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Single-cell transcriptomics is advancing discovery of the molecular determinants of cell
identity, while spurring development of novel data analysis methods. Stochastic
mathematical models of gene regulatory networks help unravel the dynamic, molecular
mechanisms underlying cell-to-cell heterogeneity, and can thus aid interpretation of
heterogeneous cell-states revealed by single-cell measurements. However, integrating
stochastic gene network models with single cell data is challenging. Here, we present a
method for analyzing single-cell gene-pair coexpression patterns, based on biophysical
models of stochastic gene expression and interaction dynamics. We first developed a
high-computational-throughput approach to stochastic modeling of gene-pair
coexpression landscapes, based on numerical solution of gene network Master
Equations. We then comprehensively catalogued coexpression patterns arising from
tens of thousands of gene-gene interaction models with different biochemical kinetic
parameters and regulatory interactions. From the computed landscapes, we obtain a low-
dimensional “shape-space” describing distinct types of coexpression patterns. We
applied the theoretical results to analysis of published single cell RNA sequencing data
and uncovered complex dynamics of coexpression among gene pairs during embryonic
development. Our approach provides a generalizable framework for inferring evolution of
gene-gene interactions during critical cell-state transitions.

Keywords: stochastic modelling, gene expression noise, gene regulatory networks, single-cell data, scRNA-seq
INTRODUCTION

In recent years, single-cell-resolution measurements have revealed unprecedented levels of cell-to-
cell heterogeneity within tissues. The discovery of this ever-present heterogeneity is driving a more
nuanced view of cell phenotype, wherein cells exist along a continuum of cell-states, rather than
conforming to discrete classifications. The comprehensive view of diverse cell states revealed by
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single cell measurements is also affording new opportunities to
discover molecular regulators of cell phenotype and dynamics of
lineage commitment (Trapnell et al., 2014; Olsson et al., 2016;
Briggs et al., 2018). For example, single cell transcriptomics have
revealed the widespread nature of multilineage priming (MLP), a
phenomenon wherein individual, multipotent cells exhibit
“promiscuous” coexpression of genes associated with distinct
lineages prior to commitment (Nimmo et al., 2015). In principle,
mathematical modeling of gene regulatory network dynamics
can provide a theoretical foundation for understanding cell
heterogeneity and gene expression dynamics, by quantitatively
linking molecular-level regulatory mechanisms with observed
cell states. However, due to the molecular complexity of gene
regulatory mechanisms, it remains challenging to integrate such
models with single-cell data.

Mathematical models of gene regulatory network dynamics can
account for (and at least partially reproduce) observed cellular
heterogeneity in two primary ways. First, gene network models
are multistable dynamical systems, meaning a given network has the
potential to reach multiple stable states of gene expression. These
states arise from the dynamic interplay of activation, inhibition,
feedback, and nonlinearity (Kauffman, 1969; MacArthur et al., 2009;
Huang, 2012). Second, some mathematical models inherently treat
cellular noise. This noise, or stochasticity, is modeled in various
ways depending on assumptions about the source (Peccoud and
Ycart, 1995; Arkin et al., 1998; Kepler and Elston, 2001; Swain et al.,
2002). Discrete, stochastic models of gene regulation, which track
discrete molecular entities, regulatory-protein binding kinetics, and
binding states of promoters controlling gene activity, have formed
the basis of biophysical theories of gene expression noise due to so-
called intrinsic molecular noise (Peccoud and Ycart, 1995; Thattai
and van Oudenaarden, 2001; Kepler and Elston, 2001; Pedraza and
Paulsson, 2008). Such stochastic gene-regulation mechanisms have
also been incorporated into larger regulatory network models using
the formalism of stochastic biochemical reaction networks, and
have been utilized to explore how molecular fluctuations can cause
heterogeneity within phenotype-states and promote stochastic
transitions between phenotypes (Feng and Wang, 2012; Sasai
et al., 2013; Zhang and Wolynes, 2014; Tse et al., 2015).

The quantitative landscape of cellular states is another
concept that is increasingly utilized to describe cellular
heterogeneity. Broadly, the cellular potential landscape (first
conceptualized by Waddington (Wang et al., 2011; Huang,
2012; Waddington, 2014) is a function in high-dimensional
space (over many molecular observables, typically expression
levels of different genes), that quantifies the stability of a given
cell-state. In analogy to potential energy (gravitational, chemical,
electric, etc.), cell states of higher potential are less stable than
those of lower potential. The landscape concept inherently
accounts for cellular heterogeneity, since it holds that a
continuum of states is theoretically accessible to the cell, with
low-potential states (in “valleys”) more likely to be observed than
high-potential states. The landscape is a rigorously defined
function derived from the dynamics of the underlying gene
network model, according to some choice of mathematical
formalism (Wang et al., 2011; Bhattacharya et al., 2011;
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Huang, 2012; Zhou et al., 2016). For stochastic gene network
models that inherently treat noise, the landscape is directly
obtained from the computed probability distribution over cell-
states (Cao and Liang, 2008; Micheelsen et al., 2010; Feng and
Wang, 2012; Tse et al., 2015).

Stochastic modeling of gene network dynamics has been
employed in various forms for analysis of single cell
measurements. For example, application of noisy dynamical
systems theory has shed light on cell-state transitions
(Mojtahedi et al., 2016; Jin et al., 2018; Lin et al., 2018).
Stochastic simulations of gene network dynamics have been
used to develop and/or benchmark tools for network
reconstruction (Schaffter et al., 2011; Dibaeinia and Sinha,
2019; Bonnaffoux et al., 2019) Stochastic model-aided analysis
of single-cell measurements has been demonstrated to yield
insights on gene regulatory mechanisms (Munsky et al., 2018).
However, few existing analysis methods utilize discrete-
molecule, stochastic models, which fully account for intrinsic
gene expression noise and its impact on cell-state, to aid in the
interpretation of noisy distributions recovered from single cell
RNA sequencing data. There exists an opportunity to link such
biophysical, stochastic models, which reproduce intrinsic noise
and cell heterogeneity in silico, to single cell datasets that
characterize cell heterogeneity in vivo. In particular, the
landscape of heterogeneous cell-states computed from discrete
stochastic models can be directly compared to single-
cell measurements.

