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Characteristics of immune cell infiltration and associated diagnostic biomarkers 
in ulcerative colitis: results from bioinformatics analysis
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ABSTRACT
Ulcerative colitis (UC) is a type of refractory and recurrent inflammatory disorder that occurs in 
colon and rectum. Immune cell infiltration plays a critical role in UC progression; therefore, this 
study aims to explore potential biomarkers for UC and to analyze characteristics of immune cell 
infiltration based on the bioinformatic analysis. In this study, 248 differentially expressed genes 
(DEGs) were screened, and the top 20 immune-related hub genes and pathways were assessed. 
Moreover, four candidate diagnostic biomarkers (DPP10, S100P, AMPD1, and ASS1) were identified 
and validated. Immune cell infiltration analysis identified 13 differentially infiltrated immune cells 
(IICs) in UC samples compared to normal samples, and the result showed that two IICs only 
expressed in UC samples. In addition, the present research found that DPP10 was negatively 
correlated with neutrophils, S100P exhibited a positive correlation with resting CD4 memory 
T cells, AMPD1 was positively correlated with M2 macrophages, and ASS1 was inversely associated 
with neutrophils and positively related to CD8 T cells. Taken together, these findings indicated 
that DPP10, S100P, AMPD1, and ASS1 may act as diagnostic biomarkers for UC, and that 
differential IICs may help to illustrate the progression of UC.
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1. Introduction

Ulcerative colitis (UC) is a chronic, refractory, and 
recrudescent inflammatory colon and rectum 

disease that is mostly diagnosed in young indivi-
duals [1,2]. It is accompanied by symptoms such 
as abdominal pain, bloody mucopurulent stool, 
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and diarrhea [3]. UC causes a tremendous medical 
and socioeconomic burden on society as it reduces 
the quality of life and leads to a shortage in health-
care resources. Moreover, the influence of UC is 
often underestimated [4,5]. In recent years, UC 
incidence continues to increase and remains as 
an escalating global health problem [6].

Currently, the diagnosis and treatment of UC 
are still limited by existing technologies. Although 
orally administered drugs are currently the most 
common therapeutic strategy [7,8], it is worth 
noting that long-term medication could have 
unexpected side effects on UC. In addition, UC 
diagnosis currently mainly relies on gastrointest-
inal endoscopy and mucosal histopathological 
biopsy, which can cause uncertainty in diagnosing 
patients with atypical endoscopic signs or patho-
logical features, thus delaying effective treatment 
[9]. The diagnosis of UC patients at early stage 
may be delayed due to vague and nonspecific 
clinical symptoms. Some biomarkers contribute 
to diagnosis, evaluation of disease severity, and 
treatment adjustment for UC patients, thus com-
plementing the use of clinical parameters [10]. 
Therefore, the exploration of diagnostic biomar-
kers and therapeutic targets is urgently needed for 
improving UC outcomes and is highly desirable 
for clinical physicians.

Expression profiling of genes from chip or tran-
scriptome sequencing has been regarded as 
a potential source of biomarkers for diagnosis or 
prognosis of neoplastic and non-neoplastic dis-
eases [11,12]. Recently, emerging evidence has 
indicated that the prognostic and diagnostic mod-
els based on genes offer the possibilities for the 
treatment of tumor patients and inflammatory 
patients. For example, Tang et al. demonstrated 
that ferroptosis-related genes can robustly predict 
prognosis for hepatocellular carcinoma [13]. 
Moreover, Liu et al. identified five genes as the 
potential prognostic biomarkers for asthma [14]. 
However, the role of genes in UC remains 
unknown.

