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Abstract: Background: this study examined the metformin (MF) and/or chitosan stabilized sele-
nium nanoparticles (CH-SeNPs) efficacy to alleviate the male reproductive function impairment
in a high-fat diet feed with low-dose streptozotocin (HFD/STZ) induced type 2 diabetes mellitus
(T2DM) diabetic rat model. Methods: control non-diabetic, HFD/STZ diabetic, HFD/STZ+MF,
HFD/STZ+CH-SeNPs, and HFD/STZ+MF+CH-SeNPs rat groups were used. After 60 days, semen
evaluation, hormonal assay, enzymatic antioxidant, lipid peroxidation, testis histopathology, and
the steroidogenesis-related genes mRNA expressions were assessed. Results: in the HFD/STZ
diabetic rats, sperm count and motility, male sexual hormones, and testicular antioxidant enzymes
were significantly reduced. However, sperm abnormalities and testicular malondialdehyde were
significantly incremented. The steroidogenesis-related genes, including steroidogenic acute regula-
tory protein (StAr), cytochrome11A1 (CYP11A1), cytochrome17A1 (CYP17A1), and hydroxysteroid
17-beta dehydrogenase 3 (HSD17B3), and the mitochondrial biogenesis related genes, including per-
oxisome proliferator-activated receptor gamma coactivator 1-alpha (PGCα) and sirtuin (SIRT), were
significantly downregulated in the HFD/STZ diabetic rats. However, CYP19A1mRNA expression
was significantly upregulated. In contrast, MF and/or CH-SeNPs oral dosing significantly rescued
the T2DM-induced sperm abnormalities, reduced sperm motility, diminished sexual hormones level,
testicular oxidative damage, and steroidogenesis-related genes dysregulation. In the MF and CH-
SeNP co-treated group, many of the estimated parameters differ considerably from single MF or
CH-SeNPs treated groups. Conclusions: the MF and CH-SeNPs combined treatment could efficiently
limit the diabetic complications largely than monotherapeutic approach and they could be considered
a hopeful treatment option in the T2DM.

Keywords: chitosan-stabilized selenium nanoparticles; oxidative stress; male fertility; testicular
dysfunction; type 2 diabetes mellitus; metformin; steroidogenesis related genes
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1. Introduction

Diabetes mellitus (DM) is a metabolic condition that is determined by continuous
blood glucose increases due to impaired production and/or insulin action [1]. Recent
information demonstrates that the world’s diabetic patient number is more than 415 million,
and this number is expected to cross 642 million by 2040 [2]. Diabetes hyperglycemia is the
cause of many disorders, including cardiovascular disease, neuropathy, retinopathy, and
nephropathy [3].

Today, many diabetic males have been shown to have the complications of infertil-
ity [4]. Besides, the DM frequency is higher in men than in women [5]. Epidemiological
studies have shown that approximately 50% of diabetic patients suffer from various lev-
els of reproductive disorders, which include declined libido and impotence, difficulty
ejaculating, erectile dysfunction, and reduced infertility [6–8]. Numerous studies in dia-
betic men and diabetic animal models showed that infertility was associated with altered
spermatogenesis, degenerative testicular changes, disturbed glucose metabolism in blood
testes barrier, and reduced testosterone (TES) secretion [9,10]. Oxidative stress is one of the
most significant pathogenesis of sperm dysfunction that is related to DM [11]. Long-term
elevated blood glucose induces an excessive reactive oxygen (ROS) production that can
interrupt the oxidant-antioxidant system equilibrium [12]. Meanwhile, excessive ROS
release and the resulting oxidative stress promote germ cell death and interfere with the
process of spermatogenesis [13].

Type 2 diabetes mellitus (T2DM) is a heterogeneous condition that is characterized by
a gradual decrease in insulin action, accompanied by beta cells’ incapacity to compensate
for insulin resistance [14]. Earlier studies confirmed that the combined high-fat diet (HFD)
feed with low-dose streptozotocin (STZ) treated rats serves as an alternate animal model for
mimicking human syndrome, T2DM, which is also ideal for evaluating T2DM antidiabetic
agents [15,16]. In the HFD/STZ diabetic model, the feeding of HFD produces insulin
resistance and a low dose of STZ treatment causes the initial beta cell dysfunction that
closely simulates human T2DM natural metabolic events [17].

Many drugs for DM are currently available. Metformin (MF) is the first-line drug
for the management of T2DM that can effectively regulate glucose by reducing sugar
absorption in the gut, increasing intracellular glucose transport, and inhibiting glycogen
production in the liver [18]. In diabetes patients, MF was used to regulate blood glu-
cose levels and avoid complications with diabetes, like diabetic cardiomyopathy [19] and
retinopathy [20]. Even if MF affects other T2DM complications, testicular dysfunction treat-
ment by MF was not reportable, and testicular tissue mechanisms remain unexplored [21].

Given the many drawbacks of DM, patients are increasingly demanding safer com-
pounds that reduce these complications, along with antidiabetic properties [3]. At this
time, increasing interest in natural supplements is geared towards using them as repro-
ductive therapies [22–26]. Selenium (Se) is a crucial micronutrient in preventing and
treating many disease conditions [27,28]. This metalloid micronutrient is the leader of
several Se-dependent enzymes. The selenium nanoparticles (SeNPs) are known as a new
Se compound with great antioxidant activity and lower toxic characteristics than other
selenospecies [29,30]. Zhang et al. [31] reported that Se-NPs in mice are seven times lower
in toxicity than sodium selenite and three times lower than organic Se. SeNPs demonstrated
novel antioxidant properties in vivo and in vitro via the activation of selenoenzymes, which
inhibits in vivo free radicals from harming tissues and cells [32]. SeNPs have also shown
powerful involvement in antihyperglycemic [33].