In this work, we present a method for analyzing single-cell
gene pair coexpression patterns that is founded on biophysical
theory of stochastic gene networks. In our approach, the key
object linking the models to the data is the gene-pair
coexpression landscape, which is derived directly from the
bivariate distribution of expression states, and which is
computed from a stochastic model or extracted from single cell
measurements. The rationale underlying the method is two-fold:
(1) information on gene-gene interactions can be inferred from
the distinctive characteristics of noise in single-cell data (i.e.,
from the “shape” of the landscape); (2) existing analysis
techniques are relatively insensitive to landscape shape. We
first comprehensively compute and classify the landscapes
produced by a family of ∼40,000 stochastic two-gene
regulatory network models. We then use the model-derived
classification to analyze published data from vertebrate
development. In so doing, we uncover both expected and novel
patterns of coexpression in development. While our analysis here
is proof-of-principle, and limited to two-gene interactions, the
conceptual framework could be expanded to include multibody
gene interactions in the future.
METHODS

Discrete, Stochastic Models of Two-Gene
Regulatory Networks
We first developed a family of stochastic models of gene-gene
interactions (see Figure 1 for model schematic), which is based
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on previously published models (Feng and Wang, 2012; Zhang
and Wolynes, 2014). We label two genes X and Y. Each gene
encodes a protein, which acts as a transcription factor (TF) that
potentially regulates its own expression as well as that of the
other gene. Each gene has a promoter (or more generally,
regulatory regions of DNA) that can be bound by any
combination of its own expressed protein and/or the other
gene's expressed protein. The promoter states are thus labeled
as: X00 (neither transcription factor is bound to X's promoter),
X0x (X's own protein is bound, resulting in autoregulation of gene
expression), Xy0 (Y's protein is bound to X's promoter, resulting
in cross-regulation), Xyx (both proteins are bound to X's
promoter, resulting in combinatorial regulation). (The
promoter states for gene Y are defined in a symmetric
manner.) The regulatory effect of each promoter state (i.e., the
effect of having none, one, or both proteins bound on the gene's
expression) is accounted by the transcription rate gij
corresponding to each possible promoter state: e.g., when gene
X's promoter is unbound, it transcribes at rate gX00. Binding of Y's
protein changes the transcription rate to gXy0, which may be lower,
higher, or the same, depending on whether the effect of Y on X is
assumed to be repressing, activating, or not impacting. (All other
transcription rates for each promoter state and for gene Y are
defined similarly.) The model involves three classes of reactions:
mRNA synthesis, mRNA degradation, and promoter-state-
change reactions. mRNA synthesis reactions are given by:

Xij!
gXij
Xij + x

Yij!
gYij
Yij + y

(1)

where x and y denote mRNA transcripts which will be translated
into the transcription factors encoded by genes X and Y,
respectively. mRNA degradation reactions are given by:
Frontiers in Genetics | www.frontiersin.org 3
x!k 0
y!k 0

(2)

Promoter-state-change reactions are given by, e.g.:

X00 ⇌
hy2=2

f
Xy0, (3)

which represents the change of promoter-state (and
corresponding regulatory impact) on gene X when Y 's
transcription factor binds (forward reaction) or unbinds
(reverse reaction). All other promoter-state-change reactions
for X and Y are defined similarly. The changes of promoter
state occur with forward rates hy2/2 or hx2/2 (when the change of
state occurs due to binding of transcription factor from gene Y or
X, respectively) and f (when the change of state occurs due to an
unbinding event). The model tracks copy numbers of individual
mRNA molecules in the cell, to enable direct comparison with
single cell transcriptomic data, but translation of mRNA into
protein is not explicitly accounted for. Instead, transcription
factor (protein) levels are assumed to be linearly proportional to
mRNA, and this proportionality constant is subsumed into the
binding rate h. The quadratic dependence of the forward binding
rates on x or y arises from the assumption that homodimeric
transcription factors regulate gene expression, which is a general
and convenient way to include cooperativity in the model.

We assign rate constants to intracellular processes that are in
line with experimental estimates from vertebrates, where possible
(see Table 1). (For full details of model reactions and parameter
derivations, see Supplement). Rates of mRNA synthesis and
degradation are relatively well characterized, though they vary
considerably for different transcripts (Schwanhäusser et al.,
2011). Rates of promoter-state-change are less well-defined,
FIGURE 1 | Schematic of the two-gene regulatory network model. The overall network motif is variable (see Inset), encoding a symmetric combination of repression
(flat arrow-head), activation (pointed arrow-head) or no-impact (dashed line), mutually between the two genes labeled X and Y, and by each gene on itself (see
Methods for details). The stochastic reaction kinetic model includes rate constants for mRNA synthesis (gij), mRNA degradation (k), and regulatory element state-
changes due to transcription factor binding (h) and unbinding (f). Cooperative effects are included by the assumption that transcription factors bind as homodimers.
January 2020 | Volume 10 | Article 1387
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since promoter-state-changes that ultimately impact gene
expression may be attributed to a variety of molecular
processes, including: (a) relatively fast processes of TF binding
or unbinding from DNA (b) relatively slow chromatin
remodeling processes that may be initiated or facilitated by TF
binding, require multiple steps and cooperative interactions, and
are generally poorly understood. In our models, to account for
this range of possible mechanisms, we consider a wide range of
parameter values h, f for promoter-state-changes. (The
significance of these fast and slow regimes, termed the
adiabatic and nonadiabatic regimes, respectively, to cell-state
stability has been studied previously by stochastic modeling
(Sasai and Wolynes, 2003; Feng and Wang, 2012; Sasai et al.,
2013; Zhang and Wolynes, 2014). We here define the “fast”
regime as determined by measured parameter values of protein
binding/unbinding DNA (e.g., from Geertz et al., 2012),
occurring with timescales of minutes, seconds, or faster. We
define the “slow” regime more broadly as any epigenetic/
chromatin changes occurring on timescales of hours, days, or
longer. For example, in mammalian cells, changes of chromatin
state during cell-fate specification were estimated to be on the
order of several days (Mariani et al., 2010; Hathaway et al., 2012),
while theoretical studies predicted timescales on the order of the
cell cycle time (i.e., hours to days, Sasai et al., 2013).

We define two types of model systems. The Mutual
Inhibition/Self-Activation (MISA) model encodes a common
network motif that is understood to control a variety of cell
fate decisions (Graf and Enver, 2009; Huang, 2013) and has been
extensively studied by mathematical modeling (Huang et al.,
2007; Feng and Wang, 2012; Chu et al., 2017). In contrast, the
Two-Gene Flex model flexibly encodes a variety of regulatory
interactions, as described below.

