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ABSTRACT

The functions of RNA are often tied to its structure,
hence analyzing structure is of significant interest
when studying cellular processes. Recently, large-
scale structure probing (SP) studies have enabled as-
sessment of global structure-function relationships
via standard data summarizations or local folding.
Here, we approach structure quantification from a
hairpin-centric perspective where putative hairpins
are identified in SP datasets and used as a means to
capture local structural effects. This has the advan-
tage of rapid processing of big (e.g. transcriptome-
wide) data as RNA folding is circumvented, yet it
captures more information than simple data summa-
rizations. We reformulate a statistical learning algo-
rithm we previously developed to significantly im-
prove precision of hairpin detection, then introduce
a novel nucleotide-wise measure, termed the hairpin-
derived structure level (HDSL), which captures local
structuredness by accounting for the presence of
likely hairpin elements. Applying HDSL to data from
recent studies recapitulates, strengthens and ex-
pands on their findings which were obtained by more
comprehensive folding algorithms, yet our analyses
are orders of magnitude faster. These results demon-
strate that hairpin detection is a promising avenue for
global and rapid structure-function analysis, further-
ing our understanding of RNA biology and the princi-
pal features which drive biological insights from SP
data.

INTRODUCTION

RNA structure is driven primarily by the complementarity
of nucleotide bases comprising it, which allows for hydro-
gen bonding between various segments of the molecule. In-
tramolecular base pairing, combined with the flexible and
single-stranded nature of the molecule’s backbone, allows
for intricate secondary and tertiary structural elements.
These structures, as well as their ability to dynamically

change between relevant configurations, are known to play
central roles in almost every facet of cellular regulation (1-
6). Understanding the structures of RNA is therefore im-
portant, which has led to an explosion of methods which
probe (7-17), computationally predict (18-28) and interpret
them in various contexts (1,5,29-35).

Structure probing (SP) experiments currently provide the
most practical approach for measuring RNA structures in
their natural environment. These experiments work by ex-
posing RNA to chemicals, enzymes, or photons which re-
act differentially with parts of the molecule depending on
their structural context (e.g. paired/unpaired nucleotides
or ds/ssRNA) (7,8,10-13,36,37). Specific protocols vary,
but typically the probing reaction induces changes to the
RNA bases or backbone which are detected via sequenc-
ing or electrophoresis as mutations or truncations (38,39).
The rate of mutation or truncation at a particular nu-
cleotide is used to summarize that nucleotide’s reactivity
with the probe (40). These data contain critical informa-
tion on the structural conformation of an RNA, and incor-
porating them as soft constraints within thermodynamics-
based folding algorithms greatly improves their accuracy
(18,26,41).

Next-generation sequencing has allowed SP experiments
to scale to the level of the whole cell (i.e. transcriptome-
wide). Exploration of these data have typically begun
with straightforward global-level quantifications and sim-
ple comparisons (11,42-46). More recent studies expanded
the intricacy of structural analysis to disentangle the dy-
namic functional roles of RNA structure in fundamen-
tal cellular processes (47). For example, Saha et al. com-
pared reactivity profiles in the vicinity of spliced introns
and retained introns, and found evidence of increased struc-
ture upstream and decreased structure downstream of re-
tained introns (48). Yang et al. characterized structural im-
pacts on miRNA-mediated mRNA cleaving by comput-
ing mean reactivity and mean base-pairing probability pro-
files around miRNA target sites, which illuminated a strong
connection between transcript cleavage and unpaired bases
immediately downstream of the miRNA target site (49).
Works by Mustoe et al. (30) and Mauger et al. (50) have
linked changes in gene expression within Escherichia coli
and human cells to the structural dynamics within coding
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sequences and UTRs as quantified by local median reac-
tivities. A slew of recent works have investigated the role of
RNA structure within the interplay between RNA helicases
and transcription termination, alternative splicing, transla-
tion initiation and translation efficiency (51-54). Twitten-
hoff et al. (55) performed structure probing of Yersinia pseu-
dotuberculosis at different temperatures and used averaged
reactivity scores to highlight differential structure changes
due to temperature in 5UTRs versus coding regions in ad-
dition to using condition-wise reactivity differences to iden-
tify temperature-sensitive genes.

A common theme to such studies is the quantification of
local ‘structuredness’ and comparisons of it at global scales.
To this end, measures of structure are typically founded
on basic statistical summarization of reactivities, sometimes
combined with data-directed thermodynamics-based fold-
ing algorithms to quantify base-pairing probabilities. Cur-
rent state-of-the-art algorithms for predicting base-pairing
probabilities (and specific RNA structures) are founded on
dynamic programming strategies and a nearest neighbor
thermodynamic model (NNTM) (56,57). Although rela-
tively efficient, these scale as O(L?) with the length of an
RNA, meaning that complete folding analyses of long RNA
transcripts are often computationally infeasible. NNTM-
based processing (i.e. RNA folding and computation of
base-pairing probabilities) of the massive data associated
with recent studies is thus challenging. As a consequence,
transcriptome-wide studies have typically utilized ad-hoc
folding strategies which attempt to strike a balance between
computational overhead and prediction quality by locally
folding pre-screened candidate regions or rolling windows
of long transcripts. Even with such compromises, in silico
analyses can take days to complete, depending on the scale
of the experiment. The process itself is also susceptible to
high error rates especially in molecules with multiple sta-
ble conformations (58). It is worth noting that some of the
aforementioned experiments relied solely on simple reactiv-
ity summarization; nevertheless, even in such situations, de-
tections are typically limited to the most pronounced effects.
More sophisticated analysis which accounts for structure in
addition to reactivity has the potential to refine such find-
ings and expand on them (59,60). This highlights a need for
methods capable of rapidly extracting pertinent structural
information from reactivity data.

Motivated by this need, we harnessed patteRNA, an
NNTM-free method we previously introduced for rapidly
mining structural motifs (61,62) to quantify global trends in
RNA structure dynamics from SP data. Briefly, the method
works in two phases: training and scoring. The training
phase learns a hidden Markov model (HMM) of secondary
structure and a Gaussian mixture model (GMM) of the
reactivity distributions of paired and unpaired nucleotides
(see Figure 1A). The learned distributions are used to score
sites for their likelihood to harbor any target structural mo-
tif (see Figure 1B). patteRNA can automatically process
data from any type of SP experiment. Although we previ-
ously demonstrated that patte RNA accurately detects struc-
tural motifs in diverse datasets, we found that there was nev-
ertheless room for significant improvement. Namely, there
was a need for improved precision of motif detection, par-
ticularly pertaining to the vast search space encountered

in transcriptome-wide experiments. Additionally, we found
that our method, although suitable for comparative analy-
sis of motifs (62), did not provide a clear quantitative frame-
work for making practical and direct structural inferences
in large datasets.

In this article, we expand and improve the capabilities of
patteRNA and demonstrate that motif detection can be used
to rapidly quantify RNA structuredness in SP datasets. As
a first step, we investigate the properties of hairpin elements
in RNA structures and their prevalence among all struc-
tural elements, revealing that hairpins readily detectable by
patteRNA (hairpins without bulges) constitute over 30% of
paired nucleotides. We then present an improved unsuper-
vised training approach which yields more accurate motif
detection, especially for hairpins, and benchmark it against
diverse types of data. Next, we describe a novel measure,
the hairpin-derived structure level (HDSL), which uses pat-
teRNA’s detected hairpins to quantify the local structure
context around nucleotides. We apply HDSL to three recent
large-scale SP datasets to demonstrate that our hairpin-
driven analysis is (i) capable of recapitulating, strengthen-
ing, and expanding on previously detected structural ef-
fects and (ii) orders of magnitude faster than comparable
NNTM-based routines. Simply put, our method bridges the
gap between quick but naive data summarization and inten-
sive but more sophisticated folding-based analysis to pro-
vide rapid structure-aware interpretations. Overall, the re-
sults of our work also serve to further our understanding
of the ways in which diverse SP datasets can be automati-
cally quantified and interpreted without dependence on the
assumptions driving NNTM predictions and the complexi-
ties associated with them.

MATERIALS AND METHODS
Data

Details about the datasets used throughout this study are
compiled in Table 1. In short, seven datasets were used. Cen-
tral to the development of our method is the Weeks set, a di-
verse dataset of 22 non-coding RNAs with high-quality in
vitro SHAPE data and known structures (~10 000 nt total)
(61). We used this dataset to perform benchmarks as well
as to query the structural properties of structured RNAs
(i.e. the representation of hairpins within them). Reference
structure models were also obtained from the RNA Sec-
ondary Structure and Statistical Analysis Database (RNA
STRAND) (63) and Rfam (64) to provide a more expan-
sive set of data by which to query hairpin representation
and characteristics. The remaining four datasets are re-
cent SP datasets on which we applied patte RNA to demon-
strate its suitability for obtaining biologically relevant in-
sights in various contexts. This includes transcriptomic data
for mRNAs in vitro and in vivo in E. coli (30), in vitro
and in vivo reactivities for the SARS-CoV-2 genome (33),
in vitro reactivities for the HIV-1 genome for three chem-
ical probes (65), and in vitro and in vivo transcriptome-
wide reactivities for two human cell lines, K562 and HepG2
(32). References for the sources of each dataset are pro-
vided in Table 1 with accession numbers included where
applicable.
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Figure 1. Identification of structural motifs in probing data and representation of hairpins in structures. (A) Key components comprising patteRNA’s
statistical model of probing data. A Hidden Markov Model (HMM) is used to describe the tendency of RNA to transition between paired and unpaired
states across adjacent nucleotides (a;; = Pr(¢g;+1 = j | ¢; = i )), while an emission model of reactivity captures the distributions of SP observations asso-
ciated with paired and unpaired states, respectively. (B) Schematic illustrating reactivity profile (black, yellow, red) for a region against the corresponding
patteRNA c-score profile (blue) when mining for a hairpin with loop length 5 and stem length 5 (dot-bracket: “((((.....)))))’). The score profile represents
the likelihood of the target motif occurring at the site corresponding to using the current nucleotide as the start (left side) of a sliding window. This profile
achieves a maximum at the true positive site of the mined hairpin (score indicated with star, site indicated as green box). Locations which satisfy sequence
constraints necessary for the base pairs of the motif are denoted by triangle-shaped markers on the score profile, and vice versa for x-shaped markers (thus,
only sites denoted with triangles are considered by patte RNA when scoring). The precise bounds of the sites which satisfy the sequence constraints of the
motif are also indicated with black arrows. Data shown are SHAPE-Seq reactivities from the 23S rRNA of E. coli (nt 2531-2576) (41). Reactivities are
color coded according to their magnitude (high: > 0.7; mid: > 0.3 and < 0.7; low: < 0.3). (B) Distribution of hairpin stem and loop lengths in a diverse
set of structured RNAs (referred to as the Weeks set; see Materials and Methods). The vast majority of hairpins have stem lengths shorter than 15 nt and
loop lengths between 3 and 10 nt. (C) Fraction of paired nucleotides in the Weeks set which can be represented as belonging to a regular hairpin (red), a
regular hairpin with up to one or two bulges of length 1-5 nt (blue), or any/all type of hairpin and associated stems (black).