Chitosan is a rich natural polysaccharide, the N-deacetylates product of chitin [34].
Chitosan is well studied because of its immense features, including biocompatibility, anti-
immunogenicity, biodegradability, and safety [35]. Chitosan-based agents are extremely
active nutraceuticals in diabetes prevention and treatment [36]. Chitosan was also reported
to be a strong SeNP stabilizer. Moreover, Luo et al. [37] reported that selenite-loaded
chitosan nanoparticles (CH-SeNPs) possessed strong antioxidant activity relative to pure
selenite.
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Because several pathways are implicated in T2DM reproductive complications, com-
bination therapy may be necessary for successful protection, rather than monotherapy.
Hence, in the present study, we aimed to test the single or combined oral dosing of MF
and CH-SeNPs capacity to rescue T2DM induced male reproductive dysfunction. Semen
assessment, hormonal analysis, testicular antioxidants enzymes, and lipid peroxidation
biomarkers were evaluated in adult male diabetic rats in order to accomplish this aim.
Additionally, a histopathological assessment of testicular tissues was performed. Besides,
the expression of steroidogenesis and mitochondria biogenesis related genes was assessed
for exploring the underlying mechanisms

2. Materials and Methods
2.1. Tested Compounds

The STZ from Sigma–Aldrich (Sigma, St Louis, MO, USA) was obtained. MF was
purchased as tablets containing 500 mg (Eva Pharma, Cairo, Egypt). The preparation and
characterization of CH SeNPs have been previously described in our earlier study [38].
All other reagents/chemicals used were of analytical grade (Sigma, St. Louis, MO, USA).

2.2. Experimental Animals

One hundred Sprague-Dawley male rats (nine weeks old; 280 ± 5 g) were obtained
from the laboratory animal’s farm, Faculty of Veterinary Medicine, Zagazig University.
All of the rats were held in cages of stainless steel maintained in an atmosphere free of
pathogens at 21–24 ◦C, 60% relative humidity, and a 12-h light-dark cycle. The rats received
ad libitum filtered water and were fed a regular rodent chow. Before starting the experiment,
the rats were allowed to acclimatize for two weeks.

2.3. Animals and Experimental Design

The rats were weighed and randomly classified into five groups (twenty rats/group),
as follows:

The control non-diabetic group: the distilled water was orally given to rats using a
gastric feeding needle (1 mL/rat) throughout the whole experimental duration, except at
the day analog to STZ injection in the other groups. On this day, the rats in this group
were intraperitoneally injected with citrate buffer, which is used for STZ preparation in the
other groups.

The HFD/STZ diabetic group: T2DM was earlier induced following the protocol of
Abdulmalek and Balbaa [39]. The rats were kept on an HFD (with 4900 kcal/kg gross
caloric value comprising 14.5% protein of butter and chose casein, 58% fat of corn oil
and beef tallow) for eight successive weeks [40,41]. After an overnight fast, the rats were
intraperitoneally injected with STZ (35 mg/kg b.wt.), which was freshly set in 0.05 M
citrate buffer (pH 4.5) [42]. All rats’ blood glucose level was checked every three days by
an Accu-Chek® blood glucose meter (Roche Diagnostics, Basel, Switzerland) from the tail
vein. The rats showed stable hyperglycemia (200 mg/dL blood glucose levels).

The HFD/STZ + MF group: in which HFD/STZ animals were given MF that was
dissolved in distilled water (500 mg/kg b.wt.) [43].

The HFD/STZ + CH-SeNPs group: in which HFD/STZ animals were orally given
CH-SeNPs (2 mg Se/kg b.wt.), sonicated in distilled water for dispersing nanoparticles [44].

The HFD/STZ+MF+CH-SeNPs group: in which HFD/STZ animals received both MF
and CH-Se-NPs at the equivalent declared doses and routes.

All of the treatments were given orally for 60 days. Throughout the experiment,
the toxicity signs and mortality have been carefully observed.

2.4. Sampling

At the experiment’s termination, the rats were fasted overnight, weighed, anesthetized
with sodium pentobarbital (I/P., 100 mg/kg), and the blood samples from all of the rats
were collected in tubes that were devoid of an anticoagulant from the medial canthus. The
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tubes were left for 20 min. at room temperature, centrifuged at 3000 rpm for 10 min. The
collected serum was carefully extracted and kept at −20 ◦C to be used for biochemical
analyses. The rats were then euthanized. The rat testes (one side of 15 rats/group) were
dissected and immediately transferred in liquid nitrogen to be stored at −80 ◦C for gene
expression (RT-qPCR). Other sided ones (15 sample/group) were homogenized by Ultra-
Turrax homogenizer in a cold solution of 0.015 M NaPOH buffer and 0.15 M NaCl (1:6 w/v;
pH 7.8) for homogenate preparation for oxidative stress assessment. Other parts were
processed for histopathological examination.

