
Genome analysis

BubbleGun: enumerating bubbles and superbubbles in

genome graphs

Fawaz Dabbaghie 1,2,*, Jana Ebler1 and Tobias Marschall 1,*

1Medical Faculty, Institute for Medical Biometry and Bioinformatics, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany

and 2Helmholtz Centre for Infection Research (HZI), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarbrücken

66123, Germany

*To whom correspondence should be addressed.

Associate Editor: Janet Kelso

Received on March 23, 2021; revised on April 30, 2022; editorial decision on June 13, 2022

Abstract

Motivation: With the fast development of sequencing technology, accurate de novo genome assembly is now pos-
sible even for larger genomes. Graph-based representations of genomes arise both as part of the assembly process,
but also in the context of pangenomes representing a population. In both cases, polymorphic loci lead to bubble
structures in such graphs. Detecting bubbles is hence an important task when working with genomic variants in the
context of genome graphs.

Results: Here, we present a fast general-purpose tool, called BubbleGun, for detecting bubbles and superbubbles in
genome graphs. Furthermore, BubbleGun detects and outputs runs of linearly connected bubbles and superbub-
bles, which we call bubble chains. We showcase its utility on de Bruijn graphs and compare our results to vg’s snarl
detection. We show that BubbleGun is considerably faster than vg especially in bigger graphs, where it reports all
bubbles in less than 30 min on a human sample de Bruijn graph of around 2 million nodes.

Availability and implementation: BubbleGun is available and documented as a Python3 package at https://github.
com/fawaz-dabbaghieh/bubble_gun under MIT license.

Contact: fawaz@hhu.de or tobias.marschall@hhu.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Genome graphs represent collections of related sequences and have a
wide range of applications in various fields of bioinformatics. In de
novo genome assembly, for instance, graphs are used to represent a
universe of plausible genome reconstructions based on a set of input
sequencing reads (Miller et al., 2010). Recent developments have
enabled even phased assembly (Porubsky et al., 2021), where the ma-
ternal and paternal copy of each pair of homologous chromosomes
are reconstructed separately. Facilitated by Graphical Fragment
Assembly format (GFA) as an exchange data format, modern assem-
bly tools often offer the possibility to export the underlying graphs for
downstream applications. Working with graphs directly instead of
using ‘flattened’ contigs has been shown to be beneficial, for example,
for phased assembly (Garg et al., 2018), but a tool ecosystem to work
with these graphs is only slowly emerging.

As a second important application domain, graphs can facilitate
a comprehensive representation of genetic variation segregating in a
population, called a pangenome (Computational Pan-Genomics
Consortium, 2018). Such graph-based pangenome representations
might replace present reference genomes in the future, emphasizing
the need for corresponding tools.

In this work, we focus on bi-directed graphs (Supplementary
Section 1.5), where sequences are represented by nodes with a left
and right side. Adjacencies are then represented by edges that con-
nect sides of two nodes and can either be non-overlapping (‘blunt’)
or represent an overlap between the sequences of the involved nodes.
Non-overlapping graphs can arise from pangenomes or from mul-
tiple sequence alignments for example (Garrison et al., 2018; Li
et al., 2020) and tools for converting from graphs with overlaps to
bluntified graphs have been introduced recently (Eizenga et al.,
2021). Bubbles are key structures within these graphs and can, for
example, represent heterozygous variants in assembly graphs or
polymorphisms in pangenome graphs. A subgraph between a source
node s and a sink node t is defined as a superbubble (Onodera et al.,
2013) if and only if this subgraph is directed, acyclic and the set of
nodes reachable from the source s is the same set of nodes from
where t can be reached. Moreover, no other node in the superbubble
should satisfy these conditions with either s or t. A bubble then can
be defined as a special case of a superbubble, with only two disjoint
paths between the source and the sink nodes (Fig. 1). A linear se-
quence of bubbles is called a bubble chain. BubbleGun defines a
bubble chain as any linear stretch of one or more bubbles with

VC The Author(s) 2022. Published by Oxford University Press. 4217

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits

unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics, 38(17), 2022, 4217–4219

https://doi.org/10.1093/bioinformatics/btac448

Advance Access Publication Date: 7 July 2022

Applications Note

https://orcid.org/0000-0002-6195-1884
https://orcid.org/0000-0002-9376-1030
https://github.com/fawaz-dabbaghieh/bubble_gun
https://github.com/fawaz-dabbaghieh/bubble_gun
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac448#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac448#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac448#supplementary-data
https://academic.oup.com/


connected sources and sinks, that is, the sink of one bubble is the
source of the next one and so on. The diploid genome assembly
method by Garg et al. (2018) highlights the importance of bubble
chains. In this approach, simple bubbles reflect heterozygous var-
iants. Long reads aligned to paths in the graph can then provide evi-
dence for the haplotype phasing between heterozygous variants
encoded in consecutive bubbles. This gives rise to a matrix of (reads
times variants) that can be used to compute a bipartition of reads
into their respective haplotypes by solving the minimum error cor-
rection problem (Lippert et al., 2002).