Mutual Inhibition/Self-Activation Model
In all models, promoter activity is assumed to be either high
(transcription rate ghi) or low (glo) (giving a relatively fast or slow
rate of mRNA synthesis, respectively). To encode MISA regulatory
logic, mRNA synthesis rates for each promoter state are fgX00, gX0x ,
gXy0, g

X
yxg = fglo, ghi, glo, glog. Transcription rates for gene Y are

defined symmetrically, fgY00, gY0y, gYx0, gYyxg = fglo, ghi, glo, glog. The
high rate corresponds to maximal activity, whereas the low rate is
Frontiers in Genetics | www.frontiersin.org 4
effectively off (but is nonzero to allow for some leakiness in the
promoter). Thus, binding of the self-TF turns the gene on, but
subsequent binding of the other TF turns the gene off. The relative
strengths and kinetics of the activating (self-regulatory) and
repressing (cross-regulatory) interactions are encoded in the rates
of binding/unbinding of regulators. Autoregulatory binding and
unbinding rates (symmetric on both genes) are denoted by ha and
fa, respectively. Cross-regulatory rates are denoted by hr and fr. The
model is thus fully specified by 7 parameters: {glo, ghi, k, ha, fa, hr, fr}.
We computed landscapes for ∼22,000 unique parameter
combinations for the MISA regulatory logic (see Table 1 for
parameter value ranges). We studied only symmetric network
motifs, but asymmetry between the genes is accounted for by
allowing the “on” transcription rate ghi to be asymmetric between
the two genes (in case of asymmetry in ghi, the model is specified by
eight parameters).

Two-Gene Flex Model
The Two-Gene Flex model is identical to MISA in all ways except
the regulatory logic. Instead of the transcription rates being {glo, ghi,
glo, glo}, all 16 logical combinations of four promoter states and two
activity-levels are included. Within these combinations, various
behavior is encoded including self-activation, self-repression,
mutual activation, mutual repression, no interaction (self- or
cross-), and dual-effects (where a TF has a distinct effect whether
bound alone or in combination with the other). Note that the MISA
logic is contained within these 16 combinations. Note also that the
promoter states for X and Y are always defined symmetrically, i.e.,
only symmetric motifs are included. We computed landscapes for
∼34,000 unique parameter combinations for the Two-Gene Flex
Model (including all network motif variants). Our aim with the
Two-gene Flex model was to comprehensively encode all possible
logical combinations within the constraints of the symmetric two-
gene model. Note that these combinations encompass several cis-
regulatory motifs that have been described previously. For example,
{g00, g0y, gx0, gyx} = {ghi, glo, ghi, glo}, corresponds to a “simple
repressor” motif where Y is the repressor, and {g00, g0y, gx0, gyx} =
{ghi, glo, glo, glo}, corresponds to a “dual repressor”motif (Bintu et al.,
2005). Our Two-Gene Flex model also encompasses various
biologically inspired logic gates for combinatorial cis-regulation
studied previously (Zhang et al., 2009).
TABLE 1 | Rate Parameters used in gene regulatory network models.

Rate constant Symbol Units Value Comments/Source

mRNA synthesis (not repressed) ghi mRNA/hr 0.8 – 1.4* Schwanhäusser et al. (2011)
mRNA synthesis (repressed) glo mRNA/hr 0.001 see text
mRNA degradation k /hr 0.2‡ Schwanhäusser et al. (2011)
Promoter state change (unbinding) f† /hr (fast) 10 – 105 Geertz et al. (2012)

(slow) 10− 6
– 10 see text

Promoter state change (binding) h† hr−1 mRNA−2 (fast) 10 – 500 Geertz et al. (2012)
(slow) 10− 6

– 10 see text
January 2020
Parameter values are derived from experimental measurements in vertebrates, where possible. See Methods text for details. *Measured rates of mRNA synthesis varied, with a median of
2/h Schwanhäusser et al. (2011). We use lower values (within experimental range) to roughly match observed counts in scRNA-seq data, which may be lower than expected because of
dropouts or other technical issues. ‡Corresponds to mRNA half-life of 3.5 h, which is well within experimentally measured values but shorter than the median value of 9 h, assuming that
transcriptional regulators have shorter-than-average half-lives in the cell. †Promoter state change rates f and k are reported in fast and slow regimes. Fast promoter state changes are
assumed to occur due to TF-DNA unbinding or binding events, with rate parameters chosen based on values reported in Geertz et al. (2012) (see Supplement for details on parameter
derivation and unit conversion). Slow promoter state changes are thought to involve collective changes in epigenetic marks and rearrangement of chromatin.
| Volume 10 | Article 1387

https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


Gallivan et al. Stochastic Coexpression Landscape Analysis
Mathematical Framework: Chemical
Master Equation
Chemical Master Equation
Stochastic dynamics for the above-described network motifs are
modeled by a Chemical Master Equation (CME) (alternatively
known as a discrete space, continuous time Markov Chain). The
instantaneous state of the system is given by the vector n, which
enumerates the mRNA copy numbers and promoter-states of
both genes, i.e., n = [nx, ny, Xij, Yij], where nx is the mRNA copy
number for gene X, Xij is the promoter state for gene X, and so
on. The CME gives the probability for the system to exist in a
given state at a given time, p(n,t). The CME can be written in
vector-matrix form as a linear system

dp(n, t)
dt

= Kp(n, t), (4)

where K is the reaction rate-matrix. Each off-diagonal element
Klm gives the rate of transitioning from state m to l (nonzero
values correspond to allowed state transitions with rates
according to reactions 1–3 above), while the diagonal elements
are the summed rates for exiting each state, Kll=−∑m≠lKml

Transition rates are computed according to standard stochastic
chemical kinetic rate laws (Gillespie (1977). If both types of
mRNA are assumed to exist in the cell in copy numbers that
never exceed M − 1, then the total size of the enumerated space
including all possible states is N = M × M × 4 × 4 (note that the
total number of mRNA copy number states includes the state of
0 copies, thus nx, ny ∈ {0, 1,…,M – 1}). The assumption that
mRNAs never exceed M − 1 is equivalent to assuming reflective
boundary conditions on the enumerated state-space. That is, it
assumes the propensity of reactions that lead to mRNA numbers
exceeding M − 1 is 0. This assumption is justified when M is
chosen to be sufficiently large compared to g/k (Chu et al., 2017).
We confirmed that the probability of mRNAs exceedingM-1 for
our parameter values is negligible (Supplement, Section 2.2) and
we further confirmed that increasing M (from 21, the value used
in calculations throughout the manuscript, to 36) had negligible
impact on quasipotential landscape shape and all subsequent
analysis of single cell RNA sequencing (scRNA-seq) data (Figure
S2). Note that an algorithm has been published recently that
provides rigorous error bounds on steady-state solutions to the
CME (Gupta et al., 2017) though we do not make use of the
algorithm here.

