed in several
ways. One approach is to use local optimization with multiple dedicated nodes. We can
further control the complexity by limiting the number of nodes or flows that each of them
must serve. In this case, it is difficult to obtain global optimization, but this approach
may be more appropriate to deal with dynamic network changes. Another method is to
replace it with heuristic algorithms that separate coupled optimization elements so that a
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near-optimal solution can be obtained with low complexity, as adopted in many studies.
We leave further study of this aspect to future work.

Algorithm 1 Ql f Computation.

1: Ql f ← ∅
2: G ← (N, L)
3: for f ∈ F do
4: V ← f dst, f src . V keeps track of the visited nodes.
5: P← ∅ . P is the path traced so far.
6: DFS( f , G, V, P, Ql f )
7: end for
8: return Ql f

9: function DFS( f , G, V, P, Ql f )
10: i← V(end) . V(end) is the last visited node, while V(1) is the destination of f .
11: for l ∈ Lout

i do
12: if ldst == V(1) then
13: Ql f ← 1
14: ret← 1
15: else
16: if ldst /∈ V && |P| < h then . h is the maximum number of hops.
17: V ← V + ldst

18: P← P + l
19: (rettmp, Ql f )← DFS( f , G, V, P, Ql f )

20: Ql f ← rettmp

21: ret← rettmp||ret
22: V ← V − ldst

23: P← P− l
24: end if
25: end if
26: end for
27: return ret, Ql f
28: end function
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Figure 2. Average computation times for varying problem sizes.

4.4. Joint Use of MU-MIMO and OFDMA

Thus far, we have assumed that the nodes cannot operate via MU-MIMO and OFDMA
at the same time. In this subsection, we relax this restriction, and extend the model to joint
MU-MIMO and OFDMA optimization. To achieve this, several changes must be made
to the original problem. First, since OFDMA and MU-MIMO are now being used at the
same time, we do not need to use the variables separating each transmission mode, such
as mlt f and olt f . We leave only the OFDMA-related variables (i.e., variables starting with
o), and redefine their meanings to include MU-MIMO operations. Variables related to
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MU-MIMO (i.e., variables starting with m) are removed from the constraints accordingly.
In addition, several constraints such as (26), (27) and (40) are excluded, since they are no
longer needed under these conditions. The following constraints are slightly modified
compared to the original ones:

olt f ≤ slt f ≤ Smax
l · olt f , ∀l, t, f (42)

sx
itk ≤ Si · ox

itk, ∀i, t, k (43)

sy
itk ≤ Si · o

y
itk, ∀i, t, k (44)

∑
j∈Nint

i

sx
jtk ≤ Si · o

y
itk + U · (1− oy

itk), ∀i, t, k (45)

−Smax
l · (1− zlt f s) ≤ slt f k − s · zlt f k ≤ Smax

l · (1− zlt f s), ∀l, t, f , s, k. (46)

Based on the fact that OFDMA transmissions can now have multiple spatial streams,
constraints (28)–(30) and (33) are replaced with constraints (42)–(45). Constraint (46) is
newly added to represent sitk, rather than constraints (31) and (32). Since different numbers
of spatial streams in different subchannels are now available, we introduce variable slt f k to
denote the number of spatial streams for flow f on link l over subchannel k at time slot t.

5. Application Examples
5.1. Settings

In this section, we demonstrate the feasibility of the proposed model based on two
optimization problems. We first consider a sum-rate maximization problem for which the
objective is given below, and then discuss max–min fair allocation, in the following section:

max ∑
f∈F

r f . (47)

The model parameters are given in Table 2. We randomly locate 10 nodes within a
space of size 400 × 400 (unit: m2), and the numbers of antennas (i.e., Si) and the available
bandwidth (i.e., Bi) of the nodes are set randomly, as shown in Table 3. The number
of flows is set to two, and the source and destination nodes of each flow are selected
randomly from the nodes. The data range and interference range are set to 200 and 300 m,
respectively. We use a MATLAB optimization solver on an Intel i9 machine with 16 GB
RAM, and before running the solver, we compute Ql f and apply it to the model to reduce
the complexity. For a given network, we perform optimizations for four cases depending
on the transmission mode as follows:

1. Case 1: the nodes selectively use either MU-MIMO or OFDMA.
2. Case 2: the nodes can use both at the same time.
3. Case 3: the nodes use only MU-MIMO.
4. Case 4: the nodes use only OFDMA.

