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Abstract: Biofilm contamination in food production threatens food quality and safety, and causes
bacterial infections. Study of food biofilms (BF) is of great importance. The taxonomic composition
and structural organization of five foods BF taken in different workshops of a meat-processing
plant (Moscow, RF) were studied. Samples were taken from the surface of technological equipment
and premises. Metagenomic analysis showed both similarities in the presented microorganisms
dominating in different samples, and unique families prevailing on certain objects were noted.
The bacteria found belonged to 11 phyla (no archaea). The dominant ones were Actinobacteria,
Bacteroidetes, Firmicutes, and Proteobacteria. The greatest diversity was in BFs taken from the cutting
table of raw material. Biofilms’ bacteria may be the cause of meat, fish and dairy products spoilage
possible representatives include Pseudomonas, Flavobacterium, Arcobacter, Vagococcus, Chryseobacterium,
Carnobacterium, etc.). Opportunistic human and animal pathogens (possible representatives include
Arcobacter, Corynebacterium, Kocuria, etc.) were also found. Electron-microscopic studies of BF thin
sections revealed the following: (1) the diversity of cell morphotypes specific to multispecies BFs;
(2) morphological similarity of cells in BFs from different samples, micro-colonial growth; (3) age
heterogeneity of cells within the same microcolony (vegetative and autolyzed cells, resting forms);
(4) heterogeneity of the polymer matrix chemical nature according to ruthenium red staining.

Keywords: microbial biofilm; meat-processing; foodborne pathogens

1. Introduction

The main form microorganisms in natural and anthropogenic systems are biofilm.
Biofilms (BFs) are monospecies or multispecies microbial communities enclosed in a
self-produced polymer matrix attached to biotic or abiotic surfaces [1]. Biofilms, as
self-organized communities of bacteria developing as a tolerant phenotype in polymer
matrix and attached to abiogenic or biogenic surfaces, are a serious threat to the food
industry [2,3]. Extensive information is available on the significantly greater resistance
of microorganisms in BFs to damaging influences, including disinfectants, compared to
planktonic cultures [4]. Therefore, biofilm contamination of food production facilities
and methods of effective BF removal from production surfaces and equipment are a huge
problem [5,6]. Biofilms are responsible not only for equipment damage and food spoilage,
but also for survival and spread of pathogenic bacteria [3,4] and causes diseases related
to foodborne pathogens. Thus, according to monitoring studies, up to 80% of bacterial
infections in the United States are directly associated with foodborne pathogens [7]. In addi-
tion, food raw materials entering the enterprises may be contaminated by resting forms of
various (not only foodborne) pathogens that survive in this state in natural ecotopes when
the host changes. In addition, biofilms are considered as a source of cross-contamination in
food processing plants [7,8].
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Despite the extensive BF studies in the food industry [5,6,8] a number of problems
have not been solved, while others require refinement and clarification, in particular,
autoregulation of BF development; mechanisms of BF resistance to damaging influences.
Furthermore, we need to improve detection efficiency for BFs and seasonal dynamics of
their formation and to develop effective methods and tools to control biofilm formation,
particularly at food production facilities. The issues of BF resistance to toxicants (antibiotics,
disinfectants), physical factors (UV, etc.) and the role of biofilm growth in the development
of antibiotic resistance (AR) are especially relevant, not only due to greater horizontal
transfer of AR determinants in BFs [2], but also due to the frequency of AR mutants
occurrence [9,10].

Combination of modern methods of molecular-genetic and microbiological analyzes
and increasing amount of information on the importance of intercellular interactions
in complex communities has led to extensive studies on interactions between different
bacterial species in multispecies biofilm consortia [11]. At the same time, along with the
recognition of interspecific relations role in the stability of multispecies BFs [5,12], an
understanding is being formed of possibly even greater significance of age heterogeneity
in the biofilm population (sensitive dividing cells and resting stress-resistant forms), as
well as intrapopulation phenotypic heterogeneity (persister cells, small-colony variants
(SCV)) [13,14]. Although multispecies BFs are predominant form of food contamination,
most studies on the properties and mechanisms of biofilm formation have been carried out
on model monospecies BFs [15]. Therefore, the study of the taxonomic composition and
structural organization of native food biofilms is of great practical and theoretical interest.

