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Abstract: Although several natural plants and mixtures have been known and used over the centuries
for their antibacterial activity, few have been thoroughly explored in the field of dentistry. Thus, the
aim of this study was to enhance the antimicrobial activity of a conventional glass ionomer cement
(GIC) with natural plant extracts. The effect of this alteration on the bond strength and film thickness
of glass ionomer cement was evaluated and related to an 0.5% chlorohexidine modified GIC. Olive
leaves (Olea europaea), Fig tree (Ficus carica), and the leaves and roots of Miswak (Salvadora persica) were
used to prepare an alcoholic extract mixture. The prepared extract mixture after the evaporation of
the solvent was used to modify a freeze-dried glass ionomer cement at three different extracts: water
mass ratios 1:2, 1:1, and 2:1. An 0.5% chlorhexidine diacetate powder was added to a conventional
GIC for the preparation of a positive control group (CHX-GIC) for comparison. The bond strength to
dentine was assessed using a material-testing machine at a cross head speed of 0.5 mm/min. Failure
mode was analyzed using a stereomicroscope at 12× magnification. The cement film thickness
was evaluated in accordance with ISO standard 9917-1. The minimum number of samples in each
group was n = 10. Statistical analysis was performed using a Kruskal–Wallis test followed by Dunn’s
post hoc test for pairwise comparison. There was a statistically insignificant difference between
the median shear bond strength (p = 0.046) of the control group (M = 3.4 MPa), and each of the
CHX-GIC (M = 1.7 MPa), and the three plant modified groups of 1:2, 1:1, 2:1 (M = 5.1, 3.2, and
4.3 MPa, respectively). The CHX-GIC group showed statistically significant lower median values
compared to the three plant-modified groups. Mixed and cohesive failure modes were predominant
among all the tested groups. All the tested groups (p < 0.001) met the ISO standard of having less
than 25 µm film thickness, with the 2:1 group (M = 24 µm) being statistically the highest among all
the other groups. The plant extracts did not alter either the shear bond strength or the film thickness
of the GIC and thus might represent a promising additive to GICs.

Keywords: medicinal plants; dental luting cement; shear bond strength; film thickness

1. Introduction

During the 19th century, amalgam and gold were commonly used as restorative
materials in dental treatments. Nevertheless, their unsatisfactory color created the need for
more aesthetically acceptable dental cements and restorative materials [1]. Glass ionomer
cements (GIC) were one of the crucial steps in this direction and have become one of the
most commonly used restorative materials in dentistry [2,3] GICs are byproducts of an acid–
base reaction between weak polyacrylic acids and aluminosilicate glass powder. The set
cement contains unreacted glass particles which play a role in in reinforcing the final cement
structure [4,5]. Glass ionomer-based cements are the material of choice for cementation,
liners, bases, atraumatic preventive treatments, and restoring cervical dental lesions [6,7].
They have the advantage of forming a chemical adhesion with the tooth structure, thus
requiring minimal preparation, fluoride release, biocompatibility, antimicrobial activity,
recharge ability, and reverse potential to reduce the acidic environment [8–10].

The success of dental materials clinically depends on many factors, among which is
the good adhesion to the surface of the tooth to resist various dislodging forces [11]. Shear
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bond strength is known as the resistance to dislodging forces, which causes the sliding
of the restorative material against the tooth structure. It adopts much importance to the
dentist clinically because it has been proven that the major dislodging forces at the tooth
restoration interface have a shearing effect [12,13].

Along with the mechanical properties for the selection of a suitable and durable luting
agent, there are other clinically related properties that need to be taken into consideration,
such as the film thickness [14]. During cementation, achieving a minimum film thickness
is very important for the complete seating and adaptation of the prosthetic restorations.
Moreover, a thin film thickness decreases the marginal discrepancies, cement dissolution,
plaque accumulation, and periodontal disease [14,15].

The use of herbal products is increasing at an exponential rate in both developing
and developed countries owing to the free availability, religious beliefs, as well as unique
chemical composition [16]. This novel branch has its roots in ancient medicine and the
pre-antibiotic era. Herbal extracts were claimed to have the advantage of showing their
beneficial effects without the risk of developing microbial resistance. Nowadays, several
herbal products are available in the market in different forms, such as toothpastes, oral
gels, and mouth rinses [17–19].

