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Abstract

Chromosomes are giant chain molecules organized into an ensemble of three-dimensional

structures characterized with its genomic state and the corresponding biological functions.

Despite the strong cell-to-cell heterogeneity, the cell-type specific pattern demonstrated in

high-throughput chromosome conformation capture (Hi-C) data hints at a valuable link

between structure and function, which makes inference of chromatin domains (CDs) from

the pattern of Hi-C a central problem in genome research. Here we present a unified method

for analyzing Hi-C data to determine spatial organization of CDs over multiple genomic

scales. By applying statistical physics-based clustering analysis to a polymer physics model

of the chromosome, our method identifies the CDs that best represent the global pattern of

correlation manifested in Hi-C. The multi-scale intra-chromosomal structures compared

across different cell types uncover the principles underlying the multi-scale organization of

chromatin chain: (i) Sub-TADs, TADs, and meta-TADs constitute a robust hierarchical struc-

ture. (ii) The assemblies of compartments and TAD-based domains are governed by differ-

ent organizational principles. (iii) Sub-TADs are the common building blocks of

chromosome architecture. Our physically principled interpretation and analysis of Hi-C not

only offer an accurate and quantitative view of multi-scale chromatin organization but also

help decipher its connections with genome function.

Author summary

An array of square blocks and checkerboard patterns characteristic to Hi-C data reflects

the multi-scale organization of the chromatin chain. Deciphering the structures of chro-

matin domains from Hi-C and associating them with genome function are open problems

of great importance in genome research. However, most existing methods are specialized

in finding domains at different scales, making it difficult to integrate the solutions. Here

we develop a unified framework for modeling and inferring domain structures over
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multiple scales, based on a physical model of the chromosome that reflects its nature as a

three-dimensional object. Our method efficiently explores the space of domain solutions

at different genomic scales, and systematically infers the chromatin domains over multiple

scales from Hi-C data by employing a single tuning parameter. Our principled interpreta-

tion of Hi-C not only offers a quantitative view of multi-scale chromatin organization but

also helps understand its connections with genome function.

Introduction

The spatial organization of chromatin inside cell nuclei has a profound impact on the function

of the genome [1]. Chromosome conformation capture (3C) and its derivatives, which are

used to identify chromatin contacts through the proximity ligation techniques [2, 3], take cen-

ter stage in chromosome research [1, 4]. In particular, high-throughput chromosome confor-

mation capture (Hi-C) technique quantifies all pairwise interactions between the segments of

the chromatin. Square-block and checkerboard patterns that appear in Hi-C data provide

glimpses into the organization of chromatin chains.

Despite a fundamental limitation of Hi-C that the data are in practice determined from a

population of cells with strong cell-to-cell heterogeneity, the cell-type specificity and even the

pathological states [5, 6] can clearly be discerned between different Hi-C maps. Given that Hi-

C pattern changes with the transcription activity and along the phase of cell cycle [7–16], accu-

rate characterization of chromatin domains (CDs) from Hi-C data is of great importance in

advancing our quantitative understanding to the functional roles of chromosome structure in

gene regulation.

Different types of CDs have been identified at different genomic scales. Inside cell nuclei

each chromosome made of� Oð102ÞMb DNA is segregated into its own territory (Fig 1A)

[17]. At the scale of ≳Oð10ÞMb, alternating blocks of active and inactive chromatin are

phase-separated into two megabase sized aggregates, called A- and B-compartments [18–21]

(Fig 1B). Topologically associated domains (TADs), detected at� Oð10� 1Þ � Oð1ÞMb [22–

25], are considered the basic functional unit of chromatin organization and gene regulation

because of their well-conserved domain boundaries across cell/tissue types [17, 20, 26, 27]. It

was suggested that the proximal TADs in genomic neighborhood aggregate into a higher-

order structural domain termed “meta-TAD” [8]. At smaller genomic scale, each TAD is fur-

ther split into sub-TADs that display more localized contacts [19, 28–31] (Fig 1C).

The current knowledge of CDs is based on a number of computational methods for Hi-C

data analysis [18, 19, 22, 32]. Although each method made a unique and important contribu-

tion to the field, most are limited to finding CDs at specific scales under specific conditions.

Lack of a systematic way of integrating or comparing these methods and their CD solutions

engenders two issues. First, depending on the method being used, the identified CDs display

significant variations, with the average size of a TAD varying from 100 kb to 2 Mb; yet there is

no shared way to determine which size should be preferred. Second, it is difficult to formulate

a comparative analysis between CDs found at different scales. To make things worse, many

algorithms require that Hi-C data be pre-processed in specific ways, for example down-sam-

pling to a coarser resolution for targeting CDs at larger scale [18, 19, 22]. Progress was made

by methods that consider hierarchical CDs [33, 34]; however, these method fall short of pro-

viding a common interpretable framework, because they are restricted to local pattern recogni-

tions, as in many earlier methods [18, 19, 22, 32]. To avoid the arbitrariness of focusing on the

features at specific scales, a better approach will be to start from a physically principled notion
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that chromosomes are a hierarchically structured three dimensional object made of a long

polymer [8, 16, 35–41].