2.5. Semen Evaluation

For the sperm collection, cauda epididymis of all rat testis was collected and then
transferred to a sterilized Petri dish with 2 mL normal saline. A small opening with
sterilized scissors was then made in order to assist sperms passing through the epididymis
for a spermiogram examination of the epididymis’ suspension. At 400×magnification, Slott
et al. [45] protocol was used to calculate the sperm motility percentage. In the meantime,
the concentration of sperm cells/milliliter semen was carried out using consistently using
Robb et al. [46] technique. Sperms abnormalities have been determined following the
Filler [47] procedures. Five hundred sperm cells have been checked per rat in order to
determine the anomalies’ occurrence in the head, neck/mid-piece, and tail.

2.6. Hormonal Assay

The commercial Elabscience® Biotechnology Inc.’s commercial kits (cat No.: MBS282195,
MBS2502190, MBS764675, and MBS263466, respectively) with the Zirkin and Chen [48]
protocols were used for TES, follicle-stimulating hormone (FSH), luteinizing hormones
(LH), and estradiol (E2).

2.7. Analysis of Oxidants/Antioxidants Status of Testicular Tissue

The tissue homogenates of testicular tissue were used in the malondialdehyde (MDA)
detection following the method of Nair and Turner [49]. Superoxide dismutase (SOD)
and catalase (CAT) were estimated in line with the protocols put forward by Misra and
Fridovich [50] and Sinha [51], respectively.

2.8. Real-Time Quantitative PCR (RT-qPCR) Analysis

Initially, the total RNAs were extracted from testis tissue using a Trizol Reagent
(Thermo Fisher Scientific; Waltham, MA, USA) in line with the manufacturer’s instructions.
Two-step real-time PCR was adopted for gene expression assessment [52,53]. Briefly, cDNA
synthesis by a HiSenScript™ RH (-) cDNA Synthesis Kit (iNtRON Biotechnology Co.,
Seongnam, Korea) in a Veriti 96-well thermal cycler (Applied Biosystems, Foster City, CA,
USA) next real-time PCR in a Mx3005P Real-Time PCR System (Agilent Stratagene, Santa
Clara, CA, USA) via 5× HOT FIRE Pol EvaGreen qPCR Mix Plus (Solis BioDyne, Tartu,
Estonia) were accomplished. Sangon Biotech (Beijing, China) synthesized all of the primers,
as presented in Table 1. The real-time PCR cycling conditions involved initial denaturation
for 12 min at 95 ◦C, denaturation for 40 cycles for 20 s at 95 ◦C, annealing for 30 s at 60 ◦C,
and extension for 30 s at 72 ◦C. The relative level of expression of the target genes was
normsalized to GAPDH, and the relative folding changes in the gene expression had been
estimated while using the 2−∆∆CT approach for comparison [54].
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Table 1. Primer sequences, accession number, and product size for the quantitative RT-PCR for the analyzed genes in the
testicular tissue.

Gene Forward Primer (5′–3′) Reverse Primer (5′–3′) Accession No Product Size

StAr CCCAAATGTCAAGGAAATCA AGGCATCTCCCCAAAGTG NM_031558.3 187
CYP11A1 AAGTATCCGTGATGTGGG TCATACAGTGTCGCCTTTTCT NM_017286.3 127
CYP17A1 TGGCTTTCCTGGTGCACAATC TGAAAGTTGGTGTTCGGCTGAAG NM_012753.2 90
HSD17B3 AGTGTGTGAGGTTCTCCCGGTACCT TACAACATTGAGTCCATGTCTGGCCAG NM_054007.1 161
CYP19A1 GCTGAGAGACGTGGAGACCTG CTCTGTCACCAACAACAGTGTGG NM_017085.2 178
PGC1-α ATGTGTCGCCTTCTTGCTCT ATCTACTGCCTGGGGACCTT NM_031347.1 180
SIRT1 GGCACCGATCCTCGAACAAT CGCTTTGGTGGTTCTGAAAGG NM_001372090.1 119

GAPDH GGCACAGTCAAGGCTGAGAATG ATGGTGGTGAAGACGCCAGTA NM_017008.4 143

StAr: Steroidogenic Acute Regulatory Protein; CYP11A1: Cytochrome P450 Family 11 Subfamily A; CYP17A1: Cytochrome P450 Family
17 Subfamily A; HSD17B3: 17-beta hydroxysteroid dehydrogenase 3 Member 1; CYP19A1: Cytochrome P450 Family 19 Subfamily A;
PGC-1α: Peroxisome proliferator-activated receptor gamma coactivator 1-alpha; SIRT1: Sirtuin 1; GAPDH: Glyceraldehyde-3-Phosphate
Dehydrogenase.

2.9. Histopathological Studies

After the experiment, the right testis from ten rats/group was examined according
to standardized necropsy procedures (Kittel et al., 2004). The samples were fixed in 10%
neutral buffered formalin for 72 h, washed in running water for one hour, dehydrated in
ascending grades of ethyl alcohol (70–100%), cleared in xylene, impregnated, and then
embedded in paraffin. The paraffinized blocks were sectioned at four-microns, which were
stained with hematoxylin and eosin, mounted in DPX, covered by glass covers, examined
microscopically, and histological alteration was recorded [55]. For each rat, nine images
(three 10×, three 40× of nearly round nonduplicated randomly selected seminiferous
tubules, and three 40× of intertubular interstitial areas) were snapshotted while using
AmScope digital microscope. Subsequently, these images were used for morphometric
histological assessment and lesion scoring. The 10× images were used for calculating
the numbers of seminiferous tubules/image, the mean diameter of three nearly round
seminiferous tubules/animal (smallest diameter + longest diameter ÷ 2), the heights of the
germinal epithelium of three nearly round seminiferous tubules/animal, the proportions
of seminiferous tubules exhibited germ cell depletion, vacuolations, necrosis, and giant cell
formation to the total number of seminiferous tubules/image, and determining the frequen-
cies of interstitial congestion, edema, hemorrhage, and leukocyte infiltrates/image. The
40× images were used for determining the Sertoli cells, spermatogonia, spermatocytes, and
spermatids numbers in three nearly round seminiferous tubules/animals and the number
of Leydig cells in three intertubular interstitial area/animal. The distinction between the
Sertoli cells, spermatogonial cells, spermatocytes, and spermatids was performed following
the morphological criteria; nuclear location, size, shape, and chromatin pattern. All of
the measurements were carried out while using AmScope ToupView V3.7.13522 software,
AmScope, Irvine, CA, USA was used to perform all the measurements. The results were
presented as percentages (means ± SE).