Unfortunately, it should be noted that insufficient attention is paid to studying the
biofilm contamination at food production facilities in Russia. At the same time, the devel-
opment of effective methods and tools for BF control in food industry is possible only on
the basis of versatile studies of biofilm formation, taking into account regional conditions,
local specifics of incoming raw materials, conditions of its processing, etc.

The aim of this study was to detect biofilms in various technological zones of a meat
processing plant in Moscow, Russia as a possible source of contaminating microflora
and to determine biofilm consortium taxonomic composition, structural organization,
morphological and age heterogeneity.

This study is the basis for further research of the biofilm formation seasonal dynamics
at meat processing plants, changes in the taxonomic, age and structural characteristics of
BFs, in order to develop effective methods to suppress the development and spread of
biofilm microorganisms, including pathogens, at food processing plants.

2. Materials and Methods
2.1. Research Subjects

The work investigated biofilms collected from the surfaces of technological equipment
in various zones at a meat processing plant (MPP) in the central region of Russia.

Samples were taken before the routine disinfection procedure (daily treatment of all
technological surfaces with sodium hypochlorite solution) from technological equipment
or premise surfaces (Table 1) by scraping with a metal spatula. This time point was chosen to
catch both young and mature BFs. In preliminary experiments, we detected BF in all sampling
points both before and after disinfection. Detection of BF was made by the use of two BF
features: slime formation (detected by fingers), and bubble formation out of H2O2 (3%). The
biological material was immediately placed in sterile saline (for taxonomic studies) or in a
solution of glutaraldehyde in cacodylate buffer (for electron-microscopic studies).
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Table 1. Biofilms sampled for research at meat processing plant.

No. of Sample Workshop Specific Location Appearance

1 Deboning and trimming workshop The joint of the wall and the cutting table Dense, thick
2 Deboning and trimming workshop Drain Wet, thick
3 Deboning and trimming workshop The joint between tiles Dry
4 Forming workshop Equipment—vacuum filler, table corner Wet, thin
5 Forming workshop Equipment—vacuum filler, inner surface Leathery, hard

2.2. Microscopic Examinations

The ultrastructural organization of biofilm samples was studied using transmission
electron microscopy (TEM) of their ultrathin sections.

Biofilm samples taken for electron microscopy were fixed with a solution of 2.5%
glutaraldehyde in cacodylate buffer (0.05 M sodium cacodylate solution, pH 7.0–7.5) and
stored at 4 ◦C for one day; then washed three times with the same buffer solution for 5 min
and fixed in a solution of OsO4 (1% OsO4)-0.7% solution of ruthenium red (Sigma, St. Louis,
MO, USA) in cacodylate buffer) at 4 ◦C for 1.5 h. After fixation, the samples were placed
in 2% agar-agar and incubated in 3% solution of uranyl acetate in 30% ethyl alcohol for
4 h and then in 70% ethanol for 12 h at 4 ◦C. The material was dehydrated in 96% ethanol
(2 times for 15 min) and then in absolute acetone (3 times for 10 min). The samples were
impregnated with EPON-812 resin (EpoxyEmbedding Medium Epon® 812, Sigma-Aldrich,
St. Louis, MO, USA) and stored in resin:acetone mixture with a ratio of 1:1 for 1 h and
then in resin:acetone mixture with a ratio of 2:1 for 1 h. The resulting material was filled in
capsules with resin and polymerized at 37 ◦C for one day and then at 60 ◦C for another day.
Ultrathin sections were obtained using LKB-III microtome (LKB, Stockholm, Sweden) and
contrasted in an aqueous solution of 3% uranyl acetate (for 30 min) and then in an aqueous
solution of 4% lead citrate (for 30 min).

To identify acidic mucopolysaccharides in biofilms, ruthenium red stain (Sigma, St.
Louis, MO, USA) was used. It was added in an amount of 0.7% together with OsO4, with
which it interacted. The presence of extracellular polysaccharides in biofilms of various
bacteria was shown using ruthenium red (Sigma, St. Louis, MO, USA) [16].

The obtained slides were examined visually using JEM 100SHP electron microscope
(JEOL, Akishima, Japan) at accelerating voltage of 80 kV and operating magnification of
5000–50,000. The materials were photographed using Morada G2 digital image output
system (EMSIS GmbH, Münster, Germany).

Identification of physiological type of cells was performed by the similarity method:
i.e., cells of typical structure were considered as vegetative ones, cells with thick cell wall
and/or dark cytoplasm were considered as resting forms [17], empty envelopes were
considered as lysed cells, “hairy” cells were considered as persisters [18].

