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Moderate AMPA receptor clustering on
the nanoscale can efficiently potentiate
synaptic current

Leonid P. Savtchenko and Dmitri A. Rusakov

UCL Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK

The prevailing view at present is that postsynaptic expression of the classical

NMDA receptor-dependent long-term potentiation relies on an increase in

the numbers of local AMPA receptors (AMPARs). This is thought to parallel

an expansion of postsynaptic cell specializations, for instance dendritic spine

heads, which accommodate synaptic receptor proteins. However, glutamate

released into the synaptic cleft can normally activate only a hotspot of

low-affinity AMPARs that occur in the vicinity of the release site. How the enlar-

gement of the AMPAR pool is causally related to the potentiated AMPAR

current remains therefore poorly understood. To understand possible scenarios

of postsynaptic potentiation, here we explore a detailed Monte Carlo model of

the typical small excitatory synapse. Simulations suggest that approximately

50% increase in the synaptic AMPAR current could be provided by expanding

the existing AMPAR pool at the expense of 100–200% new AMPARs added at

the same packing density. Alternatively, reducing the inter-receptor distances

by only 30–35% could achieve a similar level of current potentiation without

any changes in the receptor numbers. The NMDA receptor current also appears

sensitive to the NMDA receptor crowding. Our observations provide a quanti-

tative framework for understanding the ‘resource-efficient’ ways to enact

use-dependent changes in the architecture of central synapses.
1. Introduction
Cellular mechanisms of use-dependent synaptic plasticity remain a subject of

intense investigation, simply because they hold a promise to unveil the neuro-

biological basis of learning and memory formation in the brain. The molecular

machinery underlying the classical plasticity paradigm, long-term potentiation

(LTP) of AMPA receptor (AMPAR)-mediated synaptic transmission, has been at

the centre stage of neuroscience research for decades [1–3]. The currently

prevailing view is that the expression of classical NMDA receptor (NMDAR)-

dependent LTP relies on the increased postsynaptic AMPAR current, although

a boost in presynaptic release probability has been found important at least

in some physiological scenarios [4–6]. The mechanism providing the LTP-

associated AMPAR current increase is thought to involve activity-induced

insertion of additional synaptic AMPARs through either endocytosis or lateral

membrane trafficking, or both [7–12]. This paradigm could, in principle,

explain a variety of physiological phenomena associated with a use-dependent

functional and structural plasticity of excitatory synaptic connections [13].

At the same time, various theoretical models of small excitatory synapses

seem to converge on a prediction that glutamate released into the synaptic

cleft from a synaptic vesicle activates in most cases only a relatively small hot-

spot of local AMPARs [14–19]. Consequently, it has long been understood that

the pattern of AMPARs within the synaptic cleft could significantly affect

the synaptic current amplitude. However, whether morphologically plausible

changes in the receptor distribution inside the cleft could actually produce

synaptic potentiation consistent with the experimental LTP has remained

unclear. Similarly, the question arises whether the insertion of additional
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Figure 1. Simulations of glutamate release, diffusion and receptor activation in the environment of small central synapses. (a) Model schematic; see §2a for notation
and [20,22] for algorithm details and experimental validation. (b) An example of AMPAR current simulations in response to release of 2700 glutamate molecules
(postsynaptic membrane potential Vm ¼ 280 mV). Grey staggered traces, 10 example simulation runs depicting stochastic activation of individual AMPARs by
individual glutamate molecules, as further detailed in [18]; black trace, an average trace of 40 simulation runs, with stochastic receptor activation; red trace, simu-
lation outcome with AMPARs activated by the average glutamate concentration calculated from the number of glutamate molecules in the vicinity (to reduce
computation time).
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AMPARs simply by expanding the postsynaptic density

(PSD), as some LTP scenarios appear to suggest, is a naturally

efficient way to increase synaptic strength.