An improved understanding of the mechanisms 
behind UC is necessary for identifying novel diag-
nostic and therapeutic targets; unfortunately, at 
present, the underlying etiology and pathogenesis 

of UC remain unclear. However, more and more 
studies have illustrated that that environmental 
factors such as infections or dysbiosis, which act 
on genetically susceptible individuals to induce the 
breakdown of natural immune tolerance, cause the 
immune dysfunction of the intestinal mucosa and 
trigger the onset and development of UC [15]. It is 
known that UC is a typical inflammatory disease, 
and it has been reported that the NLRP3 inflam-
masome can be recruited to the gut to promote 
UC progress by increasing pro-inflammatory cyto-
kines [16]. Moreover, IRF5 can promote UC 
inflammation by modulating T cell signaling and 
by regulating secretion of cytokines [17]. In addi-
tion, neutrophilic HGF-MET signaling also can 
accelerate UC progression [18]. Previous studies 
have also found that there are infiltrated immune 
cells (IICs) in the intestinal mucosa of UC 
patients, suggesting that these cells may be 
involved in the excessive inflammation of mucosal 
tissues [19]. This finding also suggests that mole-
cules correlated with these cells may serve as new 
biomarkers of UC. All the aforementioned studies 
have demonstrated the key role of immune cells in 
UC pathogenesis.

Thus, this study aimed to screen the IICs in intest-
inal mucosa tissues with UC by Estimating Relative 
Subsets Of RNA Transcripts (CIBERSORT) software 
and to identify potential diagnostic biomarkers for 
UC. Then, correlation between IICs and the diagnos-
tic biomarkers for UC was calculated to identify 
immune-related genes. The Integrated analysis of 
IICs and immune-related genes would provide new 
biomarkers for the diagnosis of UC.

2. Materials and methods

2.1. Data collection and processing

Five UC-related gene datasets, including 
GSE128682, GSE134025, GSE87473, GSE102746, 
and GSE59071, were curated from the Gene 
Expression Omnibus (GEO, https://www.ncbi. 
nlm.nih.gov/geo/). The details of these gene data-
sets are listed in Table S1. Three gene datasets 
(GSE128682, GSE134025, and GSE87473) were 
combined and used as the training cohort, and 
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other two gene datasets (GSE102746 and 
GSE59071) were combined and were used as the 
testing cohort. The effect between any two batches 
was eliminated by ComBat using the Surrogate 
Variable Analysis (SVA) package in R. Moreover, 
two-dimensional Principal Components Analysis 
(PCA) was used to evaluate the distribution pat-
terns of UC and normal samples. Because equili-
brium of the sample size between the UC group 
and the normal group is required for randomized 
study [20], 41 UC samples and 40 normal samples 
were randomly chosen as the training cohort, and 
20 UC samples and 21 normal samples were ran-
domly selected as the testing cohort.

2.2. DEG screening

Differentially expressed genes (DEGs) between UC 
samples and normal samples in the training cohort 
were screened using the limma package. Genes 
exhibiting log2 (FC)| >1 and P-value <0.05 were 
defined as the DEGs. The ggplot2 package and the 
pheatmap package were used to perform the visua-
lization of the DEGs and to draw the heatmap, 
respectively.

2.3. Biological function enrichment analysis

Gene Ontology (GO) annotation (BP term, biolo-
gical processes; MF term, molecular function; CC 
term, cellular component) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) 
pathway enrichment analysis were accomplished 
by the clusterProfiler package. When the threshold 
for enrichment was P-value <0.05, it was signifi-
cant [21]. The visualization of enrichment results 
was achieved using the ggplot2 package in R and 
Cytoscape Version 3.7.1.

2.4. PPI network construction

By utilizing the Search Tool for the Retrieval of 
Interacting Genes (STRING), the protein–protein 
interaction network (PPI) was established to 
further investigate the function of DEGs at the 
protein level. Next, Cytoscape Version 3.7.1 was 
used to visualize and analyze the interactions of 

the proteins, and the cutoff value was set to con-
nection degree >10.

2.5. GSEA enrichment analysis

Gene Set Enrichment Analysis (GSEA) was per-
formed on the gene expression matrix through 
clusterProfiler package to identify the immune- 
related pathways [21]. A false discovery rate 
(FDR) <0.25 and P-value <0.05 were applied to 
screen the significant enrichment.