Please note that Cases 3 and 4 are added as a baseline, since they could make more
sense to current wireless communication systems than Case 1 and Case 2. For example,
in the latest Wi-Fi standard, 802.11ax [1], multi-user transmissions using OFDMA and
MU-MIMO, corresponding to Cases 1 and 2, are theoretically available, but it might be
difficult for a node to change its transmission mode without any restrictions since their
actual access mechanisms are totally different [31]. In addition, for some networks with
low-capability devices, it is obviously more practical to consider Case 3 and Case 4.
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Table 2. Model Parameters.

Parameter Value

N 10
F 2
T 3
K 8

Smax 4
Bmax 160
Bmin 20

B(MIMO-min) 20
U 500

Table 3. Node Configurations for Sum-rate Maximization.

i Si Bi

3 2 40
4 2 20
5 1 40
7 1 40
8 1 20
9 3 40
10 3 20

5.2. Numerical Results

We illustrate the optimal solution in each case in Figure 3. In the figures, the red and
blue arrows indicate the allocated links for flows 1 and 2, respectively, and the dotted
arrows show the interference. The three values displayed next to the link refer to the
resulting data rates of the link in each time slot. In particular, detailed resource allocation
results for Cases 1 and 2 are given in Tables 4 and 5.

Table 4. Resource Allocation Result for Case 1.

Link t = 1 t = 2 t = 3 Rate
f slt f blt f (k) Mode f slt f blt f (k) Mode f slt f blt f (k) Mode

5→ 3 - - - - - - - - 1 1 40 (2, 8) OFDMA [0 0 2]
7→ 5 - - - - 1 1 20 (3) OFDMA - - - - [0 1 0]
7→ 8 - - - - 1 1 20 (2) OFDMA - - - - [0 1 0]
8→ 5 1 1 20 (1) OFDMA - - - - - - - - [1 0 0]
4→ 9 2 2 20 (5) MIMO - - - - 2 2 20 (3) MIMO [2 0 2]

9→ 10 - - - - 2 3 20 (4) MIMO - - - - [0 3 0]

Table 5. Resource Allocation Result for Case 2.

Link t = 1 t = 2 t = 3 Rate
f slt f blt f (k) f slt f blt f (k) f slt f blt f (k)

5→ 3 1 1 20 (8) 1 1 20 (5) - - - [1 1 0]
7→ 5 - - - - - - 1 1 20 (3) [0 0 1]
7→ 8 - - - 1 1 20 (6) - - - [0 1 0]
8→ 5 - - - - - - 1 1 20 (2) [0 0 1]
3→ 9 - - - - - - 2 2 40 (7, 8) [0 0 4]
4→ 3 2 2 20 (7) 2 2 20 (6) - - - [2 2 0]
4→ 9 - - - - - - 2 1 20 (8) [0 0 1]

9→ 10 2 3 20 (6) 2 3 20 (7) - - - [3 3 0]
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(a) Either MU-MIMO or OFDMA (b) Both MU-MIMO and OFDMA

(c) MU-MIMO only (d) OFDMA only

Figure 3. Resource allocation results for sum-rate maximization. The joint use of MU-MIMO and
OFDMA (b) creates more multi-user transmissions, resulting in a higher sum-rate.