Computing Gene Pair Coexpression Landscapes
The complete steady state probability to find a cell in state n is
given by the vector p(n) = p(n, t ! ∞), which is obtained from
Eq. 4 using eigenvalue routines in numpy and scipy (McKinney,
2010; van der Walt et al., 2011). Each individual model requires
solution of an N-state system, where N is (e.g., assuming the
probability to have mRNA exceed 25 is negligible, then N =
10,816). Efficient computation of the landscapes over tens of
thousands of model variants/parameter combinations was
achieved using routines compiled with the numba library (Lam
et al., 2015) and parallelization using Python's multiprocessing
library to distribute the workload across the available cores.
Frontiers in Genetics | www.frontiersin.org 5
To mimic experimental scRNA-seq data, the probability is
projected onto the mRNA subspace by summation over all
promoter state combinations. We hereon define the gene pair
coexpression landscape as the steady-state probability to find a
cell with mRNA count numbers (nx, ny). More precisely, the
probability landscape is the vector p with each element pi giving
the steady-state probability for the cell to be found in state i with
the combination of mRNA counts (nx, ny) from genes X and Y,
and i ∈ 1,…,M2. Alternatively, the quasipotential landscape is
log-transformed, given by the vector f where fi = –ln(pi).

scRNA-Seq Data Acquisition, and
Landscape Estimation
Experimental data is obtained from the published scRNA-seq
measurements of Briggs et al . (2018) . The dataset
“Corrected_combined.annotated_counts.tsv” was used which
provides the normalized transcriptome profiles for Xenopus
tropicalis at single cell resolution for ten different stages of
embryonic development, with labeled cell types and parent cell
types. We analyzed 1,380 gene pairs, which were identified as
putative MLP pairs in Briggs et al. (2018), based on their
estimated changes in coexpression over the course of
deve lopment . Gene pairs were ident ified by the ir
developmental stage and lineage branch point in which
coexpression was maximal. Cell types from other stages were
then included in the lineage if they were a parent (preceding in
development) cell type or daughter (descendant later in
development) cell type. After selecting the desired gene pair
and cell/tissue/cluster type of interest, gene pair counts were
combined and summed resulting in ten gene pair landscapes, one
for each stage of development, in cells of the relevant lineage.

To directly compare computed coexpression landscapes with
experimental data, we extracted cell count matrices for each gene
pair, and where necessary, truncated to mRNA count numbers ≤
M − 1 (truncation eliminated less than 0.5% of cells in the data,
across all gene pairs and cell stages). This produces an M × M
(including zeros) count matrix that serves as a sampled estimator
of the steady-state distribution, ep(n), of the same size as
computed landscapes. In order to compute the sampled
quasipotential landscape, we use ef(n) = −lnep(n), after replacing
the not-observed count-combinations with a low but nonzero
estimate of these probabilities (since log of zero is undefined).
We use a general estimate of 1E-6 for nonobserved counts, both
because it is in line with the predictions of the theoretical models
for the low probability edges of the distributions, and because it is
less than the lowest estimable probability (i.e., observation of one
cell in a given matrix position, given total cell counts on the order
of 105, would correspond to an estimated probability of 1E-5).

Dimensionality Reduction for Landscape
Shape-Space
We apply Principal Component Analysis (PCA) to the
theoretically computed landscapes over the model sets to
achieve a reduced-dimension description of landscape shape.
All PCA training and dimensionality reduction was performed
using the decomposition module of the python package scikit
January 2020 | Volume 10 | Article 1387
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learn. Each unique model is treated as a replicate and the steady-
state probability pi (or alternatively, quasipotential fi) of each of
theM ×M possible mRNA copy-number states (nx, ny) is treated
as a feature.

The principal components obtained from the model set were
then used to fit the experimental data, where each landscape
from each gene-pair/stage is a replicate. Note that in our
application, we have opted to use a “theory-driven” analysis of
landscape shape-space, where the PCA training set consists of
theoretically computed probability (or quasipotential)
landscapes. The experiment-derived landscapes are then
projected into this theory-driven shape-space, which enables
linking of experimentally measured gene-pair landscapes with
possible model logic/parameter combinations that could produce
observed landscape shapes. Alternatively, a “data-driven”
analysis is possible, wherein the PCA training set consists of
experiment-derived landscapes. Such an analysis makes no
connection between theoretical models and experimental data,
but can still be useful in revealing shape-features present in
experimental data. We show results from data-driven analysis in
Supplement section 2.4 and Figure S5.

Clustering Of Developmental Landscape-
Shape Trajectories
By viewing the time-ordered coexpression landscapes of a given
gene pair in PCA space, termed “landscape-shape trajectories”,
one can gain insight into the genes' roles in development. The
trajectories were hierarchically clustered based on their geometric
distance in PCA space. More specifically, the fcluster method in
scikit-learn package was used in hierarchical clustering
(McKinney, 2010), and the geometric distance between
trajectories A and B were defined as the sum of the pair-wised
Euclidean distance between two corresponding stages, i.e.,

jjA − BjjF =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o
m

i=1
o
n

j=1
(Ai,j − Bi,j)

2

s
(5)

where ||·||F is the Frobenius norm, A and B are two trajectories
represented by m by n matrices, m is the number of
developmental stages in single cell data, n is the number of
PCA components used in clustering.
RESULTS

Stochastic Two-Gene Network Models
Show A Variety Of Coexpression
Landscape Shapes, Distinguishable
by PCA
Our modeling framework enabled efficient computation of
coexpression landscapes resulting from discrete, stochastic
gene network models. This in turn enabled us to compute
landscapes for tens of thousands of parameter sets,
encompassing both various relative strengths and kinetics of
regulatory interactions, as well as different schemes of regulatory
logic among the two genes (see Methods). This approach
Frontiers in Genetics | www.frontiersin.org 6
afforded a comprehensive view of theoretically predicted
landscape shapes resulting from gene-gene interactions (within
the assumptions of the current model system).