2.6. Screening and validation of candidate 
biomarker

Least absolute shrinkage and selection operator 
(LASSO) logistic regression and support vector 
machine (SVM) were used to screen the potential 
diagnostic biomarkers for UC. The LASSO logistic 
regression model was created using the glmnet 
package with the parameter set as family = ‘bino-
mial.’ To avoid overfitting, 10-fold cross-validation 
was performed with the parameter set as ‘type. 
measure = auc.’ The training cohort was used to 
construct the predicted model and verify the diag-
nostic efficiency of the obtained model, and the 
testing cohort was only used to validate the diag-
nostic efficiency of this model. Furthermore, 
SVM-RFE was performed to screen the best poten-
tial biomarkers by deleting SVM-generated eigen-
vectors. To establish the SVM model based on 
Radial Basis Function and 10-fold cross- 
validation, the parameter ‘C = 0.5 and 
gamma = 0.01’ was used. Genes from LASSO and 
SVM-RFE algorithm were preserved for subse-
quent analysis. Differences between UC samples 
and normal samples were statistically significant 
when a two-sided P-value <0.05.

2.7. Profile of immune cell infiltration

Immune cells proportion and composition were 
assessed using CIBERSORT algorithm. Next, the 
correlation heatmap of IICs was drawn using the 
corrplot package. Wilcoxon rank-sum test was 
used to assess the differences in the proportion of 
IICs between UC and control. The distribution of 
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the IICs was evaluated using the vioplot 
R package. Moreover, the differences in IICs 
between UC samples and normal samples were 
also verified through PCA, and the correlation 
between the candidate markers and IICs of UC 
samples was analyzed using the corrplot package 
in R.

3. Results

Although previous studies have found that there are 
infiltrated immune cells in the intestinal mucosa of 
UC patients, the proportion and composition of 
immune cells for UC were not clear. Thus, this 
study aimed to screen the immune cells in intestinal 
mucosa tissues with UC by CIBERSORT software 
and to identify potential diagnostic biomarkers for 
UC by combining the LASSO algorithm and SVM 
algorithm. Ultimately, the immune cell infiltration 
in UC tissues was characterized and DPP10, S100P, 
AMPD1, and ASS1 were screened as candidate 
diagnostic biomarkers for UC based on bioinfor-
matics analysis.

3.1. DEG identification

There were obvious batch effects between the five 
datasets (Fig. S1A). The merged gene expression 
matrix was normalized and adjusted using 
ComBat and SVA methods, and the two- 
dimensional PCA cluster plot showed that the 
batch effects had been removed (Fig. S1B). These 
suggested that the normalized and adjusted data 
from these datasets were suitable for subsequent 

analyses. A total of 248 DEGs were screened 
between UC samples and normal samples in the 
training cohort (Figure 1a), which included 136 
upregulated and 112 downregulated DEGs 
(Figure 1b). The genes of top 10 DEGs in the 
training cohort are presented in Table S2.

3.2. GO function and KEGG pathway enrichment 
analysis

To investigate the biological function of DEGs in 
the development of UC, GO function and KEGG 
pathway enrichment analysis was performed by 
the clusterProfiler package. The results of GO 
terms for biological processes showed that the 
upregulated DEGs were mainly involved in 
humoral immune responses, leukocyte migration, 
and granulocyte chemotaxis (Figure 2a, Table S3). 
The enriched GO terms for cell component of 
upregulated DEGs included secretory granule 
lumen and the cytoplasmic vesicle lumen (Figure 
2a, Table S3). In addition, enriched GO terms for 
molecular function also revealed that upregulated 
DEGs were mainly involved in immune-related 
function such as chemokine activity and chemo-
kine receptor binding. KEGG pathway enrichment 
analysis revealed the upregulated DEGs were 
mostly enriched in terms of immune signaling 
pathways (Figure 2c, Table S4). Inversely, down-
regulated DEGs were mainly concentrated in 
metabolism-related processes such as detoxifica-
tion of copper ion and ethanol oxidation (Figure 
2b, Table S5). Cell component analysis suggested 
that the downregulated DEGs were mainly focused 

Figure 1. Data collection, processing, and DEG identification.
(A) Volcano plot of DEGs. (B) Heatmap of the DEGs. 
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on the apical part of cell, brush border, and apical 
plasma membrane (Figure 2b, Table S5). Through 
molecular function analysis, the downregulated 
DEGs were found to be related to transmembrane 
transporter activity (Figure 2b, Table S5). 
Moreover, downregulated DEGs were significantly 
enriched in metabolism-related pathways like 
mineral absorption, bile secretion, and drug meta-
bolism-cytochrome P450 (Figure 2d, Table S6). 
The results indicated that immune response and 

metabolism pathways may be associated with the 
complex pathophysiology of UC.