2.10. Data Analysis

The homogeneity test has been conducted to ensure that all of the data are normal,
and Levene’s tests have been carried out to help Levene’s study of variance assumptions
(ANOVA). The data were analyzed with a one-way ANOVA, then the post hoc Tukey test,
which specified the significance when p < 0.05. The statistical analyses were carried out
while using software Prism 7.0 GraphPad (Graph-Pad, San Diego, CA, USA).

3. Results
3.1. Effect of MF and/or CH-SeNPs on Spermiogram

The HFD/STZ diabetic group displayed a significant decline (p < 0.001) in sperm motility
percentage, sperm concentration, and live sperm percentage by −58.82%, 45.10%, and 57.28%,
respectively, when compared to the control group, as presented in Figure 1. However, the
sperm abnormalities percent was significantly (p = 0.001) incremented by approximately
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fourfold in the HFD/STZ diabetic rats relative to the control group. However, MF and/or
CH-SeNPs oral dosing significantly restored the sperm count, motility, and live sperm
percentage, but reduced sperm abnormalities percent as compared to the HFD/STZ diabetic
group. Noteworthy, among all the groups, only the combined HFD/STZ+MF+CH-SeNPs
group efficiently reduced the sperm abnormalities until they became not significantly
varied from the control groups.
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Figure 1. Effect of metformin (MF) and/or chitosan stabilized nanoparticles (CH-SeNPs) oral
dosing for 60 days on sperm characteristics including (A) sperm motility, (B) live sperms, (C) sperm
concentration, and (D) sperm abnormalities in high-fat diet/streptozotocin (HFD/STZ) diabetic male
rats. Data expressed as mean ± SE, n = 15 for each group. Each bar carrying different letters (a–d)
was significantly different at p < 0.05.

3.2. Effect of MF and/or CH-SeNPs on Male Reproductive Hormones

The HFD/STZ diabetic group exhibited a significant (p < 0.001) drop in the TES, FSH,
LH, and E2 levels by 92.68%, 26.13%, 64.29%, and 68.54%, respectively, relative to the
control group, as displayed in Figure 2. Nonetheless, MF and/or CH-SeNPs dosing to
the diabetic rats significantly (p < 0.001) reestablished the sexual hormone levels when
compared to the HFD/STZ diabetic group. The joint HFD/STZ+MF+CH-SeNPs group
competently restored the TES, LH, and E2 levels until it became not significantly changed
from the control group.

3.3. Effect of MF and/or CH-SeNPs on Testicular Antioxidants and Lipid Peroxidation Level

The HFD/STZ diabetic rats testicular tissues showed a significant (p < 0.001) depletion
of the enzymatic antioxidants (SOD and CAT) by 61.54% and 76.86%, respectively, relative
to the control group (Figure 3). Nevertheless, a significant (p < 0.001) rise (twofold) of the
MDA amount was evident. However, the SOD and CAT levels were significantly (p < 0.001)
restored in the testicular tissue of MF and/or CH-SeNPs administered diabetic rats relative
to the HFD/STZ diabetic group. Moreover, in all MF and/or CH-SeNPs treated diabetic
group, the MDA elevation in testicular tissue was significantly (p < 0.001) repressed as
compared to the HFD/STZ diabetic group. Notably, the combined MF and CH-SeNPs
co-treatment showed significant improvement in the SOD, CAT, and MDA levels than the
single exposure to each treatment in diabetic rats.
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hormone (FSH) (C), luteinizing hormone (LH), and (D) estradiol (E2) levels in the serum of HFD/STZ
diabetic male rats. Data are expressed as mean± SE, n = 15 for each group. Each bar carrying different
letters (a–e) was significantly different at p < 0.05.

Antioxidants 2021, 10, x FOR PEER REVIEW 7 of 17 
 

cantly (p < 0.001) repressed as compared to the HFD/STZ diabetic group. Notably, the 
combined MF and CH-SeNPs co-treatment showed significant improvement in the SOD, 
CAT, and MDA levels than the single exposure to each treatment in diabetic rats. 

 
Figure 2. Effect of metformin (MF) and/or chitosan stabilized nanoparticles (CH-SeNPs) oral dosing for 60 days on sexual 
hormonal variables including (A) testosterone (TES), (B) follicle-stimulating hormone (FSH) (C), luteinizing hormone 
(LH), and (D) estradiol (E2) levels in the serum of HFD/STZ diabetic male rats. Data are expressed as mean ± SE, n = 15 for 
each group. Each bar carrying different letters (a, b, c, d and e) was significantly different at p < 0.05. 