We applied PCA to the computed probability landscapes for
Two-Gene Flex, in order to find a low-dimensional description of
their shapes (Figure 2). The first two PCA components
encompass 98% of total covariance, and all models fall within
a triangular region of this 2D subspace. The vertices of the
triangle correspond generally to landscapes with: (1) very low
expression of both genes (i.e., transcript levels of X/Y are lo/lo,
Figure 2E), (2) high simultaneous expression of both genes (hi/
hi, Figure 2C), and (3) expression of only one gene at a time (hi/
lo and lo/hi, Figure 2A). Landscapes located away from the
vertices are thus well-described by some linear combination of
these three shapes, consistent with PCA, and supported by visual
inspection. In all, the results reveal that two-gene interaction
motifs can encode a wide variety of patterns of coexpression,
including mixtures of all combinations of lo/lo, hi/hi and lo/hi,
hi/lo phenotypes (e.g,. Figure 2B). At the same time, this variety
of shapes is well-described by a small number of principal
components (which form a basis for what we term the “shape-
space”), and we hereon use the magnitudes along these
components as measures of landscape shape.

Shape Measures of Coexpression
Landscapes Distinguish Different Types of
Mutual Gene–Gene Interactions
We sought to understand how different regulatory motifs
contributed to landscape shape. Projecting the landscapes
arising from each network motif separately revealed distinctive
patterns (i.e., occupying distinct, but overlapping, regions of the
PCA triangle) (approximately 2,000 landscapes were computed
for each network motif, i.e., ∼2,000 models that share the
regulatory logic but have different kinetic parameters). We
grouped all motifs according to their region of occupancy
within the PCA triangle, and discovered logical consistency
among the groups (see Figure 3). For example, all motifs with
some type of mutual activation were found to co-occupy a region
of PCA shape-space in the lower part of the triangle (3A). This
result is consistent with the intuition that motifs with mutual
activation cannot produce the apparent bistability seen in
landscapes at the hi/lo-lo/hi vertex of the triangle. The other
three motif groupings include motifs with some type of mutual
repression, motifs with no inter-gene interactions, and
incoherent motifs with dual-interactions (when the regulator
bound by itself has the opposite effect of the regulator bound in
combination with the other TF). Note that 2 of the 16 logical
combinations of promoter binding-states in the Two-Gene Flex
models are not included here, since they effectively encode no
gene-gene interactions (the “always on” or “always off” logic, {ghi,
ghi, ghi, ghi} or{glo, glo, glo, glo}). Note that here we assess all kinetic
parameter combinations associated to one regulatory motif;
these parameters tune the strength of different interactions. As
such, the analysis of Figure 3 assumes fixed network topologies
but variable weights on network edges, accounting for the
overlap between different motifs. These results indicate that
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landscape shape can to some extent be used to distinguish
regulatory interactions between pairs of genes, despite variable
and/or unknown kinetics governing the interactions.

Commonly Used Pairwise Metrics Are
Relatively Insensitive to Coexpression
Landscape Shape
In order to analyze how previously applied measures of gene-
gene interactions align with landscape shape, we computed a set
of metrics for each model landscape and visualized the resultant
Frontiers in Genetics | www.frontiersin.org 7
values projected onto the PCA subspace. We chose four metrics:
Shannon Entropy, Pearson Correlation Coefficient, Mutual
Information, and a Coexpression Index (see Figure 4, note
Shannon Entropy is visualized also in Figures 2 and 3). The
first three of these are obtained directly from the computed
bivariate probability distributions according to standard
definitions; the Coexpression Index has been used previously
(Briggs et al., 2018) and is given by the conditional probability to
find cells with nonzero counts of both mRNA x and y
(conditioned on the cells having nonzero counts of at least one
FIGURE 2 | Shape-space of simulated Two-Gene Flex coexpression landscapes analyzed by Principal Component Analysis (PCA). Coexpression landscapes were
computed for 34,097 unique two-gene stochastic network models with varying regulatory interactions and kinetic rate parameters (see Model schematic in Figure
1). (Top) All model landscapes projected onto the first two principal components. Each dot corresponds to one model, colored by the model's Shannon Entropy.
(Bottom) Representative quasipotential landscapes f(n) (see Methods) of individual models from different regions of PCA component-space. color of each discrete
grid space in {x,y} corresponds to computed probability (in log-scale) to find a single cell with the corresponding numbers of {x,y} transcripts. Each landscape is
labeled (A–F) to indicate the corresponding point where it appears in PCA space above.
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of genes X or Y). Here, for a given model j, we derive this metric
from the probability landscape p over count-states i by:

mj,Coex : Index =
Si∈nx>0∩ny>0pi
Si∈nx>0∪ny>0pi

: (6)

We estimate the value of each metric as a function of
landscape shape (that is, we estimate the function m(c1, c2),
wherem is a given metric and (c1, c2) are the coordinate values in
PCA components 1 and 2). For each of the four metrics, we
estimate and visualize this function by first computing each of
the four metrics from the probability landscapes p(nx, ny)
corresponding to each of the 34,097 models. We then project
the models onto the first two principal components, with a given
metric serving as the color scale (e.g., as shown with Shannon
Entropy, Figure 2 top). The continuous surface m(c1, c2) is then
estimated by local averaging and interpolation over the
computed results for each individual model landscape with the
tricontourf routine from the matplotlib package. We found that
each metric aligns in distinctive, and generally intuitive, ways
with the PCA landscape shape-space. High or low values of each
Frontiers in Genetics | www.frontiersin.org 8
metric were to some extent localized to particular sub-regions of
the triangle, and thus could be understood to be arising from
landscapes of similar shape. However, numerous examples can
also be found of models colocated (or nearly colocated) in the
triangle but having different values of a given metric, so the
functional dependence m(c1, c2) is noisy.