3.3. Construction of the PPI network

Afterward, 248 DEGs were uploaded into STRING 
to construct the PPI network for investigating the 
function of these genes at the protein level, along 
with screening hub genes. The hub genes in the 
network were screened through Cytoscape Version 

Figure 2. GO and KEGG analysis.
(A, B) Bubble plots for GO terms enrichment of DEGs. (C, D) Bubble plots for KEGG enrichment of DEGs. 
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3.7.1 (Figure 3). The top 20 hub genes with con-
nective degree >10 were identified, including the 
CXCL chemokine family (CXCL1, CXCL10, 
CXCL5, CXCL3, CXCL2, CCL20, CXCL11, 
CXCL13, CXCL9, and CXCL6), CCL2, chemokine 
receptors (CXCR1, CXCR2), MMP9, C3, IL1B, 
ICAM1, INSL5, NPY1R, and PPY (Table S7). 
Interestingly, the genes above were mainly con-
cerned with immune regulation and response.

3.4. Immune-related pathway enrichment 
analysis

To further explore the role of immune response in 
UC, C7 (immunologic gene sets) from the 
Molecular Signatures Database was set as 
a predefined set. A total of 864 immune-related 
pathways were enriched by GSEA with a threshold 
P-value <0.01, and mostly pathways were related 

to the activation of B cells and T cells. The top 
three pathways were T cell activation (Figure 4a, 
Figure 4d), immune responses (Figure 4b,Figure 
4d), and Th2 cells differentiation (Figure 4c,Figure 
4d). A total of 95 KEGG pathways were enriched 
by GSEA with a P-value threshold of <0.05. The 
top three pathways included primary immunode-
ficiency (Figure 4e,Figure 4h), intestinal immune 
network for IgA production (figure 4f,figure 4h), 
and autoimmune thyroid disease (Figure 4g,Figure 
4h). As expected, GSEA results suggested that the 
immune response acts as a vital mechanism in UC 
progression.

3.5. Identification and validation of four 
candidate biomarkers in UC

The LASSO regression model was used to identify 
the candidate biomarkers from 248 DEGs for UC. 

Figure 3. Construction, visualization, and analysis of the PPI network.
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Then, 11 genes were identified as potential diag-
nostic biomarkers from 248 DEGs with a lambda 
min = 0.073 (Figure 5a,Figure 5b), and the diag-
nostic efficiency of this model was validated 

through ROC curves in the training set 
(AUC = 1, Figure 5c and S4A, Table S8) and the 
testing set (AUC = 0.8667, Figure 5c and S4B, 
Table S8). Next, 15 genes were identified as 

Figure 4. Immune-related pathway enrichment analysis. (a-h) GSEA for immune-related pathways.
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potential diagnostic biomarkers from 248 DEGs 
for UC using the SVM-RFE algorithm (Table S9). 
Moreover, the accuracy of the SVM-RFE model 
was tested using the ROC curves, and the results 
showed high accuracy in the training set 
(AUC = 1, Figure 5c and S4C, Table S9) and the 
testing set (AUC = 0.9262, Figure 5c and S4D, 
Table S9). Finally, four genes (DPP10, S100P, 
AMPD1 and ASS1) were identified as candidate 
diagnostic biomarkers for UC after overlapped 
potential biomarkers from the two models 
(Figure 5d). For further analyzing the role of the 
four genes in UC, the expression of these genes 
was examined. The box plots showed that DPP1 
(Figure 5e) and AMPD1 (Figure 5g) were down-
regulated, while S100P (figure 5f) and ASS1 

(Figure 5h) were upregulated in UC patients com-
pared to normal control.