 
Figure 3. Effect of metformin (MF) and/or chitosan stabilized nanoparticles (CH-SeNPs) oral dosing for 60 days on (A) 
superoxide dismutase (SOD) (B), catalase (CAT), and (C) malondialdehyde (MDA) levels in the testicular tissues of 
HFD/STZ diabetic male rats. Data are expressed as mean ± SE, n = 15 for each group. Each bar carrying different letters (a, 
b, c, d and e) was significantly different at p < 0.05. 

3.4. Effect of MF and/or CH-SeNPs on Gene Expression in Testicular Tissue 
Steroidogenesis-related genes, including steroidogenic acute regulatory protein 

(StAr), cytochrome11A1 (CYP11A1), cytochrome17A1 (CYP17A1), and hydroxysteroid 
17-beta dehydrogenase 3 (HSD17B3) were significantly (p < 0.001) downregulated (0.36 ± 
0.06, 0.27 ± 0.05, 0.39 ± 0.07, and 0.45 ± 0.08, respectively) in testicular tissue of HFD/STZ 

Figure 3. Effect of metformin (MF) and/or chitosan stabilized nanoparticles (CH-SeNPs) oral dosing for 60 days on
(A) superoxide dismutase (SOD) (B), catalase (CAT), and (C) malondialdehyde (MDA) levels in the testicular tissues of
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3.4. Effect of MF and/or CH-SeNPs on Gene Expression in Testicular Tissue

Steroidogenesis-related genes, including steroidogenic acute regulatory protein (StAr),
cytochrome11A1 (CYP11A1), cytochrome17A1 (CYP17A1), and hydroxysteroid 17-beta
dehydrogenase 3 (HSD17B3) were significantly (p < 0.001) downregulated (0.36 ± 0.06,
0.27 ± 0.05, 0.39 ± 0.07, and 0.45 ± 0.08, respectively) in testicular tissue of HFD/STZ
diabetic rats as compared with the control group (1.00 ± 0.08, 1.00 ± 0.09, 1.00 ± 0.10, and
1.00 ± 0.08, respectively) (Figure 4). Additionally, the mitochondrial biogenesis related
genes, including Peroxisome proliferator-activated receptor gamma coactivator 1-alpha



Antioxidants 2021, 10, 17 8 of 17

(PGCα) and Sirtuin (SIRT). were significantly (p < 0.001) downregulated (0.70 ± 0.01, and
0.60 ± 0.06, respectively) in testicular tissue of HFD/STZ diabetic rats when compared
with the control group (1.00 ± 0.05 and 1.00 ± 0.07, respectively) (Figure 5). However,
the mRNA expression levels of CYP19A1 was significantly (p = 0.002) upregulated in
testicular tissue of HFD/STZ diabetic rats (1.79 ± 0.14) as compared with the control group
(1.00 ± 0.10) (Figure 5).

The MF and/or CH-SeNPs dosing to the diabetic rats significantly (p < 0.001) reversed
the dysregulation of the analyzed steroidogenesis and mitochondrial biogenesis related
genes when compared with the HFD/STZ diabetic rats. Notably, the combined MF and
CH-SeNPs co-treatment showed a significant improvement in the mRNA expression levels
of HSD17B3 than the single exposure to each treatment in diabetic rats.

3.5. Histopathological Findings

Grossly, the testes of the examined control rats displayed no pathological alterations
and were normal. Still, those of HFD/STZ and HFD/STZ+CH-SeNPs -treated rats showed
a minor decrease in the sizes and weights when compared to the control, besides the vascu-
lar congestion of the tunica vaginalis. Testes from HFD/STZ+MF and HFD/STZ+MF+CH-
SeNPs treated rats were normal, except for mild congestion of the tunica vaginalis.

Microscopically, the control rats testes displayed normal histological architectures
[smoothly rounded seminiferous tubules (14.20 ± 0.36/10× image with mean diame-
ter, 255.36 ± 1.37 um, and germinal cell height, 83.22 ± 1.70 um) that were lined by
pyramidal Sertoli cells (30.50 ± 0.48/ST) sustaining successive populations of maturing
germ cells; spermatogonia (66.90 ± 1.16), spermatocytes (147.30 ± 1.46), and spermatids
(221.30 ± 5.14), and peritubular connective tissue containing Leydig cells (13.60 ± 0.45/in-
tertubular area), fibroblasts, myoid cells, and blood vessels] (Figure 6A,B). The testes from
the HFD-STZ-treated rats exhibited a vast array of histopathological alteration, including
degenerative changes [increased numbers of STs/10× image (18.20 ± 0.33), due to de-
creased mean diameters (224.74 ± 4.67 um), tubular thinning due to diminished heights of
germinal epithelium/ST (58.09 ± 1.94 um), germ cell depletion, vacuolation, disorganiza-
tion, and desquamation, and basal lamina with irregular thickness, or lacking the smoothly
rounded profile, or broken and or redundant], necrotic changes [few tubules showed focal
or entire loss of the germinal epithelium, besides the decreased numbers of Sertoli cells
(26.20 ± 0.88/ST) and interstitial Leydig cells (10.40 ± 0.45/interstitial area)], vascular
and inflammatory changes (most specimens showed interstitial congestion, and edema
but few showed interstitial mononuclear cell infiltrate and/or minute hemorrhage), and
progressive changes (interstitial fibroblastic proliferation and intratubular spermatid giant
cell formation) (Figure 6C,D). A significant reduction in the frequencies and severities of
the diabetes-induced orchiopathy was seen in the testes of HFD/STZ+MF-treated rats.
Yet, some histopathological alterations, including germ cell depletion, spermatid retention,
thickened basal lamina, interstitial congestion, and edema with few mononuclear cell
infiltrations, were evident (Figure 6E,F). The testes of HFD/STZ +CH-SeNPs -treated rats
showed the same histopathological alterations as those detected in the HFD/STZ-treated
rats. Still, the inflammatory, vascular, and proliferative interstitial tissue changes were
minimal (Figure 6G,H).