Note that for RNA STRAND data, the entire collection
of structure models was not utilized. STR AND houses 4666
high-quality RNA structures as determined from NMR, X-
ray crystallography or comparative sequence analysis. For
our work, we heuristically pruned the number of structures
significantly (to 797 structures) to account for unequal rep-
resentation of RNA classes within the database (specifi-
cally, the overrepresentation of ribosomal RNA structures).
This pruning was achieved by sampling a defined number
of structures from each RNA type in the database. The to-
tal numbers of original structures within each RNA type,

as well as the corresponding numbers of RNA structures
sampled, are given in Supplementary Table S1. A simple vi-
sualization of the fraction of (i) transcripts, (ii) nucleotides
and (iii) hairpins in the pruned data coming from each
RNA class is given in Supplementary Figure S1. The num-
bers used for subsampling were heuristically determined but
were guided by the composition of pruned data as observed
in visualizations like the one shown in Supplementary Fig-
ure S1. We found that the utilized values led to a fairly bal-
anced set of data from the perspective of transcript compo-
sition, nucleotide composition and hairpin composition.
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Table 1. Summary of datasets used throughout this study

Dataset name Description Size References
Weeks set 22 well-studied RNAs with reference structures and 11070 nt (18,21,41,61-62)
high-quality SHAPE data
STRAND data 797 diverse RNAs with experimentally determined structures 276 290 nt This work, (63)
(via NMR, crystallography or comparative sequence analysis)
[no probing data]
Rfam data Secondary structure models informed by covariance models 526 608 nt (64)
for 3935 RNA families [no probing data]
Manfredonia SARS-CoV-2 genome probed by: 3 % 29903 nt (33), GSE151327
data o In vitro DMS-MaP
e In vitro DMS-MaP
e In vivo SHAPE-MaP
Siegfried data HIV-1 genome probed in vitro with 1IM6, 1IM7 and NMIA 3 x 9174 nt (65), SRX554885
(SHAPE-MaP)
Mustoe data 194 E. coli mRNA transcripts probed by SHAPE-MaP across 3 x 442421 nt (30), PRJEB23974
three conditions (each condition is the average of two
replicates)
o Cellfree (in vitro)
e Incell (in vivo)
e Kasugamycin (in vivo + 10 mg/ml kasugamycin)
Corley data In vivo and in vitro icSHAPE data (as well as fSHAPE data, 2 x 40.8 million nt (32), GSE149767

not included in the dataset size) for RNA transcripts in two
human cell lines: K562 and HepG2 (each condition is the

(K562)
2 x 35.4 million nt

average of two replicates)

(HepG2)

Hairpin counting and quantification in known structures

To better understand the representation of hairpins within
RNA structures, we parsed sets of reference structures (the
Weeks set, STRAND data and Rfam data) and denoted
hairpin elements according to three schemes: (i) all hairpins
(hairpins and associated stems, with and without bulges),
(i1) regular hairpins (hairpins with stem length between
4 and 15 nt and loop length between 3 and 10 nt with-
out bulges or internal loops) and (3) regular hairpins with
and without bulges. The specific definitions used for each
scheme are as follows (see Supplementary Figure S2 for an
example structure with defined hairpin motifs indicated). In
all cases, loops which are involved in pseudoknotted base
pairing are treated as unpaired loops for the purpose of
hairpin identification.

All hairpins (hairpins and associated stems, with and without
bulges). Hairpins in reference dot-bracket structures were
retrieved by first identifying hairpin-loops and then back-
tracking to determine the full stem length. Hairpin loops are
defined as locations in the dot-bracket structures where a
base pair flanks a sequence of unpaired states of any length.
Once a hairpin loop is identified, the stem length is deter-
mined by walking along the structure in both directions un-
til a branching base pair is encountered (i.e. a )’ to the left
of the stem-loop or a ‘(’ to the right). At this point, the stem
length is called as the number of nested base pairs before
the first branching base pair on either side of the stem. Un-
paired bases are ignored while traversing the local structure,
so the entire nested scope of stems with bulges and internal
loops is included.

Regular hairpins (hairpins without bulges or internal loops).
We defined regular hairpins as hairpins having a stem length
between 4 and 15 nt and loop length between 3 and 10
nt with no bulges or internal loops within the helix. For
these 96 distinct motifs, identifying their locations amounts

to simply searching the dot-bracket data for the exact dot-
bracket sequence defined for each hairpin size. For example,
a regular hairpin with stem length 4 and loop length 4 has
dot-bracket sequence (‘((((....))))).

Regular hairpins with and without bulges. Identifying
locations of regular hairpins with up to one or two bulges
was performed similarly to the identification procedure
used for regular hairpins without bulges. However, due
to the combinatorial explosion of qualified motifs when
allowing for bulges, we used a regular expression scheme
to perform the search. The regular expression has the form
‘({2,10}.{0,5}({3,10}.{3,MAXLOOP}){3,10}.{0,5}){2,10}’
where MAXLOOP is the maximum loop length to include
in the search. This regular expression, in order to permit
flexibility for the position of bulges along the stem when
identifying hairpins with bulges, also matches some motifs
with stem lengths longer than 15 nt. As such, any con-
structed structure patterns with a stem longer than 15 nt
through were discarded prior to the search.

Discretized Observation Model (DOM)

The discretized observation model serves as an alternative
approach for describing the probabilities of a particular
state (unpaired/paired) to yield a particular reactivity value
(state emission distributions). Typically, the emission distri-
butions are modeled as continuous distributions, as is the
case when patteRNA uses a GMM of reactivity. However,
the DOM framework instead discretizes reactivities based
on percentiles, then constructs probability mass functions
(PMFs) over the discrete reactivity classes for the two pair-
ing states. The state PMFs are then learned in an unsuper-
vised fashion by coupling the emission model to an HMM
and performing expectation-maximization (EM) optimiza-
tion of parameters, analogously to the original GMM im-
plementation. Also analogous to the GMM’s number of



Gaussian kernels, the resolution of bins used in the DOM is
gradually increased until an optimal model is reached via a
minimum in Bayesian information criteria (BIC) (62). Typ-
ically, 7-10 bins are deemed optimal.

A more complete description of the mathematical formu-
lation behind the DOM, including initialization and M-step
parameter updating, is available in Supplementary Mate-
rial.

Scoring with patteRNA

patte RNA mines structural elements as represented in dot-
bracket notation. In the context of patteRNA, this repre-
sentation of a structure is referred to as a target motif. To
mine for a motif, patte RNA first encodes the structure as
a sequence of pairing states (states denoted as i € {0, 1},
where 0 is unpaired and 1 is paired), called the target path.
Then, all possible locations in the data are scored for the
presence of the target path. With sequence constraints en-
forced, this amounts to all sites in an RNA where the nu-
cleotide sequence permits folding of the target motif via
Watson-Crick and Wobble base pairs (sequence constraints
can also be manually disabled, and in such situations all
windows of length equal to the length of target motif are
considered—i.e. a full sliding window approach). Regard-
less of sequence constraints, the patte RNA score for a site
(a window of length n beginning at nucleotide ) is defined
as the log ratio of joint probabilities between the target path
and its inverse path (i.e. the opposite binary sequence) (61).
More specifically,

Pr(y, z|0)
Pr(y, z/16)

Here, y is the reactivity profile at a site, z is the target bi-
nary state path, z’ is the inverse path, and 6 represents the
parameters of a trained GMM/DOM-HMM model. The
parameters of the trained model include the transition (a; ;
for states i and j) and initial probabilities for paired and un-
paired states within the Markov model, as well as an emis-
sion model (either a GMM or DOM) that describes the
likelihoods of paired and unpaired states to yield specific
reactivity values. For a GMM (61), the emission model is
parameterized by Gaussian weights, means and variances
(wik, ik, and o; i respectively, where k corresponds to an
individual Gaussian kernel in the learned mixture distribu-
tions). For a DOM, the emission model is simply param-
eterized by the learned discrete probability mass functions
of paired and unpaired nucleotides (p; x, where k is a bin in
the discretization scheme). A trained GMM/DOM-HMM
model enables computation of b;, (the emission likelihood
for state 7 at nucleotide ¢) as well as «;, and B;, (the for-
ward and backward probabilities for state i at nucleotide ¢,
respectively, as computed via the forward-backward algo-
rithm (66)). For the full formulation of emission likelihoods
when using GMMs and DOMs, see the Supplementary Ma-
terial.

The simplified score representation given above can be
written in an expanded form by considering the Markov
framework used to model pairing state along transcripts.
Recall that the forward («; ;) and backward (8; ;) probabili-
ties are defined as the following, where ¢ represents hidden

score (z|y) = log
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states underpinning the observed data.
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Using product notation to simplify the transition and
emission probabilities between the forward and backward
terms, we can then write
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The final score for the target path z is the log-ratio of this
path probability with the inverse path probability. Thus,
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A score of zero indicates the target path and inverse path
are equally likely, and a positive score indicates the target
path is more likely (and vice versa). Locations with the high-
est scores are subsequently deemed most likely to harbor the
target motif.