3.6. Profile of immune infiltration in UC

To ensure statistical power, the GSE87473 and 
GSE59071 gene datasets were preserved for immune 
infiltration analysis. Other two gene datasets 
(GSE134025 and GSE102746) were excluded from the 
following analysis because the CIBERSORT P-values of 
all samples from them were not met (p > 0.05). 
Moreover, GSE128682 gene dataset was excluded 
from the following analysis, because the dataset was 
sequenced by high throughput method, which could 
influence the accuracy of CIBERSORT. PCA results 

Figure 5. Identification and validation of candidate UC biomarkers.
(A, B) LASSO logistic regression model. (C) ROC curves for LASSO and the SVM-RFE algorithm in the training set and testing set. (D) 
Venn diagram showing the intersection of candidate biomarkers between LASSO and the SVM algorithm. (E–H) Box plots of 
candidate biomarker (DPP10, S100P, AMPD1, and ASS1) expression between UC samples and normal samples. 
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showed that the effect of batch between GSE59071 
dataset and GSE87473 dataset was normalized and 
adjusted (FigureS2A and S2B). Thus, these samples 
could be used for subsequent analysis. The cytolytic 
activities of the GSE59071 and GSE87473 datasets 
were calculated to verify the significance of 
CIBRSORT algorithm, and the results showed 
a significant correlation between the cytolytic activity 
and CIBRSORT P-value threshold (one-way ANOVA, 
P-value = 2.5E-0.5, Figure 6b). After the screening with 
a CIBERSORT P-value <0.05, cytolytic activity was 
most strongly positively associated with plasma cells 
(correlation = 0.31, P < 0.01, Figure 6d) and a total of 
157 UC samples and 10 normal samples were screened 
for further analysis. In brief, these results showed the 
accuracy of the CIBERSORT algorithm. Next, the com-
position and proportion of IICs were evaluated by the 
CIBRSORT algorithm. Figure 6a shows the distribution 
of IICs in each sample. The correlation analysis of IICs 
indicated that M2 macrophages and resting mast cells 
had a positive correlation (correlation = 0.56, P < 0.001, 
Figure 6c), whereas activated mast cells showed 
a negative correlation with resting mast cells (correla-
tion = −0.53, P < 0.001, Figure 6c). The difference in 
IICs between UC samples and normal samples was 
determined by the Wilcoxon rank-sum test. The heat-
map and the violin plot of the different proportions of 
IICs showed the statistically significant differences in 13 
IICs between UC samples and normal samples (Figure 
6e,Figure 6f). Obviously, infiltrating levels of M0/M1 
macrophages (p < 0.001), memory B cells (p = 0.009), 
activated mast cells (p < 0.001), follicular helper T cells 
(p = 0.04), gamma delta T cells (p = 0.023), CD4 
memory resting T cells (p = 0.004), and neutrophils 
(p < 0.001) were elevated in UC samples (Figure 6e, 
Figure 6f, Table S10). Inversely, infiltration levels of 
resting mast cells (p < 0.001), M2 macrophages 
(p < 0.001), CD8 T cells (p = 0.032), resting dendritic 
cells (p = 0.033), and eosinophils (p = 0.001) were 
downregulated in UC samples compared with normal 
samples (Figure 6e,Figure 6f, Table S10). Moreover, 
CD4 naïve T cells and resting NK cells were only 
observed in UC samples (Figure 6e,Figure 6f, Table 
S10). In addition, the two-dimensional PCA cluster 
plot showed a significant difference in IICs between 
the UC and normal control (Figure 6g).

3.7. Correlation between four candidate 
biomarkers and immune-infiltrated cells in UC

The relationships between candidate UC biomar-
kers and the IICs which differ between UC and 
normal samples were further calculated with the 
corrplot package. The results demonstrated that 
DPP10 was negatively correlated with neutrophils 
(correlation = −0.28, P < 0.001, Figure 7a and S3), 
S100P exhibited positive correlation with resting 
CD4 memory T cells (correlation = 0.22, 
P = 0.005, Figure 7b and S3), AMPD1 was posi-
tively associated with M2 macrophages (correla-
tion = 0.19, P = 0.019, Figure 7c and S3), and ASS1 
was negatively associated with neutrophils (corre-
lation = −0.37, P < 0.001, Figure 7d and S3) and 
positively related to CD8 T cells (correlation = 0.21, 
P = 0.010, Figure 7d and S3). These findings 
further suggested that four candidate biomarkers 
were strongly correlated with IICs in UC.