Interestingly, the testes of HFD/STZ+MF+CH-SeNps -treated rats showed a sharp
decline in the diabetes-induced orchiopathy, but the testes did not maintain their normal
histology. A few histopathological alterations were still observed, including sperm stasis
and germ cell desquamation of few seminiferous tubules and interstitial edema and con-
gestion of the interstitial tissue and tunica vaginalis (Figure 6G,H). Table 2 summarizes the
morphological evaluation and the quantitative lesion scoring in all groups.
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Figure 6. Representative photomicrograph of H&E stained testicular tissue sections showing normal histological picture
in the control rats (A,B). HFT/STZ testes showing congestion (red arrowhead), vacuolated germinal epithelium (blue
arrowhead), necrotic germinal epithelium, (yellow arrow), interstitial fibrosis (black arrowhead), and redundant basal
lamina (arrow) (C,D). HFT/STZ+MF testes showing germ cell depletion (black ellipse), spermatid retention (yellow ellipse),
thickened basal lamina (yellow arrowhead), interstitial edema (blue arrowhead), fibrosis (black arrowhead), and congestion
(red arrowhead) (E,F). HFT/STZ+CH-SeNPs testes showing congestion (red arrowhead), multinucleated giant cell s
(black arrowheads) and redundant basal lamina (arrow) (G,H). HFT/STZ+MF+CH-SeNPs testes showing congestions (red
arrowheads), desquamated germinal epithelium (black arrowhead), and sperm stasis (ellipse) (I,J). Scale bar is 100 microns
for (A,C,E,G,I), and 20 microns for (B,D,F,H,J).

Table 2. Effect of metformin (500 mg/kg bwt) and/or chitosan-stabilized selenium nanoparticles (2 mg Se/kg bwt) on
lesion scoring of testicular tissues of HFD/STZ-diabetic rats.

Lesion Control HFD/STZ HFD/STZ+MF HFD/STZ+CH-SeNPs HFD/STZ+MF+CH-SeNps

Spermatogonial cells/ST 66.90 a± 1.16 48.50 c ± 0.96 59.80 b ± 1.16 49.90 c ± 0.92 62.50 b ± 0.86
Spermatocytes/ST 147.30 a ± 1.46 105.10 d ± 1.37 128.30 c ± 3.25 111.50 e ± 1.42 140.70 b ± 1.80

Spermatid/ST 221.30 a ± 5.14 170.40 c ± 2.97 199.30 b ± 1.04 174.70 c ± 2.41 212.60 a ± 3.69
Sertoli cells/ST 30.50 a ± 0.48 26.20 b ± 0.88 29.30 a ± 0.70 26.60 b ± 0.78 29.80 a ± 0.59

Leydig cells/intertubular area 13.60 a ± 0.45 10.40 b ± 0.45 12.30 a ± 0.52 10.80 b ± 0.39 12.60 a ± 0.43
Height of germinal epithelium 83.22 a ± 1.70 58.09 c ± 1.94 77.04 b ± 2.50 55.55 c ± 1.83 80.16 ab ± 2.02

Numbers of STs/10X 14.20 b ± 0.36 18.20 a ± 0.33 14.80 b ± 0.44 17.20 a ± 0.47 14.50 b ±0.22
Mean diameter of ST 255.36 a ± 1.37 224.74 b ± 4.67 248.23 a ± 1.63 229.27 b ± 1.87 252.93 a ± 1.06

STs with vacuolated germinal epithelium 0.00 d ± 0.00 7.38 a ± 0.32 4.04 c ± 0.23 5.57 b ± 0.33 3.55 c ± 0.28
STs with desquamated germinal epithelium 0.00 d ± 0.00 20.10 a ± 1.32 11.14 b ± 1.23 17.10 a ± 1.77 3.74 c ± 0.42

STs with depleted germ cells 0.00 e ± 0.00 15.88 a ±1.34 7.36 c ± 0.23 11.91 b ± 0.75 3.58 d ± 0.33
STs with necrotic and or complete loss of

germinal epithelium 0.00 e ± 0.00 4.83 a ± 0.43 2.05 c ± 0.17 3.53 b ± 0.22 1.10 d ± 0.10

STs with multinucleated giant cell formation 0.00 b ± 0.00 3.07 a ± 1.19 1.00 b ± 0.12 1.31 b ± 0.07 0.40 b ± 0.17
STs with spermatid retention 0.00 c ± 0.00 0.86 ab ± 0.31 0.75 abc ± 0.33 1.09 a ± 0.31 0.25 bc ± 0.17

STs with uneven, or redundant or broken basal
lamina 0.00 e ± 0.00 14.47 a ± 1.01 7.40 c ±0.43 10.94 b ± 1.00 3.06 d ± 0.45

Interstitial leukocytic infiltration 0.00 b ± 0.00 10.66 a ± 1.71 3.00 b ± 0.92 9.00 a ± 1.58 1.00 b ± 0.51
Interstitial edema 0.00 b ±0.00 12.67 a ± 1.47 2.33 b ± 1.00 10.67 a ± 2.42 3.33 b ± 1.99

Interstitial congestion 0.00 d ± 0.00 15.33 a ± 1.87 4.33 c ± 0.71 9.97 b ± 1.78 2.66 c d ± 0.83
Interstitial hemorrhage 0.00 b ± 0.00 2.33 a ± 0.71 1.00 b ± 0.51 0.67 b ± 0.44 0.33 b ± 0.33

Values are mean ± SE. Means within the same row carrying different superscripts (a–e) are significantly different at p < 0.05.