Salvadora persica (S. persica) is a small tree that belongs to the family Salvadoracea and
is commonly known as miswak (toothbrush) tree. Studies of miswak against oral bacteria
such as Streptococcus mutans, salivaris, Staphylococcus aureus, and mitis have proven that the
crude extract was significantly effective, with an inhibition zone production of 67 and up
to 96% [20,21].

Ficus carica (F. carcis) belongs to the family Moraceae and is commonly referred to as
“Fig”. Several authors have claimed that F. carica has antioxidant, antiviral, antibacte-
rial, hypocholesterolemia, hypoglycemic, cancer-suppressive, and hypotriglyceridemic
effects [22,23].

Olea europaea (O. europaea) leaves and olive fruits have an ancient history of ther-
apeutic and traditional practices. The olive tree, leaves, and extracts are an essential
part of the Mediterranean culture due to olive polyphenols. Olive leaf polyphenols have
been thoroughly investigated because of their anti-inflammatory and antimicrobial ac-
tivities and anti-hypertensive, anti-diabetic, anti-carcinogenic, and anti-atherosclerotic
potentials [24,25].

While many studies support the notion of the protective effect of fluoride in public
water and oral health products, the available data still do not endorse the anti-caries ability
of fluoride-releasing restorative materials such as GIC [26,27]. Based on the ability of GIC
to participate in ion-exchange reactions with the oral environment, many modifications
have been carried out to improve its antimicrobial properties [26,27].

In earlier study, an extract mixture of S. persica, F. carcia, and O. europaea incorporated in
a conventional GIC showed a significant antimicrobial activity against Streptococcus mutans
and Micrococcus luteus. Moreover, the chemical characterization of the extract mixture using
GC/MS has shown many chemically active compounds, including phenols, flavonoids,
alkaloids, carboxylic acids, terpenes, and more [28].Despite the recommendations for the
use of these herbal plant extracts, there are only a few available studies that involve the
addition of natural herbal extracts to GIC. Additionally, the antimicrobial effects were the
focal point of these studies, while the physical-mechanical properties have been overlooked.
Thus, the aim of this study was to evaluate the shear bond strength and film thickness of
a GIC modified with a natural plant extract, while a 0.5% CHX-modified GIC (positive
control) and an unmodified GIC were used for comparison. The null hypotheses were there
will be no significant difference between the extract-modified groups, the CHX-modified
group, and the control with regard to shear bond strength, failure mode analysis, and
film thickness.
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2. Results and Discussion
2.1. Results
2.1.1. Shear Bond Strength

The variables showed a non-parametric distribution and thus the Kruskal Wallis H
test was used to test the effect of the plant extract on the shear bond strength. The results
are shown in Table 1 and illustrated graphically in Figure 1. The Kruskal Wallis H test
indicated that there was significant difference between the groups, p = 0.046. Post hoc
comparisons using Dunn’s test showed significant differences between the CHX-GIC shear
bond strength (M = 1.7 MPa) and the modified groups 1:2, 1:1 and 2:1. However, there
were insignificant differences between the control groups and all other groups.

Table 1. Results of the Kruskal Wallis H test for shear bond strength.

Groups n Median
(MPa)

Interquartile
Range p * Pairwise Comparison **

Control 20 3.4 3.0

0.046

A B
CHX 18 1.7 1.4 A
1:2 21 5.1 7.5 B
1:1 20 3.2 5.6 B
2:1 18 4.3 8.7 B

* Significant at p ≤ 0.05. ** Groups that do not share a letter are significantly different.
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Figure 1. Median shear bond strength and interquartile range.

Failure Mode

The stereomicroscope examination of the deboned dentin surface after shear bond
strength testing revealed that the majority of the fracture modes were cohesive and mixed
failure, as presented in Table 2 and illustrated in Figure 2.
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Table 2. Percentages of the different failure modes for each tested group (n = 10).

Failure Mode Control CHX 1:2 1:1 2:1

Adhesive % 10 15 14 21 0

Cohesive % 50 38 57 36 40

Mixed % 40 46 29 43 60
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2.1.2. Film Thickness

The variables showed a non-parametric distribution and thus the Kruskal Wallis H
test was used to test the effect of the plant extract on film thickness; the results are shown
in Table 3 and illustrated graphically in Figure 3. The Kruskal Wallis H test indicated that
there was significant effect of the plant extract on the film thickness, H (4) = 27.3, p < 0.001.
The group 1:2 (M = 24 µm) had the thickest film and the post hoc comparisons using
Dunn’s test showed that it was significantly different from all groups, except group 1:1. All
the other groups had insignificant differences compared to each other.