First, we can see that multi-path routing is activated in all cases. In flow 1, node 7 is
the source of flow 1 and is supposed to transmit data to nodes 5 and 8 with a unit data
rate. In particular, in Case 1, these transmissions are conducted over OFDMA with a total
bandwidth of 40 MHz, as shown in Table 4. From the fact that the maximum available
bandwidth of node 7 is 40 MHz, as shown in Table 3, we can see that it fully uses OFDMA
for these transmissions. Although all the resources allocated to flow 1 are OFDMA in
Case 1, the transmissions for flow 2 are allocated to MU-MIMO resources. Links 4→ 9 and
9→ 10 are assigned two and three spatial streams, respectively. The outcome that all links
for the same flow use an identical transmission method is not intentional, but is the result
of chance. Recall that the proposed model allows a node to switch between transmission
modes in different time slots. We assume that the reason OFDMA is preferred for flow 1 in
Case 1 is because most of the nodes on the path of flow 1, i.e., nodes 5, 7 and 8, have only a
single antenna.

The results for Case 2 are almost the same as those for Case 1, except that more links
are allocated for flow 2. This is because a more flexible resource allocation is available
in Case 2, which results in an increased number of multi-user transmissions. In Case 1,
multi-user transmission occurs only at node 7, whereas in Case 2, multi-user transmissions
are used at nodes 3, 5 and 9. More specifically, they differ in terms of the number of spatial
streams allocated to each subchannel in OFDMA transmission. For example, nodes 4 and
5 simultaneously transmit data to node 3 over two time slots, using two spatial streams
and one spatial stream over different subchannels. As another example, node 9 handles
three incoming streams over subchannel 8: one spatial stream from node 4, and two spatial
streams from node 3. Since the number of antennas for node 9 is three, this transmission is
valid. This flexible resource allocation due to the joint use of MU-MIMO and OFDMA helps
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improve performance; according to the results, the sum-rate for Case 1 is 5/3 (= 2/3 + 1),
and for Case 2 is 7/3 (= 2/3 + 5/3), i.e., a larger value than in Case 1.

Since multiple links are activated at the same time, they may suffer from interference;
however, as can be seen from the results, most potential interference issues are resolved
by allocating different subchannels. From the results for Case 2, we can identify several
cases in which multiple links use the same subchannel, but these do not experience any
interference issues: link 7 → 8 and link 4 → 3 are assigned to subchannel 6 at time slot
2, but they are out of range of interference with each other, and link 3 → 9 and link
4→ 9, which use the same subchannel 8 at time slot 3, are valid MU-MIMO transmissions,
not interference.

Figure 3c,d depict the resource allocation results for the two cases where the nodes
are restricted to using either one of two technologies. As expected, these results are quite
different from those for previous two cases. For example, in Case 3, node 7 does not
transmit to node 5 directly, different to the other three cases. In Case 4, all transmissions
of flow 1 and flow 2 use a single spatial stream since MU-MIMO is not available. Please
note that the reason the two links for flow 1 (links 7→ 5 and 5→ 3) have a data rate of 2 is
because they are assigned to multiple subchannels. Such a difference, as a result, affects the
overall performance: the sum-rate for Case 3 (MIMO only) is 5/3 (=2/3 + 1) and that for
Case 4 (OFDMA only) is 4/3 (=2/3 + 2/3) which is the smallest value. More specifically,
the data rate for flow 2 is reduced since the nodes of flow 2 (i.e., nodes 3, 4 and 9) cannot
take advantage of MU-MIMO anymore in Case 4. This result is consistent with the fact that
MU-MIMO is of much benefit in terms of increasing the network capacity as mentioned in
Section 3.