To facilitate the comparative analysis of scores between
different motifs and datasets, scores were further processed
into c-scores as previously described (62) by normalizing
against a null distribution of scores estimated via sampling
of scores from locations which violate the sequence com-
patibility necessary for the motif’s base pairs (and therefore
can be presumed to not harbor the target motif). The re-
sulting ¢-scores are the —logjo of a P-value, meaning they
are strictly positive and theoretically have no upper bound.
That said, a ¢-score above 2 is intuitively considered a strong
indicator of the motif (corresponding to a P-value of 0.01),
with c¢-scores between 0.5 and 2 providing moderate evi-
dence in favor of the motif. Example SP data with real pat-
teRNA c-scores superimposed is illustrated in Figure 1B.

Posterior pairing probabilities

patteRNA computes posterior pairing probabilities as de-
scribed (61). Briefly, a parameterized GMM-HMM or
DOM-HMM model is utilized to compute emission like-
lihoods for each nucleotide, followed by the forward and
backward probabilities via the forward-backward algo-
rithm. Posteriors are then computed as the product of
the forward and backward probabilities and appropriately
scaled such that P(paired) + P(unpaired) = 1 for each nu-
cleotide. Note that this computation is a special case of the
path probabilities used during scoring; posteriors are anal-
ogous to path probabilities where the length of the target
path is simply a single state, either paired or unpaired.
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Hairpin-driven structure level (HDSL)

The hairpin-driven structure level (HDSL) is a nucleotide-
wise measure quantifying the local level of structure from
SP data. HDSL is initialized using posterior pairing proba-
bilities as computed by patte RNA. This profile is then aug-
mented using hairpin c-scores calculated by patte RNA. For
each detected hairpin with c-score >0.5, the value 0.2 - (c-
score — 0.5) is added to the profile at all nucleotides cov-
ered by the hairpin. After profile augmentation, profiles are
clipped to the interval [0, 1], and then profile smoothing
is achieved via a 5 nt sliding-window mean followed by a
15 nt sliding-window median to give the final HDSL pro-
file. Analogous approaches using just a sliding mean or just
a sliding median were also tested, but we found that the
best results were obtained when coupling the two summary
statistics together (data not shown).

The parameter values used in profile augmentation (e.g. a
slope of 0.2 and a ¢-score threshold of 0.5) were determined
by a grid-based optimization scheme seeking to maximize
the observed difference between HDSL for nucleotides
in well-folded segments of the SARS-CoV-2 genome and
HDSL for nucleotides outside of these regions (see Sup-
plementary Figure S3). In this context, well-folded seg-
ments were defined as low SHAPE, low Shannon entropy
regions as called by Manfredonia ef al. (33). The SARS-
CoV-2 genome was selected for this optimization as it is
distinguished from the other datasets by having both re-
gions of high structure and un-structuredness (compared to
the Weeks set, which is generally highly structured) in ad-
dition to a partially validated preliminary reference struc-
ture model (compared to the Mustoe or Corley data, which
lack reliable structure models). Note that the results shown
in Supplementary Figure S3 demonstrate a large region of
HDSL parameterizations which greatly improve the distinc-
tion between well-folded and less-folded segments over pos-
teriors alone (see top left cell of each heatmap in Supple-
mentary Figure S3 as approximately representing the use
of posteriors alone). In other words, other parameteriza-
tions arrived at similar results to the chosen parameteriza-
tion. Generally speaking, we observed that as the c-score
threshold is increased, the slope of augmentation must also
be increased in order to allow the reduced number of con-
sidered sites to sufficiently impact the final HDSL signal.
It is also important to note that smoothed pairing prob-
abilities on their own can serve as a meaningful measure
of local structure (without augmentation at detected hair-
pin elements). In tandem to HDSL, we explored the use of
smoothed P(paired) (pairing probabilities smoothed via a 5
nt rolling mean and 15 nt rolling median) when quantifying
structure trends to better understand the effects of hairpin
augmentation on the HDSL approach.

A flow chart illustrating the flow of information as
handled by patteRNA, including the relationship between
HDSL and the training and scoring phases, is included as
Figure 2. In summary, HDSL integrates patteRNA’s nor-
malized scores (¢-scores) for hairpins with posterior pairing
probabilities to arrive at a nucleotide-wise measure of struc-
turedness. Whereas hairpin c-scores (and non-normalized
scores) are assigned only at specific sites in the data which
satisfy the sequence base pairing requirements of a hairpin

motif, HDSL is computed at all nucleotides. This is because
all nucleotides are assigned a posterior pairing probabil-
ity via the GMM/DOM-HMM. Hairpin scores are used to
augment this profile to improve its relevance to local struc-
ture elements, but regions lacking any strong hairpins scores
are still assigned pairing probabilities and as such are as-
signed HDSL based on those outputs.

patteRNA training and scoring

All patte RNA analyses were performed with default train-
ing parameters (KL divergence for training set Dxy = 0.01,
convergence criterion ¢ = (0.0001, automatic determination
of model complexity, k, via Bayesian information criteria)
(62). With the exception of benchmarks investigating the ef-
fect of log-transforming data, log-transformed data were al-
ways used when using a GMM and non-transformed data
were used when using a DOM. Scoring for regular hair-
pins was achieved using the ‘--hairpins’ flag, computation
of HDSL profiles was achieved with the ‘--HDSL’ flag, and
computation of smoothed P(paired) profiles was achieved
with the ‘--SPP’ flag. Sequence constraints were always en-
forced when mining hairpin motifs.

Computation of statistical performance metrics

The accuracy of patte RNA to detect motifs is primarily as-
sessed through the receiver operating characteristic (ROC)
and precision-recall (PR) curves. These curves were com-
puted by varying a theoretical c-score threshold between
called positives and negatives and, at each threshold, com-
puting the true-positive rate (TPR /recall), false positive rate
(FPR) and precision (also referred to as positive predic-
tive value, PPV). A site is deemed a positive if all base
pairs in the target motif are also present in the correspond-
ing location of the reference structure. These performance
profiles are then visualized (ROC: FPR versus TPR, PR:
TPR versus PPV) and summarized using the area under
the curve (AUC) of the ROC and average precision (AP) of
the precision-recall curve. The Scikit-learn Python module
(v0.24) was utilized to perform these computations.

Simulated datasets and benchmarks

We generated simulated data for RNAs in the Weeks set
by sampling reactivities according to various state distri-
butions schemes (see Table 2). 50 replicates of each scheme
were generated for the performance benchmarks using in-
house Python scripts. patteRNA was then used the train
and mine the replicates for regular hairpins using the ‘pat-
teRNA ${SHAPE} ${OUTPUT} -f ${FASTA} [--GMM
or --DOM] - -hairpins’ command. The ‘-I’ flag was added
to use log-transformed data where applicable; training was
performed independently for each replicate. Overall perfor-
mance for a scheme was summarized as the mean of average
precisions for the 50 replicates.

Averaging and integrating HDSL over mRNA coding se-
quences

We delineated the regions surrounding the 432 genes in the
Mustoe data into four groups: (i) start site; £30 nt around
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Table 2. Parameters of state distributions used to generate artificial data on the Weeks set. GEV: generalized extreme value

Scheme name Paired distribution

Unpaired distribution

Heitsch distributions (69) Helix-end.:

Exponential distribution with 1 = 1.468

GEV(y = 0.09, 0 = 0.114, £ = —0.821)

Stacked.:

GEV(1 = 0.04, o = 0.040, £ = —0.763)

Gaussian / Gaussian (poor)
Gaussian / Gaussian (medium)
Gaussian / Gaussian (high)
Exponential / Gaussian
Exponential / Exponential

Gaussian distribution with u = 0,0 =1
Gaussian distribution with u = 0,0 =1
Gaussian distribution with u = 0,0 =1
Exponential distribution with A =2
Exponential distribution with A =2

Gaussian distribution with © = 0.5,0 =1
Gaussian distribution with u = 1,0 =1
Gaussian distribution with u =2,0 =1
Gaussian distribution with u =2,0 =1
Exponential distribution with » = 1/2

AUG, (i1) SUTR; —70 to —31 nt from AUG, (iii) 3° UTR;
+1 to +40 from STOP codon and (iv) coding sequences; +31
nt from AUG to the STOP codon. For the start site, SUTR,
and 3’'UTR, HDSL averages were taken at each aligned po-
sition as these groups each have a constant length. For sit-
uations where all regions might not exist for a gene, aligned
HDSL profiles were included in the analysis as far as the
nucleotide sequence allowed, and remaining positions were
treated as missing values and omitted from subsequent av-
eraging. For instance, if the SUTR was 50 nt (i.e. <70 nt),
those 50 nt were aligned with the corresponding locations
and the missing 20 nt upstream were treated as missing val-
ues. For coding sequences (which inherently have a non-
constant distribution of lengths), the profiles were interpo-
lated to a vector of length 300 to allow for aligned averaging
relative to the beginning and end of the window. About 99%
confidence intervals were computed using the Wald formu-
lation (mean HDSL + 2.576 - SE).

Footprinting SHAPE (fSHAPE) analysis

The Corley data comprise in vitro and in vivo icSHAPE
reactivities and footprinting SHAPE (fSHAPE) scores for

over 10 000 transcripts from two human cell lines, K562
and HepG?2 cells, respectively (32). For each cell type, re-
activities and fSHAPE scores were taken as the average
of two replicates for each condition following the work
by Corley et al.. Averaged reactivities from each condi-
tion were independently processed by patte RNA to train
a model, mine for regular hairpins, and compute HDSL
and smoothed P(paired) profiles. Structuredness profiles
for each condition-cell type were cross-referenced with the
fSHAPE data using Python scripts. Observed distributions
were compiled based on three fSHAPE data groups, as de-
fined by Corley et al.: high (fSHAPE > 2), moderate (2 >
fSHAPE > 0) and low fSHAPE (fSHAPE < 0).

Hairpin mining performance of NNTM partition function ap-
proach

We benchmarked the performance of partition function
approaches to detect hairpins in the Weeks set by us-
ing the ‘RNAsubopt’ command from ViennaRNA to gen-
erate 1000 structures for each transcript in the Weeks
set, using that transcript’s SHAPE data as soft con-
straints (‘RNAsubopt -p 1000 --shape ${SHAPE_FILE} <
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${SEQUENCEY}’). For each regular hairpin in the gener-
ated structural ensemble, a ‘score’ was assigned as the frac-
tion of structures in the structural ensemble which contain
the base pairs comprising that hairpin. Predicted hairpins
and their scores were processed into a receiver operating
characteristic and precision-recall curve as done for pat-
te RNA’s hairpin scores (see Computation of Statistical Per-
formance Metrics).