4. Discussion

Initially, in our earlier work [38], the HFD/STZ treated rats showed clear hyper-
glycemic condition (276.74± 6.03 mg blood glucose/dl) and hyperinsulinemia (36.84± 0.58
mg insulin/dL) when compared to the control group (95.72 ± 0.42 and 11.62 ± 0.25, re-
spectively). The hyperglycemia and insulin resistance could be related to the STZ induced
selective pancreatic β-cells damage, which mainly linked to DNA alkylation and, to a
lesser extent, ROS generation, and nitric oxide [17]. However, in our previous study [38],
the MF and/or CH-SeNPs oral dosing, particularly the combined therapy, significantly
suppressed the HFD/STZ induced increment in the glucose and insulin levels. Thus, the
earlier study proposed the potent antidiabetic activity of CH-SeNPs and MF combined
therapy, which could be related to the CH-SeNPs capacity to renew the beta cells activity,
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decreasing the blood glucose level and enhancing insulin release [56]. Se can also induce
mimetic-insulin effects by activating Akt and other kinases that are responsible for insulin
signaling, such as p70 S6 kinase [57].

Herein, the diabetic HFD/STZ rats displayed a pronounced decrease in the functional
characteristics of the sperm, as demonstrated by a decrease in sperm count, motility, and
viability with a rapid rise in morphological abnormalities. Besides, in our diabetic rat
model system, a significant decline in the germinal epithelium disintegration and germ
cell reduction was observed. There is evidence that normal lipid metabolism is crucial for
normal spermatogenesis. Hyperglycemia is often associated with abnormalities in lipid
profiles, like elevated serum levels of total cholesterol, triglycerides, low-density lipopro-
tein cholesterol, and declined serum levels of high-density lipoprotein cholesterol [38,58].
Increased ROS in diabetes also has a major impact on sperm, because of the presence in the
cell membrane of various polyunsaturated fatty acids [59]. In recent years, increasing evi-
dence has shown that ROS release with hyperglycemia can interrupt the blood-testis barrier
and worsen sperm dysfunction [60,61]. The negative effects of T2DM on sperm develop-
ment and characteristics in the present study comply with previous studies [62,63]. In this
context, the decreased volume and quality of sperm are associated with infertility [64].

The MF and/or CH-SeNPs oral dosing significantly restored the sperm count, motility,
and live sperm percentage concomitantly with reduced sperm abnormalities percent. The
potent antihyperglycemic of MF could reduce ROS release and maintain sperm integrity
and viability [65]. Besides, Zhou et al. [66] described the AMP-activated protein kinase
(AMPK) by MF. Several shreds of evidence suggest that AMPK is present in spermatozoa
and it plays vital roles in spermatozoa motility, the spermatozoa membrane’s quality, and
antioxidant molecules [67–69]. CH-seNPs are beneficial to the quality of semen, mainly
because of their antioxidant ability and their capacity to prevent lipid peroxidative damage
by free radicals scavenging [29]. In the same respect, Liu et al. [70] found that 0.2 mg/kg
bwt of oral gavage-administered SeNPs in male Sprague-Dawley rats for two weeks
increased sperm concentration, vitality, and movement indicators.

Our data also revealed that the induction of T2DM significantly reduced the TES,
FSH, LH, and E2 levels in the male rats. Earlier studies in brain-specific insulin receptor
knockout mice confirmed the link between fertility and brain insulin signaling [71]. This
expected mechanism could be, as follows: inadequate insulin brain signaling in the di-
abetic patients elicits a negative effect on the pituitary function, reduces the hormonal
output, reduces the LH effect on the Leydig cell to produce TES, and upsets FSH action
on the Sertoli cell in order to produce sperm [71]. In this regard, up to 1/3 of men with
T2DM have substantially sub-normal total and free TES levels [72]. In male mice, with
nicotinamide/STZ-induced T2DM serum TES, LH levels, sperm count, and viability were
also significantly decreased [73].

Interestingly, the TES, FSH, LH, and E2 levels re-establishment after MF and/or
CH-SeNPs treatment showed their protective impact against reproductive hormonal insuf-
ficiencies resulted from T2DM in the rat model. Nasrolahi et al. [74] similarly conducted
a trial of diabetic male rats that were induced by STZ and indicated that treatment with
MF increased serum TES. MF has also shown its effectiveness in managing Leydig cell
steroidogenesis and enhancing TES [75]. On the other hand, SeNPs restored the depleted
sexual male hormone levels due to deltamethrin exposure in rats [76].