Obtaining reliable experimental evidence for an LTP-

associated increase in the local AMPAR numbers or their density

on the nanoscale has not yet been technically feasible. Where,

within the PSD, and how many additional AMPARs are

normally required to explain robust synaptic potentiation

remains therefore poorly understood. To address these questions

in a quantitative manner, here we explore the relationship

between the arrangement of AMPARs (and NMDARs) and

synaptic efficacy at common excitatory synapses (exemplified

by the CA3–CA1 connection in the hippocampus) using a

computational Monte Carlo model. We adapt the modelling

approach which has been tested and validated extensively

against the experimental data including sub-millisecond prob-

ing of native AMPARs and NMDARs in outside-out, somatic

and dendritic, membrane patches [18,20–23]. In our simulations,

we systematically explore changes in the density and numbers of

synaptic AMPARs (and NMDARs) and examine the ensuing

effect on the amplitude of synaptic currents. We have to stress

here that this study focuses on a widely held, archetypal

LTP paradigm which is confined to an individual synapse and

has been routinely explored in various experimental circum-

stances, from electron microscopy to dendritic spine imaging

studies. The LTP mechanisms which involve changes in the

composition of synaptic population, for instance conversion of

silent synapses, are outside the scope of the present analysis.

In assessing the reliability of our theoretical predictions, we rou-

tinely test whether such predictions remain robust over a

physiological range of synaptic parameters that are difficult to

access empirically.
2. Material and methods
(a) Monte Carlo model: synaptic architecture and

environment
We adapted the modelling methods which have been tested and

validated previously with respect to the architecture and physi-

ology of CA3–CA1 synapses [18,20,22,24]. Computations were
carried out using an in-house 64-node PC cluster optimized for

parallel computing [18] (algorithms provided by Sitrus LLC,

Boston, MA, USA). In the model, the synaptic apposition between

adjacent pre- and postsynaptic membranes was represented by a

flat cylindrical cleft with radius R ranging from 180 to 240 nm

(figure 1a). This included the PSD (the membrane area which

contains randomly scattered synaptic AMPARs and/or

NMDARs and is opposed by the presynaptic active zone

where release occurs) with radius ra ranging from 60 to 200 nm

(figure 1a). The diffusion coefficient of glutamate inside the

cleft was set at 0.33 mm2 ms21, and 0.4 mm2 ms21 outside the

cleft, in accord with previously published estimates [18,22,25].

The synaptic cleft height d ¼ 19 nm was set to reflect the average

distance between the electron density maxima of the pre- and

postsynaptic membranes in electron micrographs of CA1

synapses [20,26]. Within the postsynaptic active zone, the total

number N of AMPARs (channel conductance 12.5 pS) or

NMDARs (25 pS) varied between 15 and 110 or 2 and 30,

respectively, consistent with quantitative immuno-electron

microscopy [27,28] and with the range estimated by optical quan-

tal analyses [29] at these synapses. Brownian movements of

individual glutamate molecules and receptor state transitions fol-

lowing activation were computed with a time step of 0.1 ms;

further reduction of the time step by an order of magnitude

improved computation accuracy by less than 1%; all kinetic

receptor states were recorded and stored.

(b) Monte Carlo model: release of glutamate
A total of 2700 glutamate molecules were released into the cleft

quasi-instantaneously, according to the value estimated in a

recent experimental study of CA3–CA1 synapses [22]. In most

cases, glutamate was released at the cleft centre, in accord with

a traditional modelling approach that routinely accounts for the

problem’s rotational symmetry. However, we also explored the

scenario in which the release site was distributed randomly

within the active zone. In these latter simulations, the average

amplitude of the AMPAR or NMDAR currents (and its standard

deviation) was calculated for 20 consecutive simulated release

events, as indicated.

(c) Monte Carlo model: receptor activation
The working algorithm, which has been detailed earlier [22,24,30],

calculates receptor kinetics from average concentrations of local

glutamate represented by individually tracked molecules in
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the vicinity of the receptor. This hybrid algorithm requires