2.3. Taxonomic Analysis of Biofilms

Metagenomic DNA from biofilm samples was isolated using DNeasy PowerSoil
Kit (Qiagen, Hilden, Germany) according to the manufacturer’s protocols. Two sets of
primers were used to amplify the V3–V4 variable region of the 16S rRNA gene: universal
341F CCTAYGGGDBGCWSCAG and 806R GGACTACNVGGGTHTCTAAT [19]. PCR
fragments were sequenced using Illumina MiSeq (Illumina, San Diego, CA, USA). Readings
from all samples were combined. Low quality readings, singletons and chimeras were
excluded. The remaining readings were clustered into operational taxonomic units (OTUs)
with a minimum identity of 97%. To determine the proportion of OTUs in each of the
samples, the original readings (including low-quality ones and singletons) with a minimum
identity of 97% along the entire reading were overlaid on the representative OTU sequences.
Usearch 11 [20]. was used to perform all of these procedures. Taxonomic identification
of microorganisms by 16S rRNA gene sequences was performed using Usearch and Silva
v. 1.2.11 database with default parameters [21,22]. For each sample, at least 5000 thousand



Microorganisms 2022, 10, 1583 4 of 17

sequences were obtained. Differences in the diversity among the samples were calculated
using Shannon, Simpson and Chao1. Chao1, based on Shannon, and Observed-species
indices, rarefactions curves were prepared via QIIME (version 1.7.0).

3. Results
3.1. Microscopic Examination of Biofilms

Microscopy has a great potential for studying biofilms, including the methods of trans-
mission electron microscopy (TEM) used in this work to study ultrathin sections in combi-
nation with the cytochemical analysis of acidic mucopolysaccharides of the biofilm matrix.

Biofilms sampled in different places and workshops of MPP differed in thickness
and consistency (Table 1). Sample 3, in contrast with others, was a thin dry biofilm
(BF) unsuitable for obtaining and studying ultrathin sections. It has been studied only
by metagenomic analysis methods. Microscopic examination of ultrathin BF sections
revealed a good development of the biopolymer matrix in all samples, which differed
among samples in density and chemical composition. In samples 2, 4 and 5, along with
the polysaccharide matrix stained with ruthenium red, unstained pericellular regions
of the matrix were found, apparently of a protein or nucleic nature. All samples were
represented by multispecies biofilms, heterogeneous both in bacterial cell morphology and
their assumed physiological age.

Sample 1 from a cutting table in the deboning and trimming workshop had the
greatest heterogeneity of the microbial population in terms of cell morphology and their
physiological age (Figures 1 and 2). Very large (more than 2 µm) meat cells captured in BF
and bacterial cells of several morphotypes are visible (Figure 1). At higher magnification
(Figure 2), membrane vesicles (V) are found on cells and also in the matrix.
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Figure 1. Electron micrograph of sample 1 biofilms. Designations: VC I; VC II; VC III, VC
IV—vegetative cells of I–IV morphotypes, respectively; P—persisters covered with a fibrillar layer;
FL—fibrillar layer; MC—meat cells. Scale bar is 2 µm.

It should be noted that unusual “hairy” cells are found both at low (Figure 1) and high
(Figure 2) magnification.

BF #1 matrix, similar to the rest of the samples, was formed by polysaccharides and
stained well with ruthenium red.

Sample 2 was also a multispecies biofilm. Compared to sample 1, most of the bacteria
of the consortium in it were represented by gram-negative vegetative cells (Figure 3),
which is clearly seen at high magnification (Figure 4). Along with vegetative cells, BF
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contained resting forms (RF) with a thickened cell membrane, electron-dense cytoplasm,
and a compacted nucleoid (CN) located in the cell center. A typical characteristic for the
biofilms of this sample, as well as samples 4 and 5, was a well-formed, but chemically
heterogeneous matrix. The main volume of BF was represented by a polysaccharide matrix
with heterogeneous staining by ruthenium red. In the stained matrix, its inhomogeneous
fibrous structure (FS) was seen, clearly visible at higher magnification (Figure 4) and found
in BFs of other samples (1, 4, 5). Perhaps this structure contributes to a stronger interaction
of cells. Along with a dense polysaccharide matrix, it contained large areas poorly stained
or not stained with ruthenium red. They formed as a capsular layer (CL) around single cells
and cell groups (Figures 3 and 4) and apparently contained non-carbohydrate polymers
(proteins, nucleic acids). This matrix heterogeneity apparently reflects the taxonomic
heterogeneity of biofilms but does not depend on the physiological age of cells, since
vegetative cells (VC) and RF are detected in the same locus (Figure 4).
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The pronounced age heterogeneity of the cells in biofilm consortium was found, with
various cell types simultaneously present in the microzone(s): vegetative cells; resting forms
characterized by a thickened cell wall, electron-dense cytoplasm (compared to vegetative
cells), and compacted nucleoid (CN); as well as autolyzed cells (A) with only residual
cell membrane.