2 BubbleGun

BubbleGun is a fast general purpose tool to detect superbubbles in
a given input graph by implementing the algorithm by Onodera
et al. (2013), which is an average-case linear time algorithm. In a
nutshell, the algorithm iterates over all nodes s in the graph and
determines whether there is another node t that satisfies the super-
bubble rules, a more detailed explanation on the algorithm can be
found in Supplementary Section S1.3. Moreover, several attractive
features were implemented in BubbleGun that can be useful to the
user such as (i) compacting linear stretches of nodes in the graph
into one node, (ii) separating the biggest connected component of a
graph in terms of node number and (iii) separating a user-specified
neighborhood around a node for visualization and investigation pur-
poses. BubbleGun is implemented in Python3 and distributed as
Open Source software under the terms of the MIT license.
BubbleGun has no extra dependencies other than standard
Python3 libraries, which makes it lightweight and easy to integrate
in any pipeline without extra overhead or complications from other
dependencies.

3 Results

3.1 Runtime comparison
Snarls are a generalized version of superbubbles and BubbleGun
was compared with the snarl detection algorithm (Paten et al.,
2018) part of the vg toolkit (Garrison et al., 2018). Both tools
were tested on two datasets: (i) A de Bruijn graph with a k-mer size
of 41 representing the pangenome of 10 Myxococcus xanthus
genomes (Supplementary Table S1) with around 600 000 nodes and
(ii) a de Bruijn graph with a k-mer size of 61 constructed from short
reads from the human sample HG00733 part of the 1000 Genomes
Project (1000 Genomes Project Consortium, 2015) with around 22
million nodes. We chose to compare with vg toolkit because: (i)
it is a tool widely used in pangenomic research, (ii) it takes GFA files
as input which are standard format for genome graphs, (iii) it han-
dles bi-directed graphs and (iv) it reports ‘nestedness’ between
bubbles.

The short reads for the HG00733 experiment were first cor-
rected using Lighter (Song et al., 2014). For both datasets, the

graphs were constructed using Bcalm2 (Chikhi et al., 2016). The
specific k-values for both experiments were chosen after building
the graphs with several k-values in preliminary experiments, where,
for each produced graph, we looked at the number of simple bub-
bles, size of bubble chains and size of the biggest connected compo-
nent. A k-value of 11 for Lighter and 61 for bcalm2 was chosen
for the human sample and a k value of 41 for the M. xanthus experi-
ment. These values lead to a high number of simple bubbles, long
bubble chains and graphs that did not fragment into too many
components.

Time and memory consumption comparisons showed that for
the M. xanthus graph, both tools performed relatively similar in
terms of running time and memory consumption, with
BubbleGun running in 50 s and using 0.56 Gb memory, and VG
running in 30 s and using 0.85 Gb memory, where both tools
detected 40 381 simple bubbles and 41 356 superbubbles.
However, for the HG00733 graph, BubbleGun took around
25 min and used 22 Gb memory, where VG took 67 h and 31 Gb
memory with 1 965 000 simple bubbles and 57 089 superbubbles
detected by both tools.

3.2 Bubble validation
To show the biological importance of bubbles and to validate
whether the bubbles detected correspond to true variants instead
of repeat collapses or sequencing errors, we used a de Bruijn graph
constructed from short reads from the HG002 sample from the
Genome in a Bottle (GIAB) consortium (Zook et al., 2016), the k
size used was 61 as in the previous experiment. We used a GIAB
sample in order to take advantage of their high confidence var-
iants to use for the comparison. To generate Variant Call Format
(VCF) files from bubble chains, we used a previously established
pipeline (Ebler et al., 2022) that detects variants on each comple-
mentary path in the bubble chain separately and then merges them
into a diploid VCF representation (Supplementary Section S2).
Next, using vcfeval (Cleary et al., 2015), we compared the
called variants against the high confidence variants from the
HG002 sample, looking only at GIAB’s high confidence regions.
This resulted in a precision of 95%. As expected, false positive
bubbles are enriched in repetitive regions and when excluding
regions in the repeat masker track, we observed a precision of
99% and recall of around 97%. False negatives are explained in
Supplementary Section S2.1, false positives in Supplementary
Section S2.2 and graph preparation steps are explained in more
detail in Supplementary Section S2.