much less computational resources compared with the Monte-

Carlo-throughout method which computes explicit stochastic

behaviour of individual receptors activated by individual gluta-

mate molecules [18] while giving a virtually identical average

outcome (figure 1b). In brief, at each time step (dt ¼ 0.1 ms), the

model updated the coordinates of all individual glutamate mol-

ecules that follow Brownian movement. Next, it calculated the

concentration profile of glutamate C(r,t) in the cleft. In conditions

of approximate rotational symmetry, this corresponded to

C(r,t) ¼ Nd(2prdDr)21, where Nd stands for the number of gluta-

mate molecules occurring at time point t inside the flat

cylindrical ring of height d, width Dr and radius r. The average

occurrence (concentration) of open receptors [O](r) within the

active zone (r,ra) was then calculated at the same time point

from the multi-stage AMPAR kinetics [31] or NMDAR kinetics

[32] adjusted for 33–358C using the immediate history of the recep-

tor states and C(r,t). These calculations gave the total synaptic

current (Vm ¼ 280 mV for AMPARs, no Mg2þ block for

NMDARs) integrated over the PSD area. The duty cycle was

repeated systematically throughout the model run.
130167
3. Results
(a) Potentiation requires a disproportionately large

number of AMPARs added to the PSD at the
same density

We first asked how rapidly the synaptic AMPAR current

increases with new AMPARs added to the PSD (with the

PSD expanding in area as new AMPARs are added) assum-

ing that the average surface density (‘packing’) of AMPARs

remains unchanged. Simulation results indicated that, for a

variety of synaptic cleft sizes (R), the relationship between

the number of added AMPARs and the synaptic current is

relatively weak: to increase the current by approximately

50%, the receptor numbers have to be boosted by

100–200% (figure 2a). This relationship was qualitatively

similar for various cleft dimensions and across the range of

AMPAR pool (PSD) sizes. The simple reason for such a dis-

proportionally weak effect is that AMPARs added to the

PSD periphery are much less sensitive to glutamate released

near the PSD centre compared with AMPARs expressed

closer to the release site. These simulations also indicated

that, in principle, expanding the synaptic cleft (R) on its

own could also boost the synaptic current, with the effect

growing stronger at higher AMPAR densities. Again, this

relationship is due to the simple fact that the two-dimensional

cleft corresponds to greater (i.e. stronger and longer)

local transients of released glutamate compared to the

three-dimensional extracellular space surrounding it.

(b) Modest crowding of synaptic AMPARs on the
nanoscale can boost synaptic current without any
new receptors

We next changed the scenario and asked whether the contraction

of the synaptic AMPAR pool, i.e. a reduction in the average

distance between receptors without any changes in the receptor

numbers, would produce detectable changes in the total

AMPAR current. Perhaps surprisingly, our data predicted that

approximately 50% boost in the total current requires a relatively

modest decrease in the inter-receptor distance (30–35%;
figure 2b). Again, this effect remained robust for different

synaptic cleft dimensions and over a wide range of AMPAR

pool (PSD) sizes that reflect the average nearest-neighbour dis-

tances between individual AMPARs. Alternatively, inserting

new receptors to the PSD without changing the PSD size, i.e.

increasing both AMPAR number and their surface density, had

a combined boosting effect on the AMPAR current (figure 2c).

(c) Varying the intra-cleft location of glutamate release
Although in the above simulations the glutamate release site

was placed at the cleft centre, this may not necessarily be the

case in reality: CA3–CA1 synapses display a range of locations

for docked (ready-releasable) synaptic vesicles within the pre-

synaptic active zone [34]. Varying the release site location in a

synapse model was previously demonstrated to reduce the

average synaptic current while substantially increasing its

amplitude variability [16]. To assess the effect of this variation

on our conclusions, we explored the characteristic scenario in

which the typical synapse (ra ¼ 110 nm, R ¼ 200 nm, N ¼ 50

AMPARs) underwent approximately 50% potentiation either

by adding AMPARs at the same density or by increasing

AMPAR density without changing their number. We therefore

first looked at this scenario with the centre-fixed glutamate

release site and then repeated simulations for exactly the

same receptor arrangements and the same synaptic architec-

ture but with the release site being randomly distributed,

trial-to-trial, over the presynaptic active zone which opposes

the PSD. The comparison showed that the stochastic occur-

rence of the release site generally decreased the AMPAR

current amplitude while substantially increasing its variability

(figure 2d), which was consistent with previous estimates [16].

At the same time, however, the effect of AMPAR pool expan-

sion or clustering on the synaptic current potentiation (approx.

50% LTP) was generally indistinguishable from that observed

in the centre-fixed release scenario (figure 2d).