5.3. Max–Min Fair Allocation

As mentioned earlier, the proposed model can be applied to various scenarios and
objectives. In this section, we consider another optimization problem, a max–min fair
allocation, whose objective function is defined as follows:

max min
f∈F

r f . (48)

The above objective is inherently nonlinear, and thus it is difficult to directly employ it
in the proposed model. To address this issue, we introduce an additional auxiliary variable,
denoted as w, add a constraint, and change the objective function as follows:

max w (49)

w ≤ r f , ∀ f . (50)

In this evaluation, the nodes are set to selectively use MIMO or OFDMA, and we use
the same configuration of the previous evaluation except that N = 12 and F = 3, as shown
in Table 6. Figure 4 compares two resource allocation results, and Tables 7 and 8 show the
corresponding detailed resource allocation results. First, we can clearly observe that flow 2
(i.e., blue arrows) is served only in the max–min fair allocation (Figure 4b). This allows for
better fair allocation, but it also has performance degradation in terms of the sum-rate: with
the sum-rate maximization the sum-rate is 4/3 (= 1 + 0 + 1/3), while with the max–min
fair allocation, it is reduced to 1 (= 1/3 + 1/3 + 1/3). On the other hand, for the first case,
relatively more resources are allocated to flow 1, resulting in a higher sum-rate, but no
resources could be given to flow 2. Overall, the max–min fair allocation exploits OFDMA
more than MIMO, compared to the sum-rate maximization case. OFDMA is used for
all transmissions associated with flow 2. Node 3 fully uses its available bandwidth for
OFDMA on links 3 → 4 and 3 → 9 at t = 2, and for receiving data from two different
sources, node 7 and node 11, at t = 3. We also can see that most potential interference
issues are resolved by allocating different subchannels, similar to the previous evaluation.
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Table 6. Node Configurations for Max–Min Fair Allocation.

i Si Bi

3 1 40
4 4 40
6 2 40
7 3 80
9 3 160
11 3 20
12 1 20

(a) Max sum-rate (b) Max–min rate

Figure 4. Resource allocation results for (a) the sum-rate maximization and (b) the max–min fair
allocation. The max–min rate optimization achieves better fair resource allocation, at the expense of
the sum-rate.

Table 7. Resource Allocation Result for the Sum-rate Maximization.

Link
t = 1 t = 2 t = 3

Rate
f slt f blt f (k) Mode f slt f blt f (k) Mode f slt f blt f (k) Mode

12→ 3 1 1 20(4) OFDMA - - - - 1 1 20(6) OFDMA [1 0 1]
12→ 6 - - - - 1 1 20(3) MIMO - - - - [0 1 0]
6→ 3 - - - - - - - - 1 1 20(7) OFDMA [0 0 1]

11→ 3 3 1 20(5) OFDMA - - - - - - - - [1 0 0]
3→ 9 - - - - 3 1 20(7) MIMO - - - - [0 1 0]

Table 8. Resource Allocation Result for the Max–Min Fair Allocation.

Link
t = 1 t = 2 t = 3

Rate
f slt f blt f (k) Mode f slt f blt f (k) Mode f slt f blt f (k) Mode

12→ 6 - - - - - - - - 1 1 20(5) OFDMA [0 0 1]
6→ 3 1 1 20(6) MIMO - - - - - - - - [1 0 0]
7→ 3 - - - - - - - - 2 1 20(4) OFDMA [0 0 1]
3→ 4 - - - - 2 1 20(6) OFDMA - - - - [0 1 0]

11→ 3 - - - - - - - - 3 1 20(3) OFDMA [0 0 1]
3→ 9 - - - - 3 1 20(7) OFDMA - - - - [0 1 0]

6. Conclusions

In this paper, we propose a cross-layer optimization framework that considers both
OFDMA and MU-MIMO for heterogeneous wireless networks. Our model not only as-
sumes that nodes have different capabilities in terms of their bandwidth and numbers of
antennas, but also supports practical use cases in which nodes can operate with either
OFDMA or MU-MIMO, or with both at the same time. By taking into account the interac-
tions between the key elements of the physical layer to the network layer for multi-hop
networks, we formulate the proposed model as a MILP problem, and through MATLAB



Sensors 2021, 21, 2744 18 of 19

numerical evaluations, we verify that it can take full advantage of each technology for a
given set of network resources. In addition, from the optimization results, we can observe
that when the two technologies are used jointly, more multi-user transmissions are enabled
thanks to the flexibility of resource allocation, and thus higher use of the link capacity
is achieved.
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