For Shannon entropy, the highest values are generally seen
near the hi/hi vertex of the triangle, while the lowest values are
seen near the lo/lo vertex. This reflects the amount of disorder in
the hi/hi state of expression, in which a broad range of count-
values are possible for each gene, whereas in the in the lo/lo
vertex, count values are always zero or near-zero. The noise in
expression levels can be quantified more precisely for the subset
of models in the “slow-binding” regime (h, f << g, k). In this
parameter regime, cells show distinctive high (“hi”) and/or low
(“lo”) expression states with mean counts ghi/k and glo/k,
respectively, and the disorder in each expression state can be
quantified as Poisson birth/death noise (Al-Radhawi et al., 2019),
such that variance scales linearly with the expression rate g.
Sources of disorder contributing to higher values of Shannon
Entropy include both noisy expression within a given phenotype
FIGURE 3 | Coexpression landscapes computed from the Two-Gene Flex models show distinctive shapes that depend on the regulatory logic of gene-gene
interactions. The Two-Gene Flex model encodes 16 logical combinations (24) of gene-gene interactions, corresponding to four possible promoter-binding states and
two possible levels of transcription activity (low and high). These 16 model variants can be grouped into motif classes: (A) Models with mutual activation. (B) Models
with mutual repression. (C) No mutual gene-gene interactions. (D) “Incoherent” models, where the combinatorial-binding state has the opposite behavior of both of
the singly bound states (see text). Within each motif class, different kinetic parameters serve to modify the relative strength of interactions (i.e., different weights on
the edges). Each motif class occupies a distinct, but overlapping, region of the shape-space (with the exception of the Incoherent motif, which can reach all areas of
the shape-space).
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state and the ability for cells to exist in multiple different
phenotype states (i.e., the breadth of a valley in the potential
landscape, and the number of different valleys). Notably, in the
parameter regimes studied here, the highest Shannon Entropy
models are single-phenotype (hi/hi), indicating that the noise in
this one state contributes more disorder than does noise from
multiple phenotype-states. As such, models with two or more
accessible states have intermediate values of Shannon Entropy.

A strongly negative correlation coefficient between the two
genes is found near the lo/hi-hi/lo vertex of the triangle, which is
occupied by models showing bistability (cells can express one
gene or the other, but not both simultaneously) resulting from
mutual repression in the network motif. Landscapes with high
positive correlation tend to be those that combine expression in
the hi/hi and lo/lo quadrants of the two dimensional subspace
(see, e.g., 4B and 2D), resulting from mutual activation in the
network motif. Mutual Information aligns somewhat with large
absolute values of Correlation Coefficients, but cannot
distinguish high positive from high negative correlation.
Mutual Information values near zero colocalize with
Correlation Coefficients near zero. This arc-shaped region
bisecting the triangle also overlaps with the models lacking
interactions between the two genes (see Figure 3C).

The Coexpression Index shows the smoothest functional
dependence on PCA components (c1, c2). Of note, the model-
subspace of high coexpression is not fully overlapping with the
subspace of high correlation coefficients. This reflects the fact
that high simultaneous expression occurs in both genes in an
Frontiers in Genetics | www.frontiersin.org 9
uncorrelated manner, since the noise arises from aforementioned
birth-death noise of mRNA transcription/degradation.

None of the four metrics are by themselves able to fully
differentiate between landscape shapes. For example, model
landscapes with similarly high values of Mutual Information
include both hi/lo-lo/hi landscapes from mutual repression
motifs and hi/hi-lo/lo landscapes from mutual activation
motifs. (see, e.g., Figures 4A, B). Model landscapes with
similar intermediate values of Coexpression Index also
encompass a variety of landscape shapes, including some that
arise from different network motifs (see, e.g., Figures 4C, D).
Taken together, these results show that these four single metrics
are not reliable determinants of landscape shape. They
furthermore show that a given value for commonly used
measures, as obtained from experimental data, can potentially
arise from a variety of regulatory scenarios.

Stochastic Theory-Based Analysis of
Coexpression Landscapes From Single-
Cell Experiments Reveals Distinct
Developmental “Landscape Shape”
Trajectories
We applied the landscape shape analysis framework, developed
above on the basis of theoretical models, to publicly available
single cell RNA sequencing data in vertebrate development. We
applied the analysis to putative MLP gene pairs in Xenopus
tropicalis development collected at ten stages of embryonic
development (Stages 8,10,11,12,13,14,16,18,20,22) (Briggs et al.,
FIGURE 4 | Comparison of four standard metrics of gene-gene coexpression with landscape shape. Metrics include: (A) Shannon Entropy. (B) Correlation Coefficient. (C)
Mutual Information. (D)Coexpression Index (see text for details). Each metric was computed for each computed model landscape, using the same set of 34,097 Two-Gene
Flex models as in Figures 2 and 3. Contour plots show each metric as a function of principal components 1 and 2, obtained by local averaging and interpolation over the
results from individual model landscapes. Taken together with Figure 2, the results show how these metrics correspond with landscape shape.
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2018). To carry out the analysis, we first analyzed the landscape
shape-space for a restricted set of theoretical models, which
encode only the MISA interaction motif. The MISA motif has
been previously discovered to operate at critical cell-fate branch
points (Graf and Enver, 2009) and has potential to enable both
antagonistic expression and coexpression of genes in individual
cells (depending on kinetic parameters), as is characteristic of
MLP gene-pairs. We first generated a MISA-model training set
(Figure 5) and the Two-Gene Flex-model training set (Figure 2).
For MISA, we utilized quasipotential landscapes, rather than
probability landscapes, in order to increase sensitivity to rarer
cell-states (i.e., weaker landscape features). We furthermore
restricted the kinetic parameters h, f to the fast (adiabatic)
regime (see Table 1), in order to use the models to analyze
time-resolved data. That is, the experiments measure embryos at
different developmental stages, which are roughly 1–3 h apart in
time. We compare the steady-state landscapes from stochastic
models to the experiment-derived landscapes at different time
points by applying a quasi-steady-state assumption: we assume
that the promoter-binding states (which govern gene activity)
reach equilibrium faster than the progression of developmental
stage, which is valid only in the adiabatic regime. Despite these
modifications to the model training set, the projection of models
onto the PCA subspace for MISA (Figure 5) shows qualitative
similarity to that of Two-Gene Flex [(Figure 2), including
delineation of a subregion of a triangle (note that the triangle
is inverted between the two figures, which is an arbitrary result of
eigenvector sign invariance]. However, antagonistic expression
of the two genes is a stronger feature across models in the MISA
training set, such that the hi/hi vertex of the triangle for MISA
still shows considerable probability for cells to antagonistically
express one gene or the other (Figure 5F).