4. Discussion

Gene expression data required for this study were 
obtained from GEO database. After bitch correction, 
248 DEGs inclusive of 136 upregulated and 112 down-
regulated DEGs were mined out from training set. The 
outcomes of GO and KEGG functional enrichment 
analysis indicated that these DEGs were mostly 
enriched in pathways associated with immune 
response, such as IL-17 signaling pathway, granulocyte 
chemotaxis, and leukocyte migration, and so on. These 
results indicated that the immune factors play a crucial 
part in UC. Indeed, previous studies have suggested 
that dysregulated genes in UC are primarily focused on 
the immune processes [22,23], and infiltration of gran-
ulocytes and IL-17 signaling contributes to colon tissue 
damage and inflammation [24,25]. Moreover, CD4 
T cells and NKT cells were well documented to increase 
the secretion of Th2-related cytokines and Th17- 
associated proinflammatory cytokines to contribute to 
intestinal mucosal inflammation [26,27]. In brief, the 
results of the function annotation and pathways enrich-
ment analysis provided new evidence to illustrate that 
immune processes play a key part in UC pathogenesis.

In addition, 20 hub genes were identified, such 
as those of CXC family of chemokines (CXCL1, 
CXCL10, etc.), CC family of chemokines (CCL2 
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Figure 6. Assessment of immune infiltration.
(A) Bar plot for the IICs between UC and normal control. (B) Correlation heatmap for IICs in UC samples. (C) Box plot for the cytolytic 
activity and CIBRSORT P-value in GSE59071 and GSE87473 datasets. (D) Correlation heatmap between IICs and cytolytic activity in UC 
samples. (E) Heatmap for the different proportions of IICs between UC and normal control. (F) Violin plot for the different 
proportions of IICs between UC and normal control. (G) PCA cluster plots for the different proportions of IICs between UC and 
normal control. 
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and CCL20), pro-inflammatory cytokines (IL1B, 
ICAM1, MMP9, C3), and metabolism-related 
genes (INSL5, NPY1R, and PPY). As is known, 
for inflammatory diseases like UC, chemokines 
can recruit the leukocytes into the intestinal 
mucosa, triggering various inflammatory effects, 
including leukocyte activation, extravasation of 
particles, and production of metalloproteases for 
matrix degradation [28]. Now, it has been estab-
lished that chemokines may play a vital role in UC 
etiology. Evidence from both experimental animal 
models and clinical cases also supported that che-
mokines were associated with the mechanism of 
colitis [29]. The finding of metabolism-related 
genes further supported that metabolomic profil-
ing may be selected as novel pathophysiological 
targets and biomarkers, which was exactly consis-
tent with that of Keshteli et al. [30]. Furthermore, 
GSEA results showed that DEGs from training set 
were predominantly enriched in immune- 
associated signaling. It is widely known that acti-
vated T cells can differentiate into regulatory and 
effector T cells [31], resulting in inflammation of 

inflammatory bowel diseases [32]. Currently, it 
was assured that UC might be related to atypical 
immune response induced by Th2 cells through 
upregulation of IL-13 and IFN-γ [33]. Moreover, 
Paschou et al. have found that patients with 
inflammatory bowel disease showed a rather high 
percentage of thyroid autoimmunity [34], indicat-
ing that the immune response of UC may increase 
the risks of thyroid autoimmunity.

Besides, we identified and validated candidate 
UC diagnostic biomarkers including DPP10, 
S100P, AMPD1, and ASS1 by combining LASSO 
and the SVM-RFE algorithm. Although these two 
algorithms have different characteristics, it was 
obviously that these four genes were obtained not 
only from the result of LASSO algorithm but also 
the SVM-RFE algorithm, which suggested that 
these four genes might be selected as the candidate 
diagnostic biomarkers. DPP10 is an important 
modulator of physiological properties of Kv4.3 
channels [35]. Allen et al. have reported that 
dipeptidase homologues (encoded by DPP10) can 
cleave the terminal dipeptides of cytokines and 