(d) A certain combination of modest changes in
receptor density and numbers alters synaptic
efficacy ‘most efficiently’

To evaluate and compare relative contributions of various

changes in receptor arrangement (and synaptic configur-

ation) leading to potentiation or depression of the AMPAR

current, we explored the synaptic parameter space more

systematically. The resulting parametric map (figure 2e)

helps us to understand the pattern of synaptic current altera-

tions pertinent to changes in the AMPAR pool (PSD) size or

in the total AMPAR number (and thus the average inter-

receptor distance), or in both parameters simultaneously.

For instance, these data illustrate quantitatively to what

degree the synaptic AMPAR current is sensitive to a varia-

tion in the AMPAR numbers at a constant surface density

(figure 2e, curved dotted arrows marked Density ¼ const), or

to receptor clustering with no extra receptors (figure 2e, hori-

zontal dotted arrows marked N ¼ const). They also indicate

that a certain type of synaptic receptor rearrangement can

alter the synaptic response in a most ‘economical’ way, i.e.

by implementing the smallest, in relative terms, structural

alteration of the synapse. This type of change corresponds

to the steepest gradient for each data point which reflects a

given synaptic configuration (figure 2e; exemplified by the

arrow marked fastest).
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Figure 2. Potentiation of the synaptic AMPAR current can be achieved either by adding many more AMPARs to the pool, or by relatively modest clustering (crowding) of
existing AMPARs, or both. (a) (i) Diagrams (not to scale) and traces: example simulated AMPAR currents before (black dots, trace) and after (grey) adding approximately
130% extra receptors to existing 50 AMPARs by expanding the receptor pool (PSD) from ra¼ 110 nm to ra¼ 160 nm (unchanged receptor density, synaptic cleft radius
R ¼ 200 nm). (ii) The relationship between the number of local synaptic AMPARs (or the PSD size) and the total AMPAR current under the unchanged surface density of
AMPARs, for four synaptic cleft sizes R, as indicated; dots, results of individual simulation experiments; coloured dashed lines, linear regression; grey vertical dotted line
(here and thereafter) indicates the experimental average size of the PSD at hippocampal CA3 – CA1 synapses [26,33]; two dotted arrows illustrate an arbitrarily selected
example of changes that corresponds to an approximately 50% potentiation of the AMPAR current. (b) (i) Diagrams (not to scale) and traces: example simulated AMPAR
currents before (black trace) and after (grey) shrinking the pool of N¼ 50 AMPARs from ra ¼ 110 nm to ra¼ 70 nm (PSD radius; R¼ 200 nm), with no changes in N.
The relationship between the average inter-receptor nearest-neighbour distance (or the AMPAR pool size) and the total AMPAR current under the unchanged total number
of AMPARs; coloured dashed lines, quadratic regression; other notations as in (a). (c) An example of the relationship between the synaptic cleft size (R), the total number of
synaptic AMPARs and the total AMPAR current with the PSD (AMPAR pool) size remaining unchanged at ra ¼ 110 nm. (d ) Testing the impact of glutamate release site
variability. Red circles (mean+s.d., n¼ 20 trials), centre-fixed release site data (as in a – c) for the typical synapse in control conditions (cntrl, ra¼ 110 nm,
R ¼ 200 nm, N ¼ 50 AMPARs) and in conditions that correspond to approximately 50% AMPAR current potentiation, either through insertion of additional AMPAR
to the periphery (LTP insert, ra¼ 180 nm, R¼ 200 nm, N ¼ 134 AMPARs) or by shrinking the PSD without any other changes (LTP clust, ra¼ 75 nm). Green circles
(mean+ s.d., n¼ 20 trials), data obtained under evenly random variation of the release site location over the active zone (opposite to the PSD); other synaptic and
receptor parameters are the same as in control conditions (cntrl). (e) Parametric map depicting the relationship between the AMPAR pool size, receptor density and total
AMPAR current (false colour scale). Circle, a reference configuration corresponding to the experimental average (ra¼ 110 nm, R¼ 200 nm, N¼ 50 AMPARs); horizontal
dotted arrows show how a change in the receptor density alone affects AMPAR current; curved dotted arrow shows how changes in the receptor numbers (unchanged
density) affect the AMPAR current; red dotted arrows depict the direction of the fastest change.
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(e) Synaptic responses are also sensitive to NMDAR
clustering