Sample 4 was a multispecies biofilm with 5 types of morphologically different cells,
many of which were similar to cells from samples 1 and 2 (Figure 5). On the sections, vegeta-
tive and resting cells are well identified; as well as cells with multiple inclusions, apparently
of polyoxybutyric acid (POBA), which accumulates in stationary and resting cells.

The formation of non-polysaccharide capsular layer around the cells or cell groups
was also noted. Figure 5 shows various morphological types of cells. Their microcolonial
growth was well demonstrated by the example of type II cells (rod-shaped) visible in the
micrograph as elongated cells and their compactly packed cross sections (VC II) (Figure 5).

Sample 5 was also represented by multispecies biofilm, but with the following struc-
tural characteristics in the ultrathin sections of this BF. First, zones of two types were
found in the polymer matrix. In one zone, the matrix was organized in the form of dense
veiny structures (Figure 6A), which were unevenly stained with ruthenium red. The ma-
trix contained cells of a gram-positive bacterium (by the structure of the cell membrane)
with microcolonial growth (Figure 6A,B). Within the same microcolony, cells of different
physiological ages were detected, i.e., vegetative cells (VC) dividing by septation (having
pronounced division septa, DS) and thick-walled resting forms (RF) (Figure 6B). A capsular
layer was formed around the cells, which was not stained with ruthenium red. It should be
noted that in sample 2 (Figure 4) the capsular layer was formed by gram-negative bacteria,
while in sample 5 it was formed by gram-positive bacteria.
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3.2. Taxonomic Analysis of Biofilms

Biofilm taxonomic composition of five samples was determined based on the analysis
of the variable V3–V4 region of the 16S rRNA gene. After processing the obtained data,
86,017 sequences were obtained for all samples, which were combined into a cluster of
470 operational taxonomic units with a minimum identity of 0.97. This allows complete
description of biodiversity in the studied communities, which is confirmed by the calculated
indices of species diversity (Table 2).

Table 2. Indices of species diversity for biofilms #1–#5 (correspond to biofilms described above).

Sample Chao1 Richness Richness2 Shannon_e

1 324.5 231 164 3.99

2 169.2 140 101 3.43

3 219.3 197 161 3.13

4 123.4 93 66 2.92

5 192.3 152 115 2.98

In particular, the highest Chao1 value obtained for sample 1 was 325.5; in other
samples it was lower. Thus, the obtained data are sufficient for complete description of
biodiversity in the studied samples.

Taxonomic analysis showed that all OTUs belonged to bacteria. Archaea were not
found in the studied communities. All found OTUs belong to 11 phyla (Figure 7). In
all samples, the dominant microorganisms were representatives of the following phyla:
Actinobacteria, Bacteroidetes, Firmicutes, Proteobacteria.
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inferior to Proteobacteria (42.83%). The most uniform distribution of shares between phyla
was observed in sample 4: Actinobacteria-36.29%, Firmicutes-32.83%; Bacteroidetes-22.27%.
Minor groups included representatives of Acidobacteria, Chloroflexi, Cyanobacteria, Epsilon-
bacteraeota, Fusobacteria, Patescibacteria, Planctomycetes, Verrucomicrobia, etc.

3.2.1. Identification of the Exclusive and Basic Microbiota in the Food Industry

Our analysis revealed a total of 101 families. Of the 101 identified families, 18 (15.5%)
were common to all biofilms, and 83 (84.7%) were specific (Supplementary Table S1).