We extracted two-gene coexpression quasipotential
landscapes corresponding to distinct developmental stages
from the dataset of Briggs et al. We then projected the
landscapes onto the PCA subspace, and thereby derived
developmental trajectories through landscape shape-space. By
way of illustration, we first present developmental trajectories for
three representative gene pairs (Figure 6). Gata5 and pax8 were
identified (in Briggs et al.) as being antagonistically expressed
within the intermediate mesoderm lineage, in cardiac mesoderm
and pronephric mesenchyme cell subtypes, respectively. In
contrast, lhx1 and pax8 were shown to coexpress in cells of the
pronephric mesenchyme. Finally, the gene pair sox2 and
brachyury (t) has been identified as influencing the cell fate
decision between the neural plate and the dorsal marginal zone
(Wardle and Smith, 2004), and was identified as presenting MLP
behavior, characterized by high coexpression at some stage of
development, followed by antagonistic expression at a later stage
(Briggs et al., 2018). We found that these three gene pairs showed
distinctive trajectories through PCA subspace. All of the genes
showed low expression early in development (stage 8) and their
landscapes were colocated near the lo/lo vertex in the model
subspace. Their trajectories then diverged: gata5-pax8 travels
along the bistable edge of the triangle, increasing expression of
both genes over the course of development, but in largely
Frontiers in Genetics | www.frontiersin.org 10
nonoverlapping subpopulations of cells. In contrast, lhx1-pax8
shows strong coexpression starting at stage 14, and continues
thereafter to move toward increasing values of PCA component
2, which coincides with increasing coexpression. (lhx1-pax8
landscapes for some of the measured developmental stages fall
slightly outside the area reached by MISA models in the training
set, suggesting that the interaction is likely not well described by
a MISA motif). Finally, sox2-t shows a cyclic pattern in the shape
subspace, where landscapes move towards hi/hi, and then back
towards the antagonistic lo/hi-hi/lo region, landing in a similar
area to gata5-pax8. Relating these landscape-shape dynamics to
the stochastic MISA model parameters suggests that the gene-
pairs undergo changes in the relative balance of mutual
inhibition versus self-activation as development progresses (see
Figure S1).

The experiment-derived developmental trajectories can be
further understood by considering the features extracted by
individual (by definition orthogonal) PCA components.
Visualization of the first three PCA eigenvectors (Figure 7)
reveals that the first component (69.3% of covariance across the
training set) can be summarized as separating landscapes with more
or less expression overall, regardless of whether expression occurs in
individual genes or both simultaneously. By contrast, the second
component (15.6% of covariance) separates landscapes with
coexpression versus antagonistic expression. The third component
(6.8% of covariance) distinguishes landscapes with asymmetry
between the two genes (subsequent components that describe less
of the covariance displayed more complex shapes, and are not
shown here). Comparison of the PCA scores versus developmental
stage (Figure 7, right) to the experiment-derived landscapes of
Figure 6 confirms visually that the PCA components extract the
above-described features. For example, all three gene pairs show
varying degrees of asymmetry (imbalance in expression levels of the
two genes). Gata5-pax8 shows generally increasing positive
amplitude of asymmetry, corresponding to stronger pax8
expression. At later stages, the other two gene-pairs show
asymmetry in the other direction, corresponding to negative
amplitude in component 3. Sox2-t exhibits a switch in asymmetry
between stage 10 (t > sox2) and later stages (sox2 > t).

Developmental trajectories through the coexpression shape-
space were compiled for 1,380 gene pairs (putative MLP pairs in
Xenopus tropicalis identified by Briggs et al., 2018). By applying
the developmental trajectory clustering procedure described in
Methods, we found that the trajectories of multiple gene pairs
across different lineages display conserved patterns of
coexpression dynamics. Twenty-four clusters were identified
(see Supplemental Figures S3 and S4), four of which are
shown in Figure 8; these clusters are chosen as representative
of the different types of dynamic patterns obtained. The clusters
display a variety of behaviors. For example, the cluster of Figure
8B shows behavior that is consistent with MLP, i.e., genes are
first increasingly coexpressed in single cells, followed by a switch
towards antagonistic expression, similar to the cycle in PCA
space delineated by sox2-t in Figure 6. Surprisingly, we also
observed clusters that show “inverted MLP” behavior (Figure
8A) where the genes initially turn on in nonoverlapping subsets
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of cells (i.e., increasing antagonism), but later show increasing
coexpression in single cells. A number of the analyzed gene pairs
showed generally antagonistic expression (Figure 8C),
reminiscent of gata5-pax8. Others showed behavior consistent
with the dynamics of MLP (i.e., first coexpression, later
antagonistic expression), but with coexpression being only
weakly detectable (Figure 8D). The gene pairs represented in
these clusters include (but are not limited to) regulators of
embryonic development including zic3, hoxc10, and neurog1.
Frontiers in Genetics | www.frontiersin.org 11
The full list of clusters and their associated gene pairs are listed in
the Supplementary File 1.
DISCUSSION

In this work, we comprehensively studied theoretically predicted
single-cell gene-gene coexpression landscapes based on a class of
stochastic gene regulation models, and applied the theory to
FIGURE 5 | Shape-space of simulated MISA coexpression landscapes analyzed by Principal Component Analysis (PCA). Coexpression landscapes were computed
for 22,718 unique two-gene stochastic network models with Mutual Inhibition/Self-Activation (MISA) logic and varying kinetic rate parameters. Promoter-state change
rates were restricted to the fast regime (see Table 1). (Top) All model landscapes projected onto the first two principal components. Each dot corresponds to one
model, colored by the model's Shannon Entropy. (Bottom) Representative quasipotential landscapes f(n) (see Text) of individual models from different regions of PCA
component-space. Color of each discrete grid space in {x, y} corresponds to computed probability (in log-scale) to find a single cell with the corresponding numbers
of {x,y} transcripts. (Analogous to Figure 2). Each landscape is labeled (A–F) to indicate the corresponding point where it appears in PCA space above.
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analyze two-gene coexpression landscapes from single cell
measurements. From a training set of tens of thousands of
computed, theoretical landscapes, we identify Principal
Components of landscape covariance that serve as simple
“fingerprints” of landscape shape and reflect underlying gene-
Frontiers in Genetics | www.frontiersin.org 12
gene interaction dynamics. We then apply the theoretically
derived framework to scRNA-seq data from vertebrate
development. In so doing, we uncover distinctive and novel
developmental trajectories of gene-gene coexpression.
Specifically, our framework reveals a nuanced picture of
FIGURE 6 | Landscape-shape trajectories of three representative gene pairs from scRNA-seq measurements in Xenopus tropicalis embryonic development. (Top)
Developmental trajectories of three different gene pairs, plotted in principal component-space. Stages of interest shown below are labeled with the corresponding
stage. Note the three stage 8 points are overlapping near the origin as a result of low expression. (Bottom) Coexpression quasipotential landscapes extracted from
experimental measurements for the three gene pairs at different labeled stages of embryonic development (white numbers indicate developmental stage). The
experiment-derived landscapes were trained on the principal components generated from the simulated MISA dataset of Figure 5. Principal component 1
corresponds to overall level of expression, while component 2 separates antagonistic vs. coexpression (see Figure 7). The landscape of gata5-pax8 (blue) shows
increasing antagonistic expression, consistent with movement along the lower left edge of the triangle in Principal Component Analysis (PCA) shape-space. Sox2-t
(red) shows high coexpression at stage 10, followed by later antagonistic expression, corresponding to a partial loop through PCA space, consistent with
Multilineage Priming behavior. Lhx1-pax8 (orange) shows consistently increasing coexpression, corresponding to a mostly steady increase in principal components 1
and 2. (Data from Briggs et al., 2018).
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multilineage priming, where the relative balance between
expression of gene pairs simultaneously (in the same cells)
versus antagonistically (in different cells) within a lineage
shows complex dynamics during development, for example,
revealing that simultaneous coexpression occurs either earlier
or later than antagonism. Based on the results, we propose that
the framework developed here can be generalized to other single
cell datasets and stochastic network models to analyze the
Frontiers in Genetics | www.frontiersin.org 13
evolution of gene-gene regulatory interactions over the course
of development.