Table 3. Results of the Kruskal Wallis H test for film thickness.

Groups n Median
(µm)

Interquartile
Range p * Pairwise Comparison **

Control 10 20 2.8

<0.001

A

CHX 10 20 4.0 A

1:2 10 22 3.0 A

1:1 10 22 1.8 A B

2:1 10 24 1.3 B
* Significant at p ≤ 0.05. ** Groups that do not share a letter are significantly different.
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2.2. Discussion

Despite the common usage of glass ionomer cement (GIC) in dentistry because of
the anticariogenic property, fluoride release, and rechargeability, the reduction in the
bacterial counts and the ability of the conventional glass ionomer cements to completely
arrest the caries process is still not reliable for many clinical situations. Therefore, many
investigations are concerned with improving the antibacterial activity of GIC to overcome
this problem [29,30].

GIC modified with S. persica, F. carcia, and O. eoropaea extract mixtures has shown
significant antimicrobial activity against S. mutans before, which is the main causative
organism of dental caries and M. luteus, which is a sensitive marker to the release of
antimicrobial agents [28]; thus, this study aimed to assess two important clinical properties
of GIC, which are shear bond strength and film thickness.

2.2.1. Shear Bond Strength

Clinical success and the retention of a dental cement are directly affected by its
adhesion and bonding to the tooth structure. The mechanism of adhesion of glass ionomer
cement to the tooth structure was attributed to the interaction of hydroxyapatite found in
the tooth structure with the polyacrylic acid forming strong ionic bonds [31–33].

The bond strength assessment of GIC may be influenced by several factors: testing
device, size of the specimen, composition of the tooth structure, storage time, temperature,
and the substrate [34]. Enamel is much more susceptible to adhesion than dentin, where
values of enamel vary between 2.6 to 9.6 MPa and values of dentin vary from 1.1 to
4.1 MPa [4,35]. Enamel has a surface that is basically homogeneous, and mainly composed
of hydroxyapatite, which has high surface energy, whereas dentin has a heterogeneous
surface with low surface energy [36]. Moreover, it was found that GIC recorded lower
bond strength values to tricalcium silicate-based cements compared to methacrylate- and
silorane-based composites [37].

The shear bond strength test in the current study was carried out after 24 h because it
was found that bond strengths increase rapidly, with about 80% of the final bond strength
being achieved in the first 15 min [4,38]. The results showed that there were no significant
differences among the median values of control (M = 3.7 MPa) and CHX-GIC (M = 1.7 MPa).
Likewise, there was insignificant difference between the control and the three extract-
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modified groups: 1:2 (M = 5.1 MPa), 1:1 (M = 3.2 MPa), and 2:1 (M = 4.3 MPa) groups. This
could be due to the amount of CHX (0.5%) added to the CHX-GIC group, and the amount
of plant extract in the 1:2, 1:1, and 2:1 groups did not negatively alter or affect the ionic
exchange and interaction between the cement and the surface of the tooth. This was in
accordance with the results of Becci et al. [39] and Jaidka et al. [40].

On the other hand, the CHX-GIC group showed statistically significant lower median
values compared to all the plant-modified groups (1:2, 1:1, 2:1). The reason for this could
be due to the presence of Cinnamic and bornyl acetic carboxylic acids in the plant extract
mixture [28]. According to Prentice et al. [41, those carboxylic acids might have been
existed in a considerable amount that improved release of ions from the surface of the glass
ionomer powder through lowering the pH. Moreover, the presence of additional COOH
groups from acids might have caused more ionic exchange and interaction with calcium of
the tooth within first 24 h. This might explain the slight potential enhancement of the bond
strength specifically in group 1:2 (M = 5.1 MPa) compared to CHX, but still it is statistically
insignificant compared to the control group (M = 3.7) [41].