Local folding calculations

To measure the required compute time to process SP
datasets with a local partition function workflow, win-
dowed partition function calculations were performed using
the ‘RNAfold -p’ command from ViennaRNA (19). Three
schemes were utilized: windows of length 3000 nt, spaced
300 nt apart; windows of length 2000 nt, spaced 150 nt
apart; and windows of length 150, spaced 15 nt apart. In
each case, sequences within each window were parsed us-
ing custom Python scripts and then processed sequentially
with RNAfold. Only the time required to run RNAfold com-
mands was measured in timing benchmarks (no integration
of windowed outputs or post-processing were accounted
for). RNALfold benchmarks were performed using the de-
fault arguments of the command to process all sequences
in the Corley data sequentially. All timing comparisons in
this study were performed on an AMD Ryzen 9 5900X CPU
running Ubuntu 20.04 LTS.

RESULTS
Overview of patte RNA mining

To mine structure elements from SP data, patteRNA first
learns the statistical properties of the data via the train-
ing phase. The purpose of this procedure is to estimate
the distributions of reactivities associated with paired and
unpaired nucleotides, respectively, as well as the HMM’s
transition probabilities between paired and unpaired nu-
cleotides (Figure 1A). Training is unsupervised and has
been shown to accommodate diverse data distributions (see
Ledda et al. (61) for a complete description). With the
dataset characterized via its statistical model, patte RNA can
then mine for structural motifs.

Figure 1B demonstrates key concepts related to pat-
teRNA’s motif mining. When mining a particular structural
element (i.e. the target), sites which satisfy the sequence con-
straints necessary for the target’s secondary structure are
scored for their probing data’s consistency with its pairing
state sequence (61,62). Sites which do not satisfy sequence
constraints can also be scored; however, these sites are al-
most certainly all negatives and can therefore be discarded
(the only exception being the possibility of non-canonical
base pairs). Sequence constraints provide an important fil-
tering step at the start of a search; therefore, they were al-
ways enforced when utilizing patte RNA in this work. Sites
which harbor the target motif presumably have SP data con-
sistent with the desired state sequence and therefore score
highly. patte RNA’s overall objective is to identify sites har-
boring particular structural elements, such as hairpins, as
accurately as possible.

Hairpins comprise a significant portion of structural elements

To assess the plausibility of a hairpin-centric approach in
making general assessments of structure, we examined a di-
verse dataset of 22 RNAs with known structures (~10 000
nt) (61) to quantify the distribution of hairpins present as
well as the proportion of base pairs contained within hair-
pins. We refer to this dataset as ‘the Weeks set.” Analyzing
the 278 distinct hairpins in the Weeks set reveals that a ma-
jority fall within a narrow range of stem and loop lengths
(Figure 1C). Specifically, hairpins most frequently have loop
lengths between 3 and 10 nt, and stem lengths 15 nt or less.
In other words, although their properties are diverse, there
is a range of stem and loop sizes which represents a majority
of hairpins (83%). Later in the study will we leverage these
characteristic properties to focus our searches on this most
representative subset of hairpins.

Our results also illustrate that hairpins comprise a large
fraction of structural elements. We first focused on hair-
pins with no bulges or internal loops (i.e. unpaired stretches
flanked by some number of base pairs), which we call reg-
ular hairpins, and found that around 35% of paired nu-
cleotides reside in such structures (Figure 1D). If you also
consider hairpins with up to two bulges each with length up
to 5 nt, this coverage increases to over 50%. This suggests
that, although hairpins are only a subset of RNA structural
elements, they are indeed the most prevalent, and therefore
identifying them in SP data could provide a strong quantifi-
cation of general structural trends.

Understanding that the Weeks set is a small sample of
structures to draw conclusions from, we repeated this hair-
pin counting and quantification on a diverse set of 797
reference structures from the STRAND database (63) and
3935 reference consensus structures for RNA families in
Rfam (64), representing a more complete profile of struc-
tured RNA properties. The distributions of hairpins in these
datasets are shown in Supplementary Figure S4 and recapit-
ulate the observations from the Weeks set. The STRAND
data suggest that regular hairpins specifically comprise a
slightly larger fraction (40%) of structural elements than
is seen in the Weeks set (35%), while the Rfam data sug-
gest this fraction is slightly less (30%). We noted that the
Rfam data were slightly biased by an overrepresentation of
microRNA families, typically comprised by long (>20 nt)
stem-loops. As such, Supplementary Figure S4 also shows
the representation of hairpins in Rfam when microRNAs
are removed. In this case, we observe that hairpin trends
align closely to what is observed with STRAND and the
Weeks set, with approximately 35 to 40% of paired nu-
cleotides residing in regular hairpins.

One can further expand the definition of a hairpin to also
include the associated stems that extend from a hairpin el-
ement up to the first nucleotide that base-pairs outside of
the nested context of this element (see Supplementary Fig-
ure S2 for examples). We refer to these helices as external
stems and note that such motifs are prevalent in structured
RNAs. Figure 1C shows that relaxing the definition of a
hairpin to include external stems leads to over 80% cover-
age of paired nucleotides, with the remaining ~20% of base
pairs described by longer-range interactions—e.g., internal
stems (see dashed red frame in Supplementary Figure S2)



and pseudoknots. Although external stems are nevertheless
outside the scope of the patte RNA-based analysis that fol-
lows, this high coverage indicates that a large majority of
RNA structure can be represented as simple motifs with lo-
cal base pairing. Moreover, it’s important to note that virtu-
ally all types of canonical RNA structure motifs necessar-
ily exist in the context of hairpin elements—internal stems,
multibranch junctions, etc., only exist in the presence of
hierarchical domains which all terminate in a hairpin-like
fashion.

In the context of patte RNA, we note that there are prac-
tical limitations on the types of searches that can be per-
formed. Specifically, although structures comprised by in-
ternal loops, bulges and external stems are within the per-
mitted scope of minable motifs described solely by local
base pairing, the automated identification of such motifs
in SP data is computationally burdensome. This is due to
the combinatorial explosion of considered motifs associ-
ated with allowing for flexibility in the position and size of
internal loops and bulges. For instance, regular hairpins are
comprised by 96 distinct motifs (12 stem lengths and 8 loop
lengths), but regular hairpins with bulges (as defined in this
work) are comprised by a set of motifs with size >20 000
due to the many possible bulge locations and sizes within
each regular hairpin motif. Allowing for the presence of
various internal loops further increases the space of mo-
tifs by orders of magnitude. Although permitted by pat-
teRNA, such more comprehensive searches scale poorly to
transcriptome-wide applications. As such, the analyses that
follow generally focus on mining and assessment of regular
hairpins.

Simplified reactivity model improves accuracy of motif detec-
tion

In an attempt to improve patte RNA’s performance, we in-
vestigated alternative statistical models of reactivity and
their downstream effects on scoring accuracy. While the
GMM approach performs well, especially at the task of ap-
proximating the underlying state distributions, we encoun-
tered issues in motif scoring. Namely, reactivities from the
tails of the overall data distribution would be strongly pre-
dicted to be paired or unpaired. This isn’t an inherent prob-
lem, as the most extreme reactivities should theoretically be
the best candidates for confident prediction. However, these
reactivities present problems during scoring as they have the
propensity to dominate the score for sites they fall into. In
other words, a single extreme reactivity consistent with the
target state sequence could yield a high score for a site, even
if data within that site is otherwise inconsistent with the tar-
get (and vice versa). Generally speaking, for SP data such
as SHAPE, the most extreme reactivities are only about 3—
5 times more likely to be in one state over the other (67),
yet the GMM often arrives at likelihood ratios 10 or 100
times larger than this empirical ratio. Such predictions have
negative consequences on the interpretation of scores.
Motivated by these issues, we devised a simplified frame-
work for unsupervised learning of the state reactivity distri-
butions. It entails a discretized observation model (DOM)
which substitutes for the GMM component of the statistical
model (i.e. the emission probabilities), resulting in a DOM-
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HMM model of SP data. The DOM entails modeling re-
activities as a discrete distribution where they are binned
into classes based on percentiles. During training, pseudo-
counts are estimated for each class (E-step) and then utilized
in the M-step to infer the discrete reactivity distribution for
paired and unpaired states. A schematical comparison of
the GMM and DOM approaches is shown in Figure 3A (see
Materials and Methods and Supplementary Material for a
complete mathematical formulation).

We benchmarked the capacity of patteRNA to identify
regular hairpins in the Weeks set via the GMM and DOM.
We assessed their discriminatory power primarily via the re-
ceiver operating characteristic (ROC) and precision-recall
curve (PRC), which are shown in Figure 3B. Our results
indicate that the DOM approach improves both the area-
under-the-curve (AUC) of the ROC and the average preci-
sion (AP) of the PRC. Although the improvement to AUC
appears minor, average precision was increased from 0.48
witha GMM to 0.64 with a DOM. Precision is a crucial per-
formance metric in structure motif mining where the vast
majority of scored sites are negatives (even with sequence
constraints applied), so the improvements seen in the DOM
are important through this perspective. Notably, precision
at the highest scores is much better in the DOM compared
to the GMM, which is susceptible to numerous negatives at
the highest hairpin scores despite decent precision at moder-
ate scores. This is evidenced by the large fluctuations in pre-
cision at low levels of recall for the GMM (see the top left of
precision-recall plot in Figure 3B). The DOM approach, on
the other hand, is far more reliable for returning positive hits
at the highest scores. Figure 3B also includes a benchmark
for data-directed NNTM folding algorithms which shows
that patte RNA is, although improved via the DOM, gener-
ally unable to match the precision of RNA folding. Notably,
NNTM folding was performed with an ensemble-based ap-
proach, which, although much slower, outperforms a single
MFE calculation (61).

Importantly, the presented results show overall perfor-
mance on the collection of all regular hairpins, which is
comprised predominantly by motifs with shorter stems.
Shorter stems present a challenge to patteRNA, as fewer
base pairs render sequence constraints less effective in con-
trolling the number of negative sites considered in the anal-
ysis. When comparing performance on individual motifs,
however, we find that patte RNA matches the precision of
NNTM-ensemble methods for longer stems. In some cases,
such as hairpins with stem length 6 and loop length 7, it
even surpasses the performance of the NNTM approach
(see Supplementary Figure S5). We also observe a universal
trend for the DOM to outperform the GMM at the motif-
level, further validating its superior performance.