Figure 7. Analysis of the correlation between candidate biomarkers and IICs in UC.
(A–D) Bubble plots for the correlation between candidate biomarkers (DPP10, S100P, AMPD1, and ASS1) of UC and IICs. 
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chemokines, thus regulating the inflammatory 
response [36]. Moreover, Wang et al. found that 
DPP10 might predict the risk of colorectal cancer 
[37]. S100P can encode S100 protein family which 
includes S100A8 and S100A9, two common fecal 
biomarkers for UC. Proteins in this family partici-
pate in regulating cell cycle progression and differ-
entiation. A study also reported that S100P 
overexpression is associated with UC and UC- 
associated colorectal cancer [38]. Besides, whole- 
genome transcriptional analysis of UC patients 
also found a dramatic increase in levels of S100P 
in UC cases, whether active or not, when com-
pared with non-inflammatory bowel diseases con-
trols and normal controls [39]. AMPD1, 
a metabolism-related gene, encodes adenosine 
monophosphate deaminase. Recent studies suggest 
that AMPD1 is closely associated with the prog-
nosis of tumors [40,41]. However, the role of 
AMPD1 in UC or other inflammatory bowel dis-
eases was not previously been elucidated. ASS1 is 
a cytosolic enzyme that plays a key role in amino 
acid metabolism [42]. Tarasenko et al. have 
reported that ASS1 is closely related to T cell dif-
ferentiation and function [43]. Moreover, Zhong 
et al. found that knockdown of ASS1 can induce 
the endotoxin accumulation and pro- 
inflammatory cytokines secretion [44]. Therefore, 
DPP10, S100P, AMPD1, and ASS1 may be 
involved in the etiology and progression of UC. 
However, additional in vivo and in vitro studies 
are required to verify the results of the present 
study.

Next, to further investigate the role of IICs in 
UC, CIBERSORT algorithm was used to assess the 
fraction of immune cells in UC. The results of 
CIBERSORT showed that 13 immune cells were 
differentially expressed in the UC samples, and 
two immune cells only expressed in the UC sam-
ples, suggesting that differentially expressed IICs 
may participate in onset and progression of UC. It 
has been observed that there is a dramatic change 
in CD8 T cells in inflammatory bowel disease by 
single-cell analyses [45]. The present study also 
found CD8 T cells were upregulated, which further 
suggested the role of CD8 T cells in UC. 
Furthermore, it was shown that DPP10 was nega-
tively associated with neutrophils and positively 
related to CD4 memory resting T cells, S100P 

exhibited positive correlation with CD4 memory 
resting T cells, AMPD1 was positively correlated 
with plasma cells and M2 macrophages, and ASS1 
was negatively associated with neutrophils and 
positively related to CD8 T cells. All these results 
indicated that DPP10, S100P, AMPD1, and ASS1 
may be involved in UC development by immune 
regulation. Of course, these speculations require 
further study to verify the role of immune 
response by integrated regulation of genes and 
IICs in UC.

Overall, four genes (DPP10, S100P, AMPD1, 
and ASS1) were identified as the candidate diag-
nostic biomarkers of UC. In addition, 13 differen-
tially expressed IICs were found in UC samples 
compared with normal samples, and two IICs only 
expressed in the UC samples, suggesting that dif-
ferentially expressed IICs may participate in the 
onset and/or progression of UC. Furthermore, it 
was shown that these hub genes exhibited correla-
tion with IICs. However, there was a shortcoming 
to this study. The findings were based on the big 
data analysis of GEO database, and the necessary 
experiments to validate the identified genes were 
deficient. More experimental validations in both 
in vivo and in vitro are needed to further clarify 
these findings in the future.

5. Conclusion

Through integrating multiple bioinformatics tools, 
immune cell infiltration characteristics were iden-
tified in UC tissues, and DPP10, S100P, AMPD1, 
and ASS1 we screened may serve as candidate 
diagnostic biomarkers of UC. These findings will 
contribute to understand the pathogenesis of UC, 
and further investigations need to be done to sup-
port our conclusions.
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Highlights

● Four genes were identified as the candidate 
diagnostic biomarkers of UC.

● 15 immune cells were differentially expressed 
in UC.

● DPP10, S100P, AMPD1, and ASS1 may be 
involved in pathogenesis of UC.
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