The theoretical framework applied here—discrete, stochastic
reaction kinetic modelling—is well-suited to aid interpretation of
single cell measurements: first, because it inherently captures cell
population heterogeneity and second, because of the direct
correspondence between the computed quantities (e.g.,
probability to find a given number of mRNAs in a cell) and
FIGURE 7 | Principal components of landscape shape features. (Left Column) The reshaped Principal Component Analysis (PCA) principal axes in feature space
which represent the maximum variance in the data, specifically which features of the coexpression landscape that each component is accounting for. (Right Column)
Magnitude or positive/negative value shift in observed variance for the respective component for each gene pair, versus developmental stage. Each component
summarizes a landscape shape features: (Top Row) The overall amount of gene expression, (Middle Row) Antagonistic Expression vs. Coexpression of the two
genes, and (Bottom Row) degree of asymmetric expression between the two genes.
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experimentally measured transcript counts in scRNA-seq. The
theoretical models can partially reproduce true cell population
heterogeneity, but also neglect many sources of noise, both
biological and technical. We employ models that treat intrinsic
noise but neglect sources of persistent cell-to-cell variability (i.e.,
extrinsic noise) (Swain et al., 2002), which is known to contribute
to noise in gene expression. For example, one source of extrinsic
noise would be asynchronicity between cells, where individual
cells might be at different stages of progression in development.
Here, we opted to use a relatively simplistic model framework
(i.e., no additional noise assumptions beyond intrinsic noise of
biomolecular interactions, relatively few reactions describing
molecular mechanisms of gene regulation, etc.) to minimize
the number of model parameters while still enabling study of a
variety of “rules” for gene regulatory logic. The framework
presented here could be expanded in the future by integration
of additional types of mechanistic assumptions and noise sources
in the stochastic models.

The models also neglect technical noise/measurement errors
arising from experiments (Grün et al., 2014). For example, scRNA-
seq measurements face a well-known technical issue of drop-outs
(Kharchenko et al., 2014), which we have not included in our
modeling. Future efforts may improve the presented modeling
framework by inclusion of these additional sources of noise, or by
additional data-processing steps for imputation of missing data
points (Gong et al., 2018). However, such an approach would also
present challenges by necessarily introducing additional
assumptions about cell population heterogeneity, which is still not
fully understood. Given the danger of false signals (Andrews and
Hemberg, 2019),weoptedhere toutilizeminimal dataprocessing in
comparing our theoretical results to a public dataset. We also note
Frontiers in Genetics | www.frontiersin.org 14
that the discrete stochastic modeling framework advanced in this
work has potential to shed new light on the drop-outs issue: a
relatively large proportion of “zeros” arises naturally from discrete
stochastic models, depending on the regulatory interactions among
genes, suggesting that perhaps biological variability plays a larger
role in producing dropouts than has previously been supposed.
Overall, despite the lack of additional biological/technical noise
sources in our models, we note that our computed landscapes
qualitatively reproduce the noise characteristics of the scRNA-seq
measurements, in that they showed similarly broad distributions of
coexpression. Thus we conclude that the simplistic models
employed here are sufficient for the current application, which
focusedon characterization of coexpression landscape shape and its
evolution in development, but we also foresee that incorporation of
additional noise sources in the model might improve the practical
utility of our proposed coexpression-shape-based analysis.

We focused here on two-gene models and pairwise interactions,
because (1) certain gene-pairs are known to play a critical role in
development (Graf and Enver, 2009) (2) the edges (pairwise
interactions) are the elemental units or building blocks of larger
regulatory networks.However, the focus on pairwise interactions has
potential drawbacks: it does not elucidate how gene-pair interactions
aremodifiedwhen embedded in a larger network. In the same vein, it
does not differentiate between direct or indirect interactions between
genes (e.g., by direct transcriptional regulation versus molecular
intermediaries). In principle, the framework presented here could
be expanded to treat “3-body” (or higher order) interactions among
genes, though this presents several computational challenges.
For example, solution of the CME becomes intractable already
for 3-gene networks, such that advanced approximation
methods (Zhang and Wolynes, 2014) or more costly simulations
FIGURE 8 | Landscape shape trajectory clustering reveals conserved patterns of gene-pair coexpression dynamics during development. Four representative
trajectory clusters showing distinct dynamics are presented (full list of 24 clusters and associated gene pairs in Supplement). Gene pairs in cluster (A) display
behavior of an “inverted MLP”: first undergoing increasing antagonistic expression which then switches to increasing coexpression around stage 13. Gene pairs in
cluster (B) follow the typical MLP behavior, with highest coexpression taking place around stage 10 followed by antagonistic expression at later stages. Cluster (C)
shows consistent antagonistic expression (negative component 2), with nonmonotonic overall expression (a switch-back in component 1 around stage 12). (D)
shows cyclic behavior similar to (B), with highest coexpression at stage 12, but overall expression and relative amount of coexpression is lower.
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(Tse et al., 2018) become necessary. Nevertheless, expansion of the
approach tohigher-order interactions is feasible, and recentwork has
revealed how such as approach might proceed, for example, by
incorporating developments in multivariate information measures
(Chan et al., 2017).

In this work, linear PCA was used to identify shape features of
gene-pair coexpression landscapes, and this approach was useful
for separating landscapes with, e.g., more simultaneous
coexpression versus more antagonistic expression for a given
gene pair. Another possible extension of the method in the future
could be to test alternative, nonlinear dimensionality reduction
strategies for potential improvements in classifying coexpression
landscapes based on desired features.
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