Oxidative stress is one of the main underlying mechanisms in diabetic sperm dys-
function [77]. Thus, in order to identify MF and/or CH-SeNPs, protective mechanisms
against T2DM mediated reproductive toxicity, oxidative stress indices, essential antioxidant
enzymes, and lipid peroxidation in testicular homogenate have been assessed. Initially, the
diabetic rats displayed an obvious decline in the antioxidant enzyme activities (CAT and
SOD) simultaneously with a sharp rise in MDA content. T2DM induced hyperglycemia
can lead to higher tissue oxidative stress and further increases the disequilibrium between
ROS output and enzymatic antioxidants [78]. Besides, Chodari et al. [79] demonstrated that
increased oxidative stress may be attributed to TES deficiency in diabetic conditions. In the
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testis and sperm in the diabetes state, oxidative stress may be because of a hypoxic state,
since diabetes induces a glycosylated formation of hemoglobin that impedes the delivery
of oxygen on the testes [80].

In contrast, MF and/or CH-SeNPs oral dosing significantly restored the depleted
antioxidant enzymes and suppressed the elevated MDA content in testicular tissue of
diabetic rats. It was stated that standard medicinal product MF exhibited antioxidant
properties in mitochondrial breathing, thereby increasing the antioxidant enzymes and
decreasing ROS in diabetic rats [81]. The addition of Se-NPs alone or chitosan-coated
to the diet of layered chicks has recently been shown to increase total SOD, GPx, and
CAT activities in erythrocytes than dietary Se [43,82]. This may be due to SeNPs’ greater
antioxidant activity [29,30].

Of note, in our earlier work [38], throughout the eight week of receiving HFD, all of
the rats showed the highest weight gain when compared to those that received a normal
diet. Subsequently, after STZ injection, a significant reduction in the body weight was
recorded in HFD/STZ treated rats when compared to the control one at the end of the
experiment. In this regard, Rossmeisl et al. [83] reported that, during insulin resistance,
glucose metabolism is extremely reduced and fat metabolism increases, which results
in weight loss in diabetic rats. However, CH-SeNPs and/or MET oral dosing in the
earlier experiment significantly restored body weight gain, being possibly linked to their
antidiabetic activity.

Accumulating evidence has confirmed that testicular steroidogenesis and spermato-
genesis dysfunction correlate with male reproductive failure, due to hyperglycemic ox-
idative stress and insulin deficiency [84]. Testicular steroidogenesis is a highly regulated
cholesterol-controlled signaling pathway that is dependent on cholesterol that is accessible
within testicular mitochondria controlled by StAR [85]. CYP11A1 converts the choles-
terol molecule into pregnenolon in the inner mitochondrial membrane [86]. CYP17A1
catalyzes dehydroepiandrosterone synthesis from pregnenolone and the further formation
of androstenedione [87]. Finally, TES formation from androstenedione and the respective
back-reaction is catalyzed by HSD17B3 [88]. Importantly, aromatase (CYP19A1) catalyzes
TES’s irreversible conversion and into E2 [89].

Hyperglycemia in testicular tissue has been reported to reduce the antioxidant capa-
bility in mitochondria [90]. Several transcriptional coactivators regulate mitochondrial
biological activities. For instance, the peroxisome proliferator-activated receptor-gamma
coactivator 1-alpha (PGC-1α) plays a chief role in controlling mitochondrial function and
biogenesis. Inactivated PGC-1α is deacetylated to the active form by silent information
regulator type-1 (SIRT1) [91]. Notably, spermatogenic cells’ mitochondria have many vital
roles in spermatogenesis events [92].

In order to explore the protective effect of the MF and/or CH-SeNPs on the male
diabetic rat’s fertility, we studied the level of expression of four key steroidogenic genes
StAR, Cyp11A1, Cyp17A1, and HSD-17 B3 in testis. Initially, the testicular StAR, Cyp11A1,
Cyp17A1, and HSD-17 B3 mRNA expression was suppressed, concomitant with upreg-
ulated CYP19A1 in diabetic rats, demonstrating compromised testicular steroidogenesis.
Additionally, the notable downregulation of PGC-1α and SIRT1 indicates the spermato-
genic mitochondrial compromise by ROS due to T2DM induced hyperglycemia. In contrast,
a substantial recovery was recorded in the gene expression of steroidogenic and related
genes spermatogenic mitochondria following MF and/or CH-SeNPs oral dosing.

Notwithstanding, the current data elucidated that combined treatment with MF and
CH-SeNPs showed a significant improvement in TES, E2, LH, SOD, and MDA levels
than the single exposure to each treatment in diabetic rats. Additionally, other estimated
parameters, including sperm motility, live sperm%, sperm abnormalities, LH, and SOD
were brought back to the normal control level in the HFD/STZ-MF+CH-SeNPs group.
Such a synergistic effect could be linked to the resultant superior free-radical quenching
capability. MF showed close synergistic interaction with other drugs, like rapamycin, in the
rat model of testicular torsion/detorsion-induced ischemia/reperfusion [93]. Additionally,
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MF and the Nigella sativa dietary supplement synergistically improved serum testosterone
in diabetic rats [94].

5. Conclusions

In conclusion, our findings provide new insights into the steroidogenesis’s potential
participation (StAr, CYP11A1, CYP17A1, HSD17B3, and CYP19A1) and mitochondrial
biogenesis (PGCα and SIRT) related genes in the induction of testicular damage in T2DM.
Our results suggested that the MF and/or CH-SeNPs administration could be useful in the
guard against T2DM accompanying male reproductive disorders by the augmentation of
the antioxidant capability and the proper regulation of steroidogenesis and mitochondrial
biogenesis related genes. Notably, this study showed that MF and CH-SeNPs combination
have significant synergistic effects that could open up further opportunities for the design
of new combinatorial remedies to the associated infertility in diabetic patients.
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