The estimates above suggest that simply expanding the PSD by

adding new AMPARs is a considerably less ‘efficient’ way to

boost the synaptic strength when compared with increases in
the AMPAR density. Because many types of excitatory synapses

express another common ionotropic glutamate receptor,

NMDAR, it was important to understand what changes in

the NMDAR expression and pattern could potentiate the synap-

tic NMDAR current. We therefore carried out a theoretical

exploration of NMDAR activation by glutamate in conditions
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or both. (a) (i) Traces: example simulated NMDAR currents before (black) and after (grey) adding 12 new receptors (120% extra receptors) to existing 10 NMDARs by
expanding the receptor pool from ra ¼ 110 nm to ra ¼ 165 nm (NMDAR density unchanged, R ¼ 200 nm). (ii) The relationship between the number of local
synaptic NMDARs (or the NMDAR pool size) and the total NMDAR current, with the unchanged NMDAR density. Two dotted arrows illustrate an arbitrarily selected
example of changes that corresponds to approximately 50% potentiation of the NMDAR current. Other notations are as in figure 2a. (b) (i) Traces: example simulated
NMDAR currents before (black) and after (grey) shrinking the pool of N ¼ 10 NMDARs from ra ¼ 110 nm to ra ¼ 73 nm (R ¼ 200 nm), with no changes in N. The
relationship between the average inter-receptor nearest-neighbour distance and the total NMDAR current under the unchanged total number of NMDARs; coloured
dashed lines, quadratic regression. Other notations are as in (a). (c) An example of the relationship between the synaptic cleft size (R), the total number of synaptic
NMDARs and the total NMDAR current with the PSD (NMDAR pool) size remaining unchanged at ra ¼ 110 nm. (d ) Testing the impact of glutamate release
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110 nm, R ¼ 200 nm, N ¼ 10 NMDARs) and in conditions that correspond to approximately 50% NMDAR current potentiation, either through insertion of additional
NMDARs to the periphery (LTP insert, ra ¼ 190 nm, R ¼ 200 nm, N ¼ 30 NMDARs) or by shrinking the PSD without any other changes (LTP clust, ra ¼ 80 nm). Green
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parameters are the same as in control conditions (cntrl). (e) Parametric map depicting the relationship between the NMDAR pool (PSD) size, NMDAR density and total
NMDAR current (colour scale); circle, a reference configuration corresponding to the experimental average (ra ¼ 110 nm, R ¼ 200 nm, N ¼ 10 NMDARs); horizontal
dotted arrows show how a change in the receptor density alone affects NMDAR current; curved dotted arrow shows how changes in the receptor numbers (unchanged
density) affect the NMDAR current; red dotted arrows depict the direction of the fastest change.
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similar to those we considered for AMPARs (figure 3). Although

activation of higher affinity NMDARs is supposed to be much

less sensitive to the distance from the glutamate release site com-

pared with lower affinity AMPARs [18,35,36], our simulation
results indicate that this distinction between AMPARs and

NMDARs is less prominent inside the cleft. Indeed, the

NMDAR current was also sensitive to both adding NMDARs

to the PSD and to NMDAR clustering, although the difference
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between the two effects was somewhat less striking compared

with that in the case of AMPARs (figure 3a–c). Similar to the

case of AMPARs, varying the release site location reduced the

average amplitude of NMDAR current while increasing its varia-

bility (figure 3d). At the same time, the effect pertinent to LTP

expression remained qualitatively similar (figure 3d). Again, a

systematic exploration of synaptic parameters provided intuitive

clues as to what type of changes in the NMDAR expression or

pattern could produce the fastest, and thus arguably the most

‘efficient’, alteration in the NMDAR current (figure 3e).
 g
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4. Discussion
Here, we have employed a Monte Carlo model of small central

synapses to examine what type of changes in local AMPAR

(and NMDAR) expression might explain the receptor current

increase following the induction of LTP, assuming no changes

in the amount of glutamate released. The results indicate that

the addition of new AMPARs simply by expanding the PSD

results in a disproportionally small boost of the AMPAR current.