Not only does the DOM improve precision, but the
model itself is described by fewer parameters and trains
faster than a GMM. As seen in Figure 3C, faster training
is achieved in two distinct ways. First, the DOM generally
requires fewer EM iterations to converge. Second, EM iter-
ations are significantly faster. The latter is presumably due
to the DOM’s simpler M-step formulation, which reduces
to simple counting as opposed to the GMM which requires
multiplication and squaring to update the means and vari-
ances of each Gaussian kernel.
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Figure 3. A discretized observation model (DOM) of reactivity improves hairpin detection precision when compared to a Gaussian mixture model (GMM).
(A) Schematic illustration of GMM and DOM approaches in the content of parte RNA’s unsupervised learning scheme. The DOM is founded upon a
percentile-based discretization of reactivities which yields a discrete emission probability scheme. The discretization scheme it itself optimized during
training based on Bayesian information criteria (BIC) of models using progressively smaller bins. (B) Receiver operating characteristic curves and precision-
recall curves when mining regular hairpins in a reference dataset (‘the Weeks set,’ see text) with patte RNA using either GMM (blue) or DOM (orange)
approaches, or when using data-driven NNTM-based folding (green). (C) Timing benchmarks of unsupervised training via GMM and DOM on the Weeks
set. Shown are the number of EM iterations required for convergence on the Weeks set and time required for a single EM iteration. Five repetitions were

used when measuring EM cycle times.

Given the rapidly evolving field of structure probing and
disparate statistical properties of SP datasets (47), we also
investigated whether the benefits from the DOM generalize
to other data distributions. Different probes have different
quality (47,68), different conditions yield different quality
(47), and the quality of probes is constantly improving (69);
therefore, adaptability of methods is crucial. Benchmark
datasets like the Weeks set are not currently available for the
plethora of probes used, so we resorted to simulations. We
constructed several artificial datasets and benchmarked pat-
teRNA’s performance via the GMM or DOM approaches.
We sampled reactivities for the underlying structures in
the Weeks set according to various state distributions, in-
cluding empirically fitted distribution models from Siikosd
et al. (70), referred to as the Heitsch distributions, as well
as a collection of mock distributions with varying classi-
fication power (i.e. various degrees of separation between
the state distributions). For each scheme, 50 replicates were
created, and we benchmarked performance against both
the regular and log-transformed data. We note that the fi-
delity of the GMM is dependent on the Gaussianity of the
data, presenting a weakness of this approach as the deci-
sion to log-transform can have a major impact on scoring
efficacy.

The results of the benchmarks are shown in Table 3. Gen-
erally speaking, the DOM matches or exceeds the perfor-
mance of the GMM. Depending on the data properties, the
DOM’s performance gain ranges from minute to transfor-
mative. In only one of the benchmarks did the GMM out-
perform the DOM (poor quality Gaussian/Gaussian data),
and only by a small margin. This specific outcome might
be explained by the DOM’s simplification of SP data which
effectively clips extreme reactivities when discretizing the
data. In datasets of poor quality, the most extreme reactivi-
ties likely provide the only opportunity for reliable inference

on pairing state, so it’s possible that the relatively coarse
discretization scheme reduces the information content of
the data. Regardless, it’s worth noting that data of such
poor quality is uncommon, especially in light of on-going
improvements to experimental protocols and probe qual-
ity (8,10,69,71). Our results also demonstrate the adaptabil-
ity of the DOM and its robustness to non-Gaussian data,
which render the method broadly applicable. When using
the DOM, log-transforming is largely irrelevant to model
performance, as the discretization scheme is founded on
data percentiles. The lone exception to this rule is when han-
dling reactivities below zero, which are necessarily binned
together if data is log-transformed.

Overall, these results demonstrate the benefit of the
DOM approach in more efficiently and effectively mining
structures from SP data. Note, however, that the GMM still
provides a specific utility when one’s objective is to arrive at
continuous models of the state reactivity distributions (e.g.
to use for simulations, or for data inspection). patte RNA
includes both implementations such that the respective ap-
proach can be used depending on the intended use-case.

Summarizing structuredness in RNAs from hairpin detection

As hairpins comprise a large fraction of structural elements,
we sought to utilize patte RNA to quantitatively summarize
local ‘structuredness’. Due to the plethora of cellular pro-
cesses affected by RNA structures, there are numerous con-
texts in which summarizing local structure is important. To
name a few examples, one might wish to find structural do-
mains and druggable pockets in viral genomes (29,33,72),
quantify connections between mRNA structure and gene
regulation (43,48,51-54,61,73-75), identify transcriptome-
wide where RNA is differentially affected by particular
stimuli (32,76), or compare structure between conditions
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Table 3. Average precisions of patte RNA for hairpin mining when utilizing a Gaussian mixture model (GMM) or discretized observation model (DOM) of
reactivity against various artificial data schemes (see Table 2). For all benchmarks, average precision was averaged over 10 replicates. Bold entries highlight

the best performing approaches for each scheme. AP: average precision.

Mean AP
Data Scheme GMM GMM (log data) DOM DOM (log data)
Heitsch Distributions 0.43 0.58 0.63 0.63
Gaussian / Gaussian (poor) 0.32 0.36 0.34 0.34
Gaussian / Gaussian (medium) 0.48 0.48 0.49 0.49
Gaussian / Gaussian (high) 0.70 0.62 0.70 0.70
Exponential / Gaussian 0.58 0.55 0.71 0.71
Exponential / Exponential 0.52 0.57 0.57 0.57

and/or logical regions of genomes (1,30,77). The most pop-
ular approach for quantifying structuredness relies on a
combination of two metrics: local reactivity and local Shan-
non entropy. Local reactivity is generally computed via
a rolling mean or median with windows ranging 25-500
nt, while local Shannon entropy derives from base-pairing
probabilities computed via NNTM folding routines. The
combination of these two metrics yields regions which are
largely unreactive (i.e. base paired) and stable (i.e. tending
to adopt one conformation). We note that each metric by it-
self is generally insufficient in this context, as low reactivity
regions sometimes include regions which see multiple com-
peting conformations (but are nevertheless highly paired),
and low Shannon entropy can also be observed for regions
which are preferentially single stranded.

To integrate patteRNA’s results into a quantification of
structuredness, we propose a nucleotide-wise measure we
term the hairpin-derived structure level, or HDSL. At the
highest level, HDSL combines patte RNA’s computed base-
pairing probabilities with information from searches for
regular hairpins. This allows us to consider the locations
of stable hairpins in addition to the overall pairing propen-
sity of regions, the former of which typically does not ac-
count for all structured regions (e.g. internal and external
stems, stems with bulges or stems with non-canonical base
pairing). Briefly, the posterior pairing probabilities are used
as a starting point. We use posteriors as a basis because
such a probabilistic interpretation provides a calibrated rep-
resentation of reactivities that intrinsically handles outliers
and enables quantitative comparisons between different SP
datasets (78). They are then amplified at nucleotides cov-
ered by highly scored hairpins, depending on the hairpin c-
score—the higher a hairpin is scored, the larger the boost.
We refer to this step as the augmentation phase. The profile
isclipped to [0, 1]and then locally smoothed by taking a 5 nt
rolling mean followed by a 15 nt rolling median (see Figure 2
and Materials and Methods for a complete description). In
summary, HDSL integrates posterior pairing probabilities
with the locations of detected regular hairpins to arrive at a
nucleotide-wise measure of structuredness that is mindful of
local structure elements. Whereas c-scores quantify the like-
lihood for specific sites in the data to harbor a specific struc-
ture motif, HDSL is computed at all nucleotides and con-
siders a representative collection of 96 regular hairpins si-
multaneously. This is because all nucleotides are assigned a
posterior pairing probability via the GMM/DOM-HMM,
and as such, all nucleotides can be assigned HDSL. This
is distinct from c-scores which are only assigned at sites in
the data which satisfy the sequence constraints necessary for

the considered targets. We explored the properties of HDSL
and validated its utility as an indicator of local structure
by applying it to recent datasets that were previously used
to assess local structuredness in diverse contexts. Moreover,
we also explored the use of locally smoothed pairing prob-
abilities, referred to as smoothed P(paired), as a measure
of structuredness derived in the same manner as HDSL but
without the augmentation phase. Examining the differences
between these measures serves to highlight the contribution
of hairpin augmentation when summarizing structuredness
with HDSL.

HDSL versus smoothed P(paired) demonstration

The HDSL approach is demonstrated on a representative
region of SARS-CoV-2 in Figure 4. At the foundation of
the measure are posterior pairing probabilities computed
by patte RNA, which for the demonstration in Figure 4 were
obtained from analysis of in vivo SHAPE-MaP data (33).
These profiles are then augmented (increased) at the loca-
tions of detected regular hairpins (Figure 4A). This step
serves to reinforce the structuredness of regions contain-
ing hairpin elements, which typically appear as a high-low-
high signal from the perspective of raw pairing probabili-
ties. After augmentation, the profile is smoothed via a local
mean (5 nt) followed by local median (15 nt) approach (Fig-
ure 4B). The structure model of this region as proposed by
Manfredonia et al. is shown in Figure 4C.