Failure Mode

Dental restorations and cements should ideally have high adhesive and cohesive bond
strengths to counteract the forces of mastication [42]. In the present study, the deboned
dentine surface was observed using stereomicroscope at a 12× magnification in which
cohesive and mixed patterns predominated. Choi et al. [43] and Becci et al. [38] accounted
cohesive failure prevalence for a low tensile strength of the tested GIC material rather than
its true adhesive bond strength to dentin. Lucas et al. [44] attributed this to the strong ionic
layer that is formed at the interface between the GIC cements and the calcified structures
through an ion exchange process.

For the mixed failure, Palma-Dibb et al. [45] and Carvalho et al. [46] explained it on
the basis of the insufficient resistance to early wear and the formation of a glass ionomer
matrix. Therefore, part of the glass ionomer remained bonded to the tooth structures, while
part was dislodged at the GIC–tooth interface. No correlation was found in the present
study between the shear bond strength values and failure modes, because this correlation
has been discussed controversially in the literature [47,48]. El Wakeel et al. [49] indicated
that there is no relationship between the shear bond strength and the mode of failure.

2.2.2. Film Thickness

Glass ionomer cements have been used widely for the cementation of cast metal and
porcelain restorations in dentistry [50]. Film thickness is a significant rheological property
that should be taken into consideration during the selection of a suitable and durable
luting agent. Film thickness is highly influenced by manipulation variables, such as mixing
temperature and powder–liquid ratio. The consistency of the luting cement directly affects
the film thickness and the correct adaptation of the restoration. A luting material with a
high viscosity requires more time for the optimal seating of the restoration as well as the
application of higher seating forces to prevent marginal gaps [51,52].

Film thickness was evaluated consistent with ISO 9917-1. The results showed that all
the groups meet the standard, with less than 25 µm film thickness [53]. There was a statisti-
cally insignificant difference in the mean values between the control group (M = 20 µm),
CHX-GIC (M = 20 µm), and the plant modified groups; 1:1 (M = 22 µm), 1:2 (M = 22 µm).
The 2:1 (M = 24 µm) group showed statistically significantly higher mean values compared
to all the other tested groups. The results were in agreement with those of Sulaiman
et al. [54] and Kious et al. [55]. This could be explained on the basis that the plant extract
mixtures did not alter the viscosity of GIC, which directly affects the cement film thickness,
where cements of high viscosity showed rapid setting before they can flow properly to
achieve a minimum film thickness [56].

The null hypotheses of both shear bond strength and film thickness were rejected
based on the results. A limitation of the current study is that it was designed as an in vitro



Molecules 2021, 26, 1276 7 of 12

study and thus the testing conditions did not exactly simulate the oral environment and
the clinical situations. Different factors affect the physical and mechanical properties of
GIC, such as moisture contamination, the application of a protective coat, mixing time and
temperature, batch of cement, and storage medium [57]. Further studies with respect to
other bacterial strains and more mechanical and physical properties will be performed.

3. Materials and Methods
3.1. Plants Extraction and GIC Modification
3.1.1. Plant Extraction

Three different plants, Olea europaea leaves, Ficus carcia leaves, and Salvadora persica
roots, were washed thoroughly with water, dried in air for 6 days at room temperature,
and ground using a blender into a fine powder. A standardized amount (80 g) from each
plant powder was placed into a Soxhlet extractor (Carl Roth GmbH + Co. KG, Karlsruhe,
Germany) separately and an extraction process was carried out using 250 mL of ethyl
alcohol (70%) at 75 ◦C. The resultant product of each process was then filtered using
Whatman filter paper no. 1 and mixed together to prepare an extract mixture. A rotary
evaporator (Buchi Rotavapor R-300, Buchi Labor Technik GmbH, Essen, Germany) was
used to evaporate the solvent at 37 ◦C, leaving a concentrated crude mixture that was
stored at 4 ◦C in a glass bottle until usage [58].

3.1.2. Modification, Preparation and Specimens Grouping of GIC

Conventional freeze-dried glass ionomer cement (Medicem aqua, Promedica GmbH,
Neumuenster, Germany, Lot 1849261) that was supplied in the form of powder/water
version was used. The distilled water used for the preparation of GIC was modified with
the extract mixture at three different extracts of water mass ratios, giving three plant-
modified groups (1:2, 1:1, 2:1). Plastic bottles with the exact nozzle size as those supplied
by the manufacturer were used to store the different groups in order not to alter the
recommended powder/liquid ratio (1:2) upon cement preparation. Fresh specimens of
each of the modified groups were prepared according to the recommended powder/liquid
ratio (1:2) for each testing procedure and then compared with two control groups:

• Negative control: prepared by mixing the powder of GIC with the exact amount of
distilled water as per the manufacturer’s instructions (1:2), without any modification.