4 Discussion

We presented BubbleGun, a tool for detecting bubbles, superbub-
bles and bubble chains in genome graphs. We demonstrated that
BubbleGun dramatically reduces the runtime of bubble detection in
real-world use cases, paving the way for a more widespread adop-
tion of graph-based workflows. We expect pangenome graphs

Fig. 1. A genome graph resulting from constructing a de Bruijn graph with k¼9 from four sequences (Supplementary Table S2) and subsequently removing overlaps (bluntifi-

cation). The variances in the sequences give rise to different paths in the graph, constructing a bubble chain of one simple bubble and one superbubble with a simple bubble

nested inside

4218 F.Dabbaghie et al.

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac448#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac448#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac448#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac448#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac448#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac448#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac448#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac448#supplementary-data


constructed from de novo assemblies to become a broadly used con-
cept where traditional variant detection will be replaced by bubble
detection. Diploid genome assembly (Garg et al., 2018) constitutes

another important application area. Taken together, we envision
BubbleGun to be of broad utility going forward.

Acknowledgements

We would like to thank Mikko Rautiainen for many fruitful discussions dur-

ing the project and Pierre Marijon for constructive notes on the paper.

Computational support and infrastructure was provided by the Centre for

Information and Media Technology at the University of Düsseldorf.

Author contributions

T.M. and F.D. designed the project and wrote the paper. F.D. implemented

BubbleGun. J.E. helped with the bubble validation pipeline.

Funding

This work was supported, in part, by the German Federal Ministry for

Research and Education (BMBF, Grant No. 031L0184A to T.M.).

Conflict of Interest: none declared.

Data availability

Human genome Illumina short reads used for HG00733 can be found in SRA

with the accession numbers ERR895347, ERR899724, ERR899725,

ERR899726, ERR903031 and short read data for HG002/NA24385 can be

found under ascending assession numbers ranging from SRR3440404 to

SRR3440437. For the M. xanthus experiment, all accession numbers are

available in Supplementary Table 1.

References

1000 Genomes Project Consortium. (2015) A global reference for human gen-

etic variation. Nature, 526, 68–74.

Chikhi,R. et al. (2016) Compacting de Bruijn graphs from sequencing data

quickly and in low memory. Bioinformatics, 32, i201–i208.

Cleary,J.G. et al. (2015) Comparing variant call files for performance bench-

marking of next-generation sequencing variant calling pipelines. bioRxiv.

Computational Pan-Genomics Consortium. (2018) Computational pan-genomics:

status, promises and challenges. Brief. Bioinform., 19, 118–135.

Ebler,J. et al. (2022) Pangenome-based genome inference allows efficient and

accurate genotyping across a wide spectrum of variant classes. Nat. Genet.,

54, 518–525.

Eizenga,J.M. et al. (2021). Walk-preserving transformation of overlapped se-

quence graphs into blunt sequence graphs with GetBlunted. In Connecting

with Computability, Springer International Publishing, pp. 169–177.

Garg,S. et al. (2018) A graph-based approach to diploid genome assembly.

Bioinformatics, 34, i105–i114.

Garrison,E. et al. (2018) Variation graph toolkit improves read mapping by

representing genetic variation in the reference. Nat. Biotechnol., 36,

875–879.

Li,H. et al. (2020) The design and construction of reference pangenome graphs

with minigraph. Genome Biol., 21, 265.

Lippert,R. et al. (2002) Algorithmic strategies for the single nucleotide poly-

morphism haplotype assembly problem. Brief. Bioinform., 3, 23–31.

Miller,J.R. et al. (2010) Assembly algorithms for next-generation sequencing

data. Genomics, 95, 315–327.

Onodera,T. et al. (2013). Detecting superbubbles in assembly graphs. In

Algorithms in Bioinformatics, Springer, Berlin, Heidelberg, pp. 338–348.

Paten,B. et al. (2018) Superbubbles, ultrabubbles, and cacti. J. Comput. Biol.,

25, 649–663.

Porubsky,D. et al. (2021) Fully phased human genome assembly without

parental data using single-cell strand sequencing and long reads. Nat.

Biotechnol., 39, 302–308.

Song,L. et al. (2014) Lighter: fast and memory-efficient sequencing error cor-

rection without counting. Genome Biol., 15, 509.

Zook,J.M. et al. (2016) Extensive sequencing of seven human genomes to

characterize benchmark reference materials. Sci. Data, 3, 160025.

BubbleGun 4219

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac448#supplementary-data