There are three predicted hairpins within this region, and
they are all scored highly by patte RNA. Therefore, pairing
profiles are significantly amplified at nucleotides in these ar-
eas (indicated by blue boxes in Figure 4). This has the ef-
fect of elevating unpaired nucleotides in hairpin loops from
low P(paired) (which contributes ‘unstructuredness’ to the
region from the perspective of local pairing) to a higher
magnitude in the augmented profile. The downstream effect
of augmentation on quantifying local structure is observed
when comparing HDSL to smoothed P(paired) (pairing
profiles smoothed analogously to HDSL). As seen in Fig-
ure 4B, which shows smoothed versions of the profiles in
Figure 4A, examining pairing probabilities alone can obfus-
cate interpretations of structuredness. This is because loops
within stable hairpins are readily predicted to be unpaired.
As such, they reduce the local average pairing probability
profile (see gray smoothed P(paired) profiles within blue
boxes). HDSL rectifies this by overriding the ‘low structure’
of hairpin loops during the augmentation phase by apply-
ing an increase to the pairing profile of the hairpin before
smoothing.
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Figure 4. HDSL approach and association with structured regions in viral RNA genomes. (A) Pairing probabilities for a representative region of SARS-
CoV-2 as computed by patte RNA superimposed with the profiles after augmentation with detected hairpins. (B) Locally smoothed profiles from (A); local
smoothing is achieved with a 5 nt rolling mean followed by a 15 nt rolling median. Smoothed P(paired) correlates weakly with structured elements of
the region due to the unpaired nature of hairpin loops. Conversely, HDSL portrays a more relevant picture of local structuredness by accounting for the
fact that some unpaired regions (i.e. hairpin loops) are within a stable structural context. (C) Secondary structure model of the region as proposed by
Manfredonia et al. with hairpins detected by patte RNA indicated in blue boxes. (D) Discrimination between structured regions (low SHAPE, low Shannon
entropy or ‘LS/LSE’) and non-structured regions via HDSL and smoothed P(paired) for five data replicates across SARS-CoV-2 (33) and HIV-1 (65).
Both measures correlate strongly with structured regions, although the augmentation step underpinning HDSL drives a stronger difference between the
considered regions. This is evidenced by larger median differences (A) and smaller P-values (Mann—Whitney U test) between the considered regions when

using HDSL over smoothed P(paired).

patteRNA’s hairpin detection scheme is imperfect, which
can yield situations where an applied augmentation im-
properly models the local structure. For example, patte RNA
may falsely predict a hairpin that does not stably fold. This
would lead to an unjustified boost in HDSL for its nu-
cleotides. This can be seen in Figure 4A, where between the
first and second hairpin there are several plausible hairpins
scored moderately (0.5 < c-score < 1.5), strong enough to
be included in the augmentation step. The pairing profile of
the area is subsequently augmented, although only slightly.
The magnitude of the boost depends on the c-score of the
hairpin, so moderately scored hairpins tend to drive only
small boosts. This has the effect of restricting major aug-
mentations to nucleotides in the most confidently detected
hairpins (where patteRNA has the highest precision). Al-
ternatively, a true hairpin may be missed, leading to non-
augmentation at a stable structural element. In the absence
of any detected hairpins for a region, HDSL amounts to a
smoothed pairing probability profile. Thus, even when true
hairpins are missed by the scoring phase, pairing probabil-
ities “fill in the gaps’ and measure structuredness on their
own. Nevertheless, such regions would remain susceptible
to the issue associated with stable unpaired loops when
quantifying structure via P(paired) alone.

HDSL verification

We used HDSL to measure structuredness across the
SARS-CoV-2 and HIV-1 genomes as probed by Manfredo-

nia et al. (33) and Siegfried et al. (65), respectively. We chose
these two genomes as they are characterized by structured
and unstructured regions as determined via low SHAPE
and low Shannon entropy, referred to as LS/LSE regions.
They also have high-quality probing data from different
conditions and reagents as well as state-of-the-art struc-
ture models. In total, these data provide five profiles across
two viral genomes, enabling a robust investigation of how
HDSL and smoothed P(paired) correlate with structured
regions.

Using both HDSL and smoothed P(paired), we calcu-
lated the difference in the medians of the measures be-
tween LS/LSE regions and non-LS/LSE regions (A) and
computed P-values between the two distributions (Mann—
Whitney U tests) to quantify the overall discriminatory
power. The results of our analysis demonstrate that HDSL
associates more strongly with structured regions than
smoothed P(paired) alone (Figure 4D). LS/LSE regions
unsurprisingly have higher average smoothed P(paired)
than non-LS/LSE regions, as one criterion in determin-
ing the former was low SHAPE. The discrimination be-
tween LS/LSE and non-LS/LSE regions is increased, how-
ever, when utilizing HDSL. In all analyses, we observed that
the difference between the median of the two groups was
larger with HDSL and the corresponding P-value smaller.
This demonstrates that the augmentation of pairing profiles
with detected hairpins can improve discrimination between
structured and non-structured regions.



We continued our analysis of the Manfredonia data by
inspecting in vivo and in vitro HDSL profiles in more detail.
First, we characterized the consistency of patteRNA’s de-
tected hairpins with the structure model proposed by Man-
fredonia et al. We took the published structure model as
ground-truth, searched for all predicted regular hairpins,
and quantified the accuracy of patte RNA via the ROC curve
(Figure 5A) and PRC (Figure 5B). Our results reveal a very
strong agreement between detected and predicted hairpins,
as evidenced by AUCs around 0.89 and APs of 0.70. Next,
we inspected HDSL profiles around the SUTR and ob-
served trends consistent with currently accepted structure
models (see Figure 5C) (33,79-82). Namely, HDSL is high
at known stable stem-loops, such as SL2, SL4, SL5A/C,
SL7 and SL8. A weaker signal is found at SL6, which also
shows differential structuredness between in vitro and in vivo
data. Comparative analysis, in vivo RNA-RNA interactions
(80), and multiple probing datasets (33,79) support the pres-
ence of this element. However, mutagenesis studies on a
related coronavirus, murine coronavirus (MHV), demon-
strated that disrupting this stem loop did not significantly
affect virus viability (83). Given that SL6 is within ORF1ab,
it is possible that the element is transient in nature. That
said, NMR experiments concluded SL6 stably forms and
additionally measured a significantly larger internal loop
than was predicted with in silico structure models (82). The
internal loop, also identified as a major binding site for
the N protein, appears to be responsible for high reactivi-
ties and the observed differential structuredness of SL6 be-
tween in vitro and in vivo data. Similarly, for SL3, although
comparative sequence analysis and NNTM-based folding
with in vitro data suggest the presence of this stem-loop, in
vivo data does not agree with its presence (33,79). NMR in-
vestigations concluded that the stability of the element is
strongly influenced by ionic conditions (82), and studies on
RNA-RNA interactions suggest that this stem loop is un-
folded in vivo to facilitate genome cyclization, as the region
is involved in a long-range interaction with the 3'UTR (80).
As such, differential structuredness between in vitro and in
vivo conditions is consistent with current understandings of
the stem-loop element. Finally, we observe relatively low
HDSL for SL5B, an element confirmed via RNA-RNA in-
teractions (80) and NMR (82). NMR studies, however, sug-
gest that the upper part of the stem is destabilized at phys-
iological temperatures by the presence of SL5C. The pres-
ence of a bulge and high reactivities near the apical loop of
SL5B subsequently result in attenuated HDSL observations
around this element, as the structure scores poorly for the
regular hairpin motifs considered by patte RNA when sum-
marizing structuredness. Although a complete analysis of
the SARS-CoV-2 genome is beyond the scope of this study,
full HDSL profiles for the two conditions are included in
Supplementary Figure S6.

Lastly, we investigated the association between Shan-
non entropy and the following: SHAPE reactivities, pairing
probabilities from patteRNA, and HDSL (Supplementary
Figure S7). Our results show that reactivity is loosely corre-
lated with Shannon entropy, yet pairing probabilities corre-
late slightly better despite a sizable collection of nucleotides
with low P(paired) and low entropy. However, HDSL shows
an even stronger correlation, suggesting that it reflects some
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aspects of structural stability better than the former mea-
sures. Finally, our results on the SARS-CoV-2 genome in-
dicate that HDSL profiles retain sufficient resolution to ca-
pitulate locations of specific structural elements (e.g. indi-
vidual stem-loops in the SUTR), boding for the plausible
use of our measure to assist in more detailed analyses of
regions in addition to quantifying local structuredness.

The application of HDSL on these data allows for the
unique opportunity to benchmark it against previously
characterized transcripts with both structured and unstruc-
tured regions. In that context, we remark that HDSL was
developed with the intention of assisting in global structure
quantifications and comparisons rather than a tool for de
novo detection of structured regions. Nevertheless, our re-
sults suggest it could also provide utility for de novo applica-
tions. In such cases, structured regions could be detected by
defining criteria based on high HDSL that persists across
long spans of nucleotides (e.g. over 50 nt). Structured ele-
ments of the SARS-CoV-2 and HIV-1 genomes are typically
associated with long stretches of HDSL >0.8. We recom-
mend thresholds around this value when seeking to identify
structured regions. When quantifying changes in structure,
however, the use of HDSL is more flexible. Depending on
the specific application and degree of structure in the RNAs
being studied, the magnitude of HDSL should be consid-
ered in addition to any relative changes in it across differing
cellular conditions or logical transcript regions. Compara-
tive analyses of HDSL are demonstrated in the following
sections.

Trends in detected hairpins recapitulate known mRNA dy-
namics in E. coli

We analyzed the set of 197 mRNA transcripts (comprising
432 genes) in E. coli probed in vitro, in vivo, and in vivo +
kasugamycin with SHAPE-MaP by Mustoe et al. (30). In
addition to Mustoe et al’s analysis, previous studies have
demonstrated that mRNAs fold differentially in cells com-
pared to in vitro (50,73,77,84). In vivo mRNAs have been ob-
served to be less structured than their in vitro counterparts,
with the magnitude of structural changes correlated with
translation (31,85). These effects have been observed most
strongly in the context of the SUTR and CDS of highly ex-
pressed genes. Conversely, structural changes have also been
observed around the 3'UTR, but evidence demonstrating
both a decrease (84) and increase (85) in structures has been
published in the literature, possibly correlating to the degree
of post-transcriptional regulation of transcript decay (85).
We applied HDSL to Mustoe et al.’s data and investigated
to what degree our measure reveals structural changes along
mRNA transcripts in a prokaryotic organism like E. coli.
The results of our analysis are compiled in Figure 6. In
Figure 6A, we compare averaged HDSL profiles over the
432 genes included in the study between in vitro and in vivo
conditions. The averaged HDSL profiles are delineated into
three groups: nucleotides near the start site (AUG = 30 nt),
nucleotides within the coding sequence (at least 31 nt down-
stream of AUG) and nucleotides in UTRs (¥ UTR: 31-70
nt upstream of AUG; 3’UTR: first 40 nt after STOP). Our
results demonstrate that, as expected, UTRs are generally
the most structured regions of the transcripts. They also
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Figure 5. HDSL demonstrates correlated and differential structuredness between in vitro and in vivo SHAPE experiments on SARS-CoV-2 by Manfredonia
etal. (33). (A and B) Receiver operating characteristic curves and precision-recall curves for patte RNA’s detected hairpins. Overall. parte RNA readily detects
hairpins in the genome with moderate to strong precision. (C) HDSL profiles for the SUTR of SARS-CoV-2 in vitro and in vivo with low SHAPE, low
Shannon entropy (LS/LSE) regions (called by Manfredonia et al.) indicated in red. Gray regions indicate no data.