On average, a given fractional increase in the AMPAR current

requires a three to four times larger increase in the relative

number of AMPARs added this way. By contrast, a relatively

modest (approx. 30%) reduction in the average inter-AMPAR

distances within the PSD, and no additional AMPARs, could

provide a robust (approx. 50%) rise in the AMPAR current

amplitude. Our tests suggested that this conclusion was largely

independent of whether the glutamate release site was fixed at

the cleft centre or varied randomly over the active zone. This out-

come was held over a wide range of poorly controlled synaptic

parameters, suggesting that the conclusion was relatively

robust. Importantly, we also found that for a given synaptic

architecture, there is a certain combination of changes in

AMPAR (and NMDAR) density and numbers that could provide

the ‘most economical’, in terms of the relative structural change,

path to the required level of synaptic potentiation or depression.

Notwithstanding the lack at present of direct experimental

evidence supporting the hypothesis of use-dependent AMPAR

nanoscale clustering, there are several factors, in addition to

being by far the most parsimonious explanation, which make

this hypothesis intellectually attractive. Firstly, this mechanism

is readily consistent with the fact that LTP reflects an increased

number of activated postsynaptic AMPARs. Because AMPARs

are normally far from saturation at the synapses under study

[22,37–39], the expression of LTP might, in principle, reflect

either activation of newly inserted AMPARs or a higher acti-

vation level of the existing AMPARs, or perhaps both.

Secondly, because AMPAR clustering does not require an

increase in the total receptor numbers expressed within the

PSD, the involvement of complex cellular machineries engaged

in use-dependent AMPAR trafficking might not necessarily be

critical throughout all stages of LTP expression. In this context,

it is noteworthy that manifestation of AMPAR trafficking is

usually detected minutes after the plasticity-inducing stimulus,
whereas electrophysiological indicators point to a virtually

immediate synaptic efficacy increase following LTP induction.

Indeed, it is reasonable to think that structural rearrangement

on the nanoscale is likely to occur more rapidly than changes

associated with molecular transport over macroscopic dendritic

compartments. Thirdly, the fact that some of the molecular cas-

cades responsible for AMPAR trafficking have been found as a

prerequisite for LTP expression as such might also reflect an

important role of the same molecular machinery for nanoscale

AMPAR clustering.

Our results suggest that activation of high-affinity NMDARs

is also sensitive to the clustering inside the synaptic cleft. It is

tempting to speculate that this mechanism could, in principle,

contribute to activity-dependent changes in NMDAR-mediated

postsynaptic Ca2þ entry. The latter in turn could affect local

conditions for Ca2þ-dependent plasticity. NMDARs are thought

to undergo much slower macro- and microscopic movements

compared with AMPARs, also depending on the receptor iso-

form [40,41]. Their ‘reluctance’ to move suggests that small

nanoscale rearrangement of NMDARs could play a significant

role in plasticity changes involving NMDAR signalling.

The features of synaptic receptor crowding on the nanoscale

are presently beyond the resolution of optical microscopy or

other real-time recording methods, making it difficult to test

and explore the underlying machinery in a direct fashion. None-

theless, the typical PSD of central synapses appears to have

enough space to accommodate variable numbers of AMPARs

and NMDARs at a range of surface densities [42]. This suggests

that use-dependent changes in receptor crowding within the

PSD are not implausible. Interestingly, the key PSD constituent,

the PSD-95 protein, appears to give rise to scaffolding-like

filamentous links that space synaptic AMPARs and NMDARs

at relatively regular 20–30 nm intervals [43], which appear

somewhat greater than the inter-receptor distances explored in

our simulations. However, freeze-fracture replica labelling

studies reveal smaller intervals between individual AMPARs

in the PSD [44]. More importantly, our simulations quote the

average nearest-neighbour distance assuming a uniformly

random receptor distribution (Poisson point process), whereas

this characteristic distance is substantially greater for a regular

expression pattern, for instance a two-dimensional square lattice,

with the same surface density [45]. The aim of our study was to

explore several hypotheses (pertinent to the microscopic mech-

anisms of LTP expression) that would appear physiologically

plausible and yet consistent with the existing experimental

evidence. It would require, however, a new generation of experi-

mental techniques to test what actually controls the receptor

expression pattern inside the synaptic cleft and whether this

pattern indeed changes in the course of use-dependent plasticity.
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