Biofilm from the joint of the wall and the cutting table (sample 1) was characterized by
the highest diversity of microbial community. The Flavobacteriaceae family was represented
in all samples, and in some their number reached more than 50% (in sample 2—55.09%,
in sample 3—54.30%) (Figure 8). However, in sample 4 it was presented in the smallest
amount compared to other samples (0.75%).
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Figure 8. The general of the families found in each samples according to relative abundance. M1,
M2, M3, M4 and M5 represent each food processing specific location (x-axis). Color boxes represent
bacterial abundance (y-axis).

One of the most common families were Pseudomonadaceae and Moraxellaceae. Repre-
sentatives of the Pseudomonas were found in all samples. The largest number of them were
identified in sample 1 (18.64%), followed by sample 4 (2.43%), and the smallest number
of representatives of the Pseudomonas were found in samples 2, 3 and 5 (1.37%, 1.58% and
0.12%, respectively).
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Crocinitomicaceae, which includes representatives of the genus Fluviicola, was found in
all five biofilms. The largest number of them was found in sample 2, which was taken from
the drain ladder of the cutting shop and amounted to 7.88%.

Representatives of the Enterococcaceae are known for their ability to form biofilms,
were found at all points of the study, the largest number of them was found in sample 4
and amounted to 12.47%, and the smallest number of them in sample 1 (0.13%).

Samples 2, 3 and 5 were represented by biofilms, which were quite similar in taxo-
nomic composition: the dominant OTUs are Flavobacteriaceae. Another dominant family in
sample 3 belongs to the Burkholderiaceae of the Proteobacteria.

Sample 4 was represented by the most distinctive microbial community. First, in this com-
munity, the species diversity was the lowest, with only 125 OTUs. Second, the dominant mi-
croorganisms were the representatives of the following phyla: Actinobacteria-Corynebacteriaceae
(16.29%), Actinobacteria-Micrococcaceae (15.04%), Firmicutes-Enterococcaceae (12.47%),
Bacteroidetes-Sphingobacteriaceae (11.11%), Bacteroidetes-Weeksellaceae (10.36%). There are
human pathogens among bacteria of the Corynebacterium genus. Another eurybionts
dominating in sample 4 community are Sphingobacteria.

In sample 5, in addition to Flavobacteriaceae, the dominant components of the com-
munity were representatives of the Enterococcaceae (8.46%) and Arcobacteraceae (6.06%).
Furthermore, Enterococcaceae were presented in samples 2 (4.90%), 3 (1.09%) and 4 (12.47%),
and in a minimum amount in sample 1 (0.13%).

At some points, a unique microflora was noted. Thus, representatives of the families
Aerococcaceae and Carnobacteriaceae were found at all sampling points except for point 1
(Supplementary Table S1). Representatives of the Clostridiaceae were found in samples 2, 4
and 5 (Supplementary Table S1). The largest number of them was presented in sample 5
and amounted to 1.96%. Representatives of the family Lactobacillaceae, Listeriaceae and
Staphylococcaceae (Supplementary Table S1) were found mainly only in sample 4, which was
selected in the forming workshop at the corner of the vacuum filler table.

Thus, the microbial communities of samples 1–5 contained microorganism’s character-
istic of food biofilms, including those involved in food spoilage. The microbial communities
of the analyzed samples differed in their taxonomic composition and had high diversity.
They included representatives of 11 phyla, among which several dominant families may
be distinguished. A characteristic of microbial communities in samples 1, 2, 3, 5 was the
presence of the Flavobacteriaceae representatives among the key dominants.

According to our results, pathogenic bacteria associated with foodborne diseases, such
as L. moncytogenes, Salmonella spp., S. aureus and Campylobacter spp., were not identified in
our samples.

3.2.2. Prevalence of Representatives of the Enterobacteriaceae Family

Representatives of the Enterobacteria were identified in small numbers but were found
in all samples. The largest number of them were found in sample 2 and were represented
by the genera Serratia and Morganella. The next in the predominance of representatives of
the Enterobacteria family was sample 3 and 5 and were represented by the genera Budvicia
and Morganella in different quantities. In the remaining samples, representatives of the
Enterobacteria family were found in insignificant quantities.