show a strong intrinsic effect for mRNA to be relatively
less structured around the start codon in both conditions.
Moreover, in vivo data show that factors in this condition
work to further unfold structures around the start site, as
HDSL is significantly lower around the start codon in vivo
than in vitro. Interestingly, we did not detect a strong sig-
nal for structures in coding sequences (AUG+31 nt onward)
to be de-structured overall when accounting for the region
around the start codon separately. It is worth noting that the
reduction of HDSL around the start of coding sequences
in the in vivo condition is only detected if the area around
the start codon is delineated separately from the UTRs and
CDS. Figure 6B shows the global HDSL trends in logical
mRNA regions when (i) delineating start sites from UTRs
and CDS and (ii) delineating based solely on CDS/UTR
boundaries. Our results indicate that HDSL is significantly
different between the conditions only in the region proxi-
mal to start codons. This contrasts with the original analy-
sis by Mustoe et al. which did not consider start sites sep-
arately (i.e. considered only CDS versus non-CDS), con-
cluding that coding sequences are relatively less structured
in cells based on a slight increase in reactivities in vivo ver-
sus in vitro for nucleotides in CDS (demonstrated via re-
activity scatterplot comparison of the two conditions and
a fitted linear model slope >1). Our analysis suggests that
global changes to reactivity profiles within CDS between
conditions are not significant, yet effects specific to the start
codon region are significant. These effects are likely par-
tially responsible for previous inferences on in vivo struc-
ture dynamics. Notably, the specific relevance of structure
around this region of mRNA transcripts has been observed
and recognized as important in several other studies on or-
ganisms of varying genetic complexity (45,46,50,86).

To further substantiate the effects we observed, we
checked the similarity of patte RNA’s detected hairpins for
each pairwise comparison of the three conditions included
in the original study. Ideally, in the absence of significant
structural remodeling between two conditions, we expect to
find the same hairpins in both. On the other hand, if two

conditions are substantially different, we expect to see larger
differences in the hairpins detected by patte RNA. Searching
for the aforementioned set of regular hairpins (see Hairpins
Comprise a Significant Portion of Structural Elements) and
using a c-score threshold of 1 to indicate a ‘detected’ hair-
pin, we computed the fraction of hairpins reproducible in
both conditions of each comparison (Figure 6C). We see
that in vivo and in vivo + kasugamycin have the highest level
of hairpin conservation (<10% of detected hairpins are not
present in both conditions, meaning >90% similarity in de-
tected hairpins). This high similarity serves as a basic qual-
ity control measure, as the in vivo + kasugamycin condi-
tion, although affected by changes to translation initiation,
is nevertheless highly similar to the in vivo condition. On the
contrary, comparing in vivo to in vitro data shows that 20%
of detected hairpins are unique to one condition. The very
high level of similarity between in vivo and in vivo + kasug-
amycin reaffirms that the differences observed in Figure 6A
between in vivo and in vitro reflect real differential effects,
rather than the impact of biological variation or artifacts
from patte RNA’s imperfect hairpin detection scheme.

To further investigate the differences between the con-
ditions around start codons, we visualized the condition-
wise correlation of HDSL for all nucleotides within this
region (Figure 6D). We detected a tendency in this area
for the most structured regions in vitro to remain struc-
tured in vivo (see top right of distribution, which is tightly
concentrated around the diagonal). The density of HDSL
in Figure 6D does reveal a tendency for HDSL to be re-
duced in the in vivo condition, but mostly for regions with
moderate HDSL in vitro. Thus, the overall de-structuring
effect from Figure 6A appears to be driven by unfolding
of moderately structured regions. Figure 6E compares the
HDSL distribution between in vitro and in vivo at the adeno-
sine residue of the start codon. There is a noticeable re-
duction in HDSL in the in vivo condition (P < 1 x 1079,
Wilcoxon signed-rank test), presumably driven by transla-
tion and possibly other cellular effects destabilizing mRINA
structure, as discussed above. There is also a noticeable re-
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(430 nt, red), within the coding sequence (AUG+31 to STOP), and 5°/3'UTRs (black). Gray area indicates the 99% CI of mean HDSL (Wald interval,
see Materials and Methods). Dot-dashed lines indicate mean HDSL over all nucleotides in each condition. (B) HDSL trends between in vitro and in vivo
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the region around start codons separately from CDS and UTRs reveals a signal occluded by the other delineation scheme. (C) Hairpin divergence (fraction
of patte RNA-detected hairpins unique to one condition) for the three pairwise comparisons between in vivo, in vitro, and in vivo + kasugamycin conditions.
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test); *** indicates P < 1 x 10719 (Mann-Whitney U test).

duction in HDSL near the start of the 3'UTR (Figure 6F,
P <1 x 107% Wilcoxon signed-rank test), although this
effect disappears on average for nucleotides farther away
from the end of the coding sequence (see Figure 6A). Over-
all, our results demonstrate that HDSL can rapidly mea-
sure local structure and gives results consistent with prior
analyses.

Finally, it is worth mentioning that similar results were
also obtained by using smoothed P(paired) to assess struc-
ture without augmentation (see Supplementary Figure S8).
However, HDSL highlights specific changes around the
start codon more strongly than smoothed P(paired). Specif-
ically, we found a very low level of augmentation in the in
vivo condition around start codons, especially compared to
a larger augmentation in vitro around this area. In other
words, although both smoothed P(paired) and HDSL ca-
pitulated that there is a reduction in structure in vivo around

the start codon of genes, the condition-wise effect was high-
lighted more strongly with HDSL. Quantitatively, this is ob-
served as a significantly smaller P-value comparing HDSL
around start codons (P < 1 x 107! Mann-Whitney U
test) than the P-value when comparing with smoothed
P(paired) (P < 1 x 107>°, Mann-Whitney U test).

RBPs Bind RNA at structured regions

Corley et al. (32) devised a novel experimental procedure
called fSHAPE which can detect RNA nucleotides en-
gaging in hydrogen bonding with RNA-binding proteins
(RBPs). fSHAPE works by chemically probing RNA tran-
scripts in the presence and absence of native binding factors,
then quantifying the degree of modification change between
the two conditions. Nucleotides bound by RBP would pre-
sumably be more reactive in the absence of binding fac-
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tors, which translates to a high fSHAPE score. Integrat-
ing fSHAPE information with standard reactivity profiles
therefore allows one to examine the structural context of
RBP binding sites. In this regard, Corley et al. performed
icSHAPE in tandem with fSHAPE to perform such analy-
ses transcriptome-wide on human cell lines (K562, HepG2
and HeLa). Their work showed that nucleotides with high
fSHAPE scores tend to fall in areas with relatively low
Shannon entropy when compared to the regions flanking
them, allowing them to conclude that RBP tend to asso-
ciate with RNA in the general context of stable structured
regions.

We sought to use HDSL to address the same question,
namely, is there a structural context characteristic to RBP
binding? To this end, we processed their icSHAPE data
with patte RNA, mined for regular hairpins, and computed
HDSL profiles. We first investigated what association ex-
ists, if any, between high fSHAPE nucleotides and pair-
ing probabilities as computed by patte RNA’s DOM-HMM.
Simply put, we found that nucleotides with high fSHAPE
(fSHAPE > 2) are almost unanimously unpaired (Figure
7A), while nucleotides with low fSHAPE follow a distri-
bution encompassing both states yet biased towards paired
states (P < 1073%7 for all low/high fSHAPE comparisons
in Figure 7A, Mann—-Whitney U test). The association of
high fSHAPE with unpaired nucleotides recapitulates what
Corley et al. demonstrated with pairing probabilities com-
puted via partition function approaches. It also verifies that
patte RNA appropriately models the reactivity data and re-
iterates that fSHAPE is designed to detect RBP footprints
predominantly at unpaired nucleotides.

However, despite the ubiquitous accessibility observed at
single nucleotides with high fSHAPE, when one expands
the considered context to the nucleotides’ local neighbor-
hood (i.e. via smoothed P(paired) or HDSL analysis), one
observes evidence suggesting a structured context of RBP
footprints. This is weakly demonstrated with smoothed
P(paired) (Figure 7B), which is marginally higher at high
fSHAPE nucleotides in 3 of 4 comparisons performed. In
contrast, the structural context of RBP interactions is more
readily seen from the perspective of HDSL (Figure 7C).
With HDSL, we observe significantly more local structure
around nucleotides with high fSHAPE compared to nu-
cleotides with low fSHAPE (Figure 7C). This result is con-
sistent with results from NNTM analyses performed by
Corley et al., whose interpretation again depended on the
computation of Shannon entropy. Our results were achieved
without any folding steps and are more statistically sig-
nificant (P < 1073%7 for all low/high fSHAPE compar-
isons in Figure 7C, Mann—Whitney U test) than originally
demonstrated. They were also generated orders of magni-
tude faster than a comparable NNTM approach, as we will
show next. We note that current approaches for summariz-
ing local structuredness from SP data alone, specifically lo-
cal median reactivity, are generally insufficient for reaching
this conclusion (see Supplementary Figure S9). This high-
lights the capability of our method to extract more infor-
mation from big SP datasets without relying on the addi-
tional assumptions and computational overhead of thermo-
dynamic modeling.

patteRNA processes large data rapidly

An especially appealing property of patteRNA is its abil-
ity to process big datasets rapidly. To demonstrate its speed
in the context of existing methods, we timed our analyses
and compared to partition function-based assessment of
structure. To this end, we processed the Weeks set, SARS-
CoV-2 genome, Mustoe data, and Corley data with three
sliding-window partition function analyses of varying com-
putational overhead: partition function calculations with
windows of length 3000 nt, spaced 300 nt apart; win-
dows of length 2000 nt, spaced 150 nt apart, and windows
of length 150 nt, spaced 15 nt apart. The results of the
benchmarks are in Supplementary Figure S10. We observe
that patteRNA is orders of magnitude faster than sliding-
window partition function analysis for massive datasets
(e.g., SP data on human transcriptomes). Specifically, pat-
teRNA processed the largest dataset included in this study,
the Corley data, in <1 h when using a single-threaded im-
plementation (compared to roughly 1 and 7 days for parti-
tion function calculation via 150 nt and 2000 nt windows,
respectively; 3000 nt window calculations on the Corley
data were not performed as they could not be completed
in reasonable timeframe). Additionally, our method is na-
tively parallelized, and benchmarks using 12 threads allow
patte RNA to process such data in <10 min. Analogous par-
allelization of partition function-based approaches on large
batches of RNA transcripts is relatively simple in theory,
but not natively provided ‘out-of-the-box’ for ViennaRNA
(meaning it’s up to the user to program their own paral-
lelized calls to the relevant methods). An alternative RNA
folding package, RNAstructure (21), does provide scalable
parallelization out-of-the-box, but the core folding imple-
mentation is about one to two orders of magnitude slower
than ViennaRNA. The method was therefore not included
in our comparison.