• Positive control: prepared by adding 0.5% CHX diacetate powder (w/w) (Merck
KGaA, Darmstadt, Germany) to GIC powder (CHX-GIC) to be mixed with distilled
water (1:2).

Group names:

1. Control: (unmodified GIC).
2. CHX-GIC: (0.5% CHX modified GIC).
3. Extract- mixture modified groups:

a. 1:2 (extract: water).
b. 1:1 (extract: water).
c. 2:1 (extract: water).

3.2. Shear Bond Strength

Ninety-seven carious and crack free bovine teeth were selected and stored in NaCl
until usage. The teeth were embedded in acrylic blocks. The enamel surface of the teeth
was removed using silicon carbide abrasive paper on a polishing machine in order to obtain
flat smooth dentin surfaces. Polycarboxylic acid (25%) was used as a dentine conditioner
for 25 s then rinsed and air-dried [26,27]. A split teflon mold of a 4 mm diameter and 3 mm
height was clamped onto the exposed dentin surface of the tooth using a metallic device
with springs and screws for opening and closing (Figure 4). The cement was mixed as per
the manufacturer instructions (1:2), packed and condensed inside the mold, and allowed to
set. One hour later, the metallic device was opened and the mold was removed, leaving the
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specimen attached to the dentine. Teeth with the bonded specimens were then stored at
37 ◦C in deionized water for 24 h. Each specimen was placed in a universal testing machine
(Zwick Zmart. Pro, Zwick/Roell, Ulm, Germany) and subjected to dislodging forces at
a crosshead speed of 0.5 mm/min using a sharp knife-like mandrel that was attached to
the upper assembly (Figure 5a,b). The dislodging force was recorded and then the bond
strength of GIC to dentine was calculated according to the following equation [59,60]: shear
bond strength [MPa] = force / area.
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Failure Mode Analysis

The different failure modes for all the tested groups (n = 10) were evaluated by one
observer under an optical microscope (Stereomicroscope SR, Carl Zeiss AG, Oberkochen,
Germany) at a 12× magnification. Failure modes were categorized into three groups:
adhesive failure when the GIC was removed from the dentin surface without residual
debris, cohesive failure when a fracture occurred inside the cement or the tooth, and
mixed failure when a combination of both cohesive and adhesive failures was observed
(Figure 6a–c) [61].
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3.3. Film Thickness

The test was conducted according to ISO 9917-1:2007 for glass ionomer cement. The
thickness of two flat, uniform, rectangular glass plates stacked in contact was measured
four times to the nearest 0.1 µm with a digital micrometer (Digimatic, Mitutoyo Europe
GmbH, Neuss, Germany). This reading was recorded as Reading A. The cement for each
group (n = 10) was prepared according to the manufacturer’s instructions and then a
standardized amount of each cement mixture was placed between the two glass plates.
A 147 N load was applied on the upper glass plate using a universal testing machine;
see Figure 7a,b. Seven minutes later, the overall thickness of the plates with the cement
between was recorded as Reading B. The difference between the thickness of the plates
with and without the material between (B−A) was considered as the final combined film
thickness for the specimen being tested [53].
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3.4. Statistical Analysis

The Ryan–Joiner normality test (similar to Shapiro–Wilk test) was used to test whether
or not the variables followed a normal distribution. The numerical data showed a non-
parametric distribution, and thus were presented as a median and interquartile range,
p ≤ 0.05. Furthermore, the Kruskal–Wallis test was used for comparison between the
groups, followed by Dunn’s post hoc test for pairwise comparison. Statistical analysis
was performed via Minitab 17.3.1 for Microsoft Windows (Minitab, Inc., State College,
PA, USA).
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4. Conclusions

Within the limitations of the current study, it can be concluded that the addition of a
plant extract mixture in an attempt to enhance the antimicrobial activity did not negatively
alter the shear bond strength and film thickness properties of GIC, and thus this might
have potential for GIC modifications.
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