4. Discussion

It should be noted that despite strict compliance with sanitization and disinfection
measure at the studied MP, BFs were detected as early as 10–24 h after sanitization. This
confirms the available information on the rapid (several hours) BF formation by bacteria,
both remaining viable after sanitization and entered from external environment [23]. Our
data are in agreement with this. We observed both young and old BF (as indicated by
polyoxybutyric acid and resting forms presence for mature BFs and by vegetative cells for
young BFs).
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In this work food biofilms were sampled in different places (on cutting tables, form-
ing equipment, and drainpipe walls), metagenomic analysis showed a high taxonomic
diversity of bacteria dominating in different samples (Supplementary Table S1). According
to the results of 16S rRNA analysis, representatives of Actinobacterium, Bacteroidetes,
Firmicutes, and Proteobacteria dominated in all biofilm samples. By the indices of species
diversity, the highest taxonomic diversity was in sample 1 taken at the drain of the cutting
table in the deboning and trimming workshop, where incoming meat raw materials are
processed. Taxonomic analysis results of the sampled BFs (Figure 7) were confirmed by
the microscopic studies of BF thin sections, which revealed the morphological similarity of
cells in BF samples.

The studied characteristics of biofilm contamination allow concluding that the dom-
inant microflora in different technological zones of a meat processing enterprise is suffi-
ciently similar. Currently, extensive evidence has been obtained indicating a significantly
higher resistance of multispecies biofilms to damaging physical influences, chemical and
biological toxicants, compared to monospecies biofilms [24]. A number of studies have
described the taxonomic composition of pathogens forming food BFs, among which the
most common species are: Escherichia coli [25]; Staphylococcus aureus [26]; Listeria monocy-
togenes [27]; Salmonella enterica [28], etc.; as well as microorganisms associated with food
spoilage: Pseudomonas, Acinetobacter, Flavobacterium, Enterococcus, etc. [29,30]. The BFs
studied in this work contained representatives of 11 phyla.

It should be noted that food BF formation is strongly influenced by components of
food residues, including meat residues and meat exudates [31]. It was confirmed in this
work. Samples taken in the deboning and trimming workshop (on the cutting table and
on the surface of the drain), which had the greatest diversity of the biofilm population
(Table 2), contained meat cells included in the biofilm matrix (Figures 1 and 3). At a higher
magnification, membrane vesicles were found on the cells, as well as in the matrix. Vesicles
found in BF are considered to be derivatives of the outer membrane of gram-negative
bacteria, which are associated with the transport of exoenzymes and endotoxins from the
cell [32,33].

The literature indicates that the nature of the food matrix affects the selective growth
and biofilm formation by certain bacteria species (genera) [34]. Thus, some representatives
of the Pseudomonas genus (Proteobacteria phylum) cause spoilage of meat products [35].
Comparative analysis of BF metagenomes (Figure 7) sampled in different places of the meat
processing plant (Table 1) confirms this pattern. In all studied biofilms, representatives of
Bacteroidetes (22.3–67.7%), Proteobacteria (8.5–42.8%), Firmicutes (0.6–32.8%), Actinobacteria
(1.8–36.3%) were dominant. Our microscopic analysis of BFs from different samples also
indicated the selective dominance of certain bacteria according to their morphological
characteristics (Figures 1–6).

Representatives of the Pseudomonadaceae were found in different quantities in all the
samples studied. Representatives of Pseudomonadaceae are aerobic psychrophilic eurybionts.
Some representatives of this genus cause spoilage of dairy [36], fish [37], and meat prod-
ucts [38]. The presence of bacteria of the Pseudomonadaceae in all samples taken at the
meat-processing plant is of concern due to the negative impact that it can have on the
quality of food, having a high ability to form biofilm, as well as cause spoilage of food [39].
Proteobacteria, which include the Pseudomonadaceae, actively grow in cold conditions and are
able to form biofilms on surfaces directly contacting with food [39], and to tolerate some
disinfectants, especially quaternary ammonium compounds [40], which are broadly used
during the sanitation process in the food industry [41].

Pseudomonas spp. produce vast amounts of extracellular polymeric substances (EPS)
and are known to most commonly adhere to and form biofilms on stainless steel surfaces.
They can coexist with other pathogens in biofilms, forming multi-species biofilms, making
them more resistant and stable [42].

Our results are consistent with previous studies in which this bacterium was found
to be the most predominant in biofilm samples on surfaces in contact with food [43]. In
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the study of biofilms selected at four food processing enterprises, two genera, Pseudomonas
spp. and Acinetobacter spp., were most frequently detected (93.47%) [44]. Some authors
report the dominance of Pseudomonas spp. over other bacteria during biofilm formation
in vitro [45].