We also compared our method to RNALfold (87), an op-
timized routine within the ViennaRNA package designed
to rapidly scan long RNAs for locally stable structural el-
ements. As expected, we found that this method is capable
of processing large data significantly faster than the sliding-
window partition function approaches, yet it is nevertheless
outpaced by patte RNA. Moreover, this method only returns
structural elements with sufficiently low free energy (‘signif-
icantly low’ energies judged via an SVM) and, to the best
of our knowledge, has not been well-benchmarked against
reference structures. Furthermore, RNALfold does not at-
tempt to integrate its results to summarize local structured-
ness, which is key to the type of comparative analyses per-
formed in this study and a central theme of a broad range
of recent SP-based studies (32,47,84,85). Nevertheless, this
method arrives at a more specific and comprehensive de-
scription of local structures (i.e., it can de-novo identify
stems with bulges and internal loops), whereas patte RNA’s
analyses here focus specifically on hairpin elements. We
note that the incorporation of such local folding routines
would likely improve the efficacy of future methods aiming
to summarize local structure in large SP datasets, and our
results show promising evidence that localized folding can
be incorporated without major sacrifices to computational
speed.
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Figure 7. patteRNA demonstrates a strong association between RNA structure and RBP binding sites in human cell lines probed as by Corley et al. (32).
(A) Paired probability box-violin plots (determined from icSHAPE reactivities via patte RNA’s DOM-HMM) for nucleotides with low fSHAPE (fSSHAPE
< 0) and high fSHAPE (fSHAPE > 2). Within each of the two cell lines, K562 and HepG2, results are presented for both in vitro and in vivo SHAPE
data. (B) Smoothed P(paired) box-violin plots for nucleotides under the same conditions as (A). (C) HDSL box-violin plots for nucleotides under the
same conditions as (A). Although reactivities indicate that nucleotides with evidence of RBP binding (i.e., nucleotides with high fSHAPE) are remarkedly
accessible and therefore likely unpaired, HDSL demonstrates that these reactive nucleotides more frequently occur in the general context of structured
regions when compared to nucleotides with low fSHAPE. Similar results are observed when utilizing smoothed P(paired) to assess structuredness, though

the results achieved with HDSL portray a clearer association between RBP footprints (high fSHAPE score) and structured regions. P < 10~
low/high fSHAPE comparisons in panels (A) and (C) (Mann—-Whitney U test).

DISCUSSION

RNA structure probing experiments are rapidly evolving in
terms of their design, scale and quality. This evolution is
accompanied by a need for versatile and scalable methods
capable of extracting information from diverse and mas-
sive SP data. patteRNA is one such tool which was devel-
oped to rapidly extract insights from such data. Here, we
have demonstrated reformulation of the patteRNA frame-
work which increases its speed, adaptability and precision,
enabling it to scale well to data containing millions or bil-
lions of nucleotides. Moreover, we have shown that RNA

307 for all

structure can be rapidly quantified and compared in vari-
ous contexts by detecting the signatures of hairpin elements.
Our work expands the repertoire of analyses which pat-
teRNA is capable of and demonstrates the power of sim-
pler schemes when interpreting reactivity information. As
seen with our benchmarks using a DOM approach, rela-
tively low-resolution discretization schemes (akin to those
used to highlight low/medium/high reactivities when visu-
alizing SP data) are valuable when quantifying and min-
ing motifs. We also demonstrated that structuredness quan-
tifications can benefit from an assessment of the locations
of stable hairpin elements. HDSL correlated strongly with
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structured regions and recapitulated structure trends in
RNA genomes and mRNA transcripts. We also found that
patteRNA’s pairing probabilities alone, when judiciously
smoothed, can be a useful measure of structuredness, and
for this reason patteRNA gives users the option to com-
pute smoothed P(paired) or HDSL. Although we showed
that HDSL better highlights certain structure trends than
smoothed P(paired), we remark that smoothed P(paired)
does not depend on a hairpin search and therefore can be
computed even more rapidly than HDSL. As such, some
users may find this option suitable in situations where data
is large or where a more interpretable measure of base pair-
ing is desired.

In the context of RNA structure determination, we note
that patteRNA is not envisioned as a competing method
or replacement to traditional NNTM-based approaches.
Rather, we view the method as a tool to be used in tan-
dem to RNA folding. As seen in Figure 3, NNTM-based
ensemble methods provide a far more accurate prediction
of specific structures and are capable of assessing the entire
structure landscape including bulges, internal loops and in-
ternal stems. The analyses via patte RNA shown here, on the
other hand, intentionally compromise on the type of struc-
tures considered in the analysis in order to maximize the
speed and scalability of the approach. This is evidenced by
the relatively lower sensitivity of our method when com-
pared to NNTM-based partition function analyses (Fig-
ure 3B). It’s worth noting, however, that HDSL handles
the low sensitivity of hairpin detection by utilizing poste-
rior pairing probabilities to quantify structure in regions
where no highly scored hairpins are found. In other words,
structured regions which house no detected hairpins are still
likely to see high HDSL assuming local reactivities are mod-
erately low. It’s also worth mentioning that, although over-
all sensitivity on the representative set of hairpins bench-
marked was relatively lower than NNTM-based ensemble
approaches, benchmarks for individual motifs (Supplemen-
tary Figure S5) reveal that patte RNA’s c-scores are capable
of matching and outperforming partition function analyses
for hairpin motifs with longer stems. In summary, although
HDSL considers a partial landscape of detected hairpins
as provided by c-scores, the formulation is driven primar-
ily by the most confident hairpin predictions, resulting in a
measure of structure significantly more correlated to Shan-
non entropy than local reactivities or pairing probabilities
alone (Supplementary Figure S7). Nevertheless, the sensi-
tivity of hairpin detections underpinning the method leaves
room for improvement, for example, by combining simple
thermodynamic assessments of local structure (88). As a
consequence of these compromises, patte RNA is most use-
ful when assessing structure properties in large-scale data.
For instance, as we demonstrated, it could be utilized to
quantify macroscopic structural trends related to specific
regions, or it could be used to identify regions of RNA
which see differential structuredness associated to some fac-
tor, which might then be followed by more intensive RNA
folding approaches (e.g. partition function computation).
In this way, patte RNA helps mitigate the computational lim-
itations of such methods, especially for those who do not
have advanced computing hardware at their disposal. Fi-
nally, although analyses in this study generally focus on

using patteRNA to derive information on structuredness
via hairpins, the method itself is fundamentally a versatile
structure-mining algorithm which has been demonstrated
to effectively search for putative functional motifs across in
transcriptome-wide data (61).

Our analysis of the SARS-CoV-2 SUTR is distinguished
from the others by a comparison of HDSL with specific
structures that have been validated in a plethora of ways,
including NMR spectroscopy (82). We remarked on a great
correspondence of HDSL peaks and stable structural cle-
ments, indicating that HDSL captures more than just lo-
cal structure—it retains information on specific motifs with
high resolution. This observation is important in the con-
text of our analysis of Corley et al.’s fSHAPE data. Namely,
the increase in HDSL at sites with high fSHAPE (Fig-
ure 7C) suggests the possibility that RBP frequently asso-
ciate not only in the context of stable structured regions,
but specifically in the context of hairpin-like elements. RBP
which recognize sequence motifs in hairpin-loops have pre-
viously been identified (89,90), but our results demonstrate
the plausibility that the association between hairpin ele-
ments and RBP is more prevalent than previously thought.
This is not entirely unexpected, as RBP are known to bind
both dsRNA and ssRNA in a manner that correlates with
the structure of the protein (91). Moreover, RBP binding
ssRNA are observed to associate at unpaired bases stem-
ming from RNA helix irregularities (e.g. bulges and inter-
nal loops) (92), also placing them in the context of hair-
pin elements. Recent studies have further documented that
structured RNAs interact with a larger number of proteins
than less structured RNAs (91). Our result further strength-
ens the utility of patte RNA in mining biologically relevant
structures transcriptome-wide.

Looking ahead to future development of rapid analy-
sis of SP data, patteRNA is well-suited to adapt to evolv-
ing probing technologies and datasets. That being said, its
current implementation does come with several limitations.
First, motif mining depends on the definition of specific
secondary structures, which limits its application to situa-
tions where a specific structure or small collection of simi-
lar structures can be defined. For motifs like hairpins, this
means that considering situations where a bulge or internal
loop may or may not be present complicates analyses due to
the combinatorial explosion of unique secondary structures
needed to define all possible hairpin architectures through
loop size, bulge size and bulge position. patteRNA is al-
ready capable of exhaustively mining such motifs, but such
analyses come at the cost of significant computational over-
head, generally working against the utility of the method.
A more efficient approach for motif mining which natu-
rally considers alternative similar structures within a region
could theoretically address some parts of this limitation.
Secondly, although the circumvention of RNA folding en-
ables rapid computational analyses, it also handicaps the ac-
curacy of the approach, as the energetic favorability of se-
quences within stems and loops is ignored. The incorpora-
tion of an optimized local folding routine could likely assist
in this regard, although the coupling of such models into a
statistical model like patte RNA is non-trivial. Nevertheless,
methods like RNALfold (87) bode for the potential incor-
poration of NNTM-derived information without sacrific-



ing on speed and scalability. Regardless of these limitations,
however, patte RNA remains a viable computational method
for the rapid assessment and quantification of structural
trends in the largest SP datasets.
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