The Flavobacteriaceae family also was represented in all samples (phylum Bacteroidetes).
Representatives of this genus are widespread in water. It is known that some Flavobacteria
lead to spoilage of fish products, however, their activity does not cause significant harm to
food industry [46]. Various Flavobacterium strains are able to form biofilms [47]. It has also
been shown that Flavobacteria may deteriorate canned milk [48].

The dominant species in sample 2 were representatives of the family Crocinitomicaceae
(genus Fluviicola), which are often present in wate [49] and soil [50] samples. Fluviicola are
morphologically similar to Flavobacterium [51]. It should be noted that representatives of
this genus were found in wastewater biofilms [52], however, their role in biofilm formation
is not clear.

The dominant families in sample 4 were representatives of the following phylum:
Actinobacteria-Corynebacteriaceae (16.29%), Actinobacteria-Micrococcaceae (15.04%),
Firmicutes-Enterococcaceae (12.47%), Bacteroidetes-Sphingobacteriaceae (11.11%), Bacteroidetes-
Weeksellaceae (10.36%).

There are human pathogens among bacteria of the Corynebacterium genus. Repre-
sentatives of the Chryseobacterium genus have been found in various ecotopes including
foods [43]. It has been shown that activity of Chryseobacterium joostei, along with Pseu-
domonas fluorescens, causes spoilage of milk [53], as well as contamination of animal and
poultry meat products, when entering from the environment. Representatives of the
Carnobacterium genus, which dominate in 5 sample, are also typical for meat, fish and dairy
products and cause their spoilage [54].

Enterococcaceae were also represented in samples 2 (4.90%), 3 (1.09%) and 4 (12.47%),
and in a minimal amount in sample 1 (0.13%). Members of the family such as the genus
Enterococcus and Vagococcus are able to form a biofilm on different surfaces [55,56]. It is
assumed that Vagococci may be involved in the spoilage of meat and fish products. Thus,
Vagococcus penaei strain was isolated from spoiled shrimp [57]. Bacteria of the Vagococcus
genus were also found in microbiota samples from fresh broiler carcasses [58].

Probably, the high diversity of the community determines the formation of biofilm
with chemically heterogeneous matrix, which protects biofilm bacteria from external en-
vironmental factors, but does not allow active development of minor representatives. It
is worth noting that a number of minor microorganisms in the considered communities
are also bacteria typical for food biofilms, for example, families Aerococcaceae and Carnobac-
teriaceae were found at all sampling points except for sample 1. Representatives of the
Clostridiaceae were found in samples 2, 4 and 5. The largest number of them was presented
in sample 5 and amounted to 1.96%. Representatives of the family Lactobacillaceae, Listeri-
aceae and Staphylococcaceae were found mainly only in sample 4, which was selected in the
forming workshop at the corner of the vacuum filler table.

Lactic acid bacteria (LAB) are a group of microorganisms capable of growing at low
temperatures, and some species are relatively tolerant to stressful conditions [59], which
provides them with a high ability to spoil food [60].

Enterobacteriaceae is a bacterial family of great importance in the food industry, as they
are indicators of improper hygiene. Many members of the family, such as Salmonella spp.
and E. coli O157:H7, are considered foodborne pathogens, and some species are recognized
as spoilage microorganisms [60]. The main genera of the Enterobacteriaceae family found
in this study were Serratia, Morganella and Budvicia. In accordance with our results, some
authors also reported a high prevalence of representatives of the genus Escherichia in
the food industry [61]. High prevalence of Serratia spp. It is consistent with what has
been reported in other studies where this genus has been more identified at various food
processing enterprises [62].
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Despite the fact that in our study food-borne pathogens such as L. moncytogenes,
Salmonella spp., S. aureus and Campylobacter spp. were not detected in biofilms, we cannot
ignore the protective and synergistic effect that biofilms offer for these microorganisms,
which poses a constant risk to safety and the quality of processed foods.

The next characteristic of the sampled food BFs is the microcolonial growth of biofilm
bacteria, which is clearly seen in Figures 3–6. At the same time, cells of different physiologi-
cal ages coexist within the same microcolony: (a) vegetative cells with a structure typical
mainly for gram-negative bacteria, with well-distinguishable external and cytoplasmic
membranes and a dispersed nucleoid (Figures 3–6); and (b) resting forms characterized by
thick membranes, electron-dense cytoplasm and compacted nucleoid located in the cell
center (Figures 3–6). Biofilms of sample 1 contained cells covered with a well-detectable
fibrillar layer stained with ruthenium red. Such “hairy” cells covered with a dense fibrillar
layer (FL) were first discovered by us as a characteristic morphotype of type I persister
cells of S. aureus [63]. Persisters were found in a culture grown on rich medium (LB) after
exposure of 24-h culture (stationary phase) to ciprofloxacin as an antibacterial selective
agent that kills ordinary vegetative cells and keeps antibiotic-resistant persister cells in
native form [9,10]. However, in S. aureus persisters, this fibrillar layer was much denser.
Another analogy is Salmonella cells with a fibrillar layer, possibly also of the persister phe-
notype, found in monospecies Salmonella biofilms developing on plastic and in planktonic
culture [16]. Persisters of gram-negative bacteria E. coli [64] and P. aeruginosa [65] did not
have such a fibrillar layer. It may be assumed that the “hairy” cells found in the biofilm of
sample 1 (Figures 1 and 2) belong to a gram-positive bacterium, which does not contradict
the metagenomic analysis of this sample (Supplementary Table S2).

According to the extensive literature [3], the revealed heterogeneity of food biofilm
bacteria, both in taxonomic classification and physiological age, is important in the resis-
tance of the biofilm consortium to damaging effects and disinfectants. Despite the large
amount of information obtained, the mechanisms of BF resistance are still unclear. The
most proven explanation for the high resistance of the biofilm population to disinfectants
and antibiotics is the development of polymer matrix, which prevents toxicant contact
with bacteria. Within this explanation, it is assumed that in multi species BFs, the chemi-
cal nature and physicochemical properties of matrix biopolymers vary greatly compared
to the composition and properties of mono species BF matrix. It is believed that matrix
properties vary depending on the environmental conditions and bacteria type [2], while in
multispecies BFs, chemical and physicochemical interactions between matrix polymers syn-
thesized by different bacteria may cause high matrix viscosity providing better protection
of BF consortium cells [66]. In food multispecies BFs analyzed by us, a similar heterogeneity
of the matrix was noted evidenced by its staining with ruthenium red (Figures 3–6).

A further explanation for the high resistance of multispecies BFs is that the organization
of microorganisms in BF is not accidental. Bacterial cells of the same species are organized
in microcolonies coexisting side by side. In this work, it was demonstrated, for example,
in Figure 5, where bacteria of 5 morphotypes are present. In addition, the microcolonial
growth of biofilm bacteria is demonstrated in Figure 6, which shows cross sections of
compactly packed microcolonies.

However, recently, more studies indicate that multispecies BFs are not always more
resistant to damaging influences than monospecies BFs, and that resistance depends on:
(1) bacteria species; (2) their physiological age (dividing or stationary) [67,68], and (3) their
phenotype. Thus, persister cells and resting forms developing from them found in BFs
differ in tolerance to antibiotics and disinfectants [69,70]. Age heterogeneity in multispecies
food BFs was demonstrated by us for all studied samples (Figures 1–6).

It should be emphasized that the growth of microorganisms, including food pathogens,
in the form of multispecies BFs contributes to the development and spread of resistance
to toxicants due to both the horizontal exchange with genetic determinants of resistance
(facilitated by the high density of microbial population in BFs) and the development of
persisters preserving and passing new determinants of resistance to next generations [71,72].
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This creates new foci of biofilm formation and cross-contamination. Thus, there is the need
for: (a) correcting sanitary procedures, (b) developing alternative strategies to improve
the effectiveness of biofilm formation prevention [68], and (c) developing methods and
tools to minimize the formation of persister cells in BFs as the main phenotype of genetic
resistance development.

5. Conclusions

In conclusion, this study confirmed the frequent presence of multi-species biofilms in
the meat processing environment. With the help of electron microscopy, the main features
of their structure were characterized:

(1) diversity of cell morphotypes in multi-species BFS;
(2) certain morphological similarity of cells in BFS from different samples and microcolo-

nial growth;
(3) age heterogeneity of cells within a single microcolony (vegetative and autolysed cells,

resting forms);
(4) heterogeneity of the chemical nature of the polymer matrix (polysaccharide or non-

polysaccharide nature,

Understanding the development and composition of biofilms in the food industry
environment will help us prevent contamination by preventing the formation of biofilms
and removing biofilms.
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