Here we present a unified framework for characterizing CDs over multiple scales, incorpo-

rating an interpretable model of the chromosome based on polymer physics, and a clustering

method based on statistical physics and Bayesian inference. For convenience, we will divide

our framework to the two parts: pre-processing and inference. For pre-processing, Hi-C data is

interpreted as a pairwise contact probability matrix, resulting from a Gaussian polymer net-

work whose inter-monomer distances are restrained harmonically, which allows us to trans-

form a raw Hi-C data into the correlation matrix. For the inference step, we formulate a

statistical model of pairwise correlation with hidden domains, and set up an optimization

problem to find the CD solution that can best explain the Hi-C-derived correlation matrix.

The model flexibly explores the space of CD solutions at different genomic scales, and finds a

family of solutions parameterized by a single parameter λ. We present a single method pipe-

line, Multi-CD, that combines the pre-processing and inference algorithms. Our method can

be applied to any raw Hi-C data to analyze the multi-scale domain organization.

Results

Our primary contribution is a method for characterizing the chromatin domains (CDs) at

multiple scale in a unified framework.

Correlation-based model for chromatin domains (CDs)

Our approach is based on an assumption that the chromosome is organized into discrete chro-
matin domains (CDs), such that the position (and consequently, the activity) of two genomic

loci within the same CD is more strongly correlated than across different CDs.
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Fig 1. The hierarchical organization of interphase chromosome and Hi-C map. (A) Chromosome territories in the

cell nucleus, which are manifested as the higher intra-chromosomal counts in the Hi-C map. (B) Alternating blocks of

active and inactive chromatins, segregated into A- and B-compartments, give rise to the checkerboard pattern on Hi-

C. (C) Sub-megabase to megabase sized chromatin folds into TADs. Adjacent TADs are merged to meta-TAD [8], and

individual TAD is further decomposed into sub-TADs [19, 28–31].

https://doi.org/10.1371/journal.pcbi.1008834.g001
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The pattern of pairwise correlation between different genomic loci is captured by Hi-C.

However, most standard analysis approaches do not explicitly address how the information in

Hi-C should be interpreted in a statistically rigorous way. Here we start by constructing a

bridge between the observed data (Hi-C counts) and the key statistical quantity in our model

(the pairwise correlation matrix).

We use a Gaussian polymer network model to describe the long-range pairwise interaction

of genomic segments in a chromosome. Use of the Gaussian polymer network model was

motivated by an observation, from fluorescence measurements, that the spatial distances

between pairs of chromatin segments are well described by the gaussian distribution [21, 42–

44] (see S1 Fig). This observation suggests that, despite the presence of cell-to-cell variation in

a population of cells [39, 45–51], we can still approximate the chromosome with a gaussian

polymer network whose configuration fluctuates around a local basin of mechanical equilib-

rium [16, 41, 52–55], for the purpose of modeling the pairwise distances. See S1 Appendix for

more discussion.

The Gaussian polymer network provides a flexible physical model for diverse patterns of cor-

relation, because we allow each pair of segments to interact with a harmonic potential with an

independent “spring constant”—the matrix of these spring constants can be translated to the pair-

wise correlation matrix between the segments. At the same time, the model is tractable enough to

allow us to write down the pairwise distance distribution given the pairwise correlation, and con-

sequently the pairwise contact probability. Assuming that Hi-C is essentially a manifestation of

the pairwise contact probabilities, we can construct a chain of relationships that connects the Hi-

C data matrix to the pairwise correlation matrix (Fig 2A). See Methods for details.

Now we have a pairwise correlation matrix, C, that summarizes the experimental data. We

assume that the correlation pattern in C was generated from a hidden model, which is charac-

terized by a relatively small number of chromatin domains (CDs). Suppose that there are N
genomic segments, and that each segment i 2 {1, 2, � � �, N} belongs to one of K domains,

indexed by si 2 {1, 2, � � �, K}. The vector s = (s1, s2, . . ., sN) can be called the domain solution in

this model, because it summarizes how the genome is organized into distinct CDs. We are

assuming that pairs of segments in the same CD will be more highly correlated (corresponding

elements in C have larger values), which are manifested in higher counts in the Hi-C data.

Adapting the group model [56–58] from statistical mechanics, we formulate the pairwise corre-

lation between two genomic segments (i, j) to have two contributions: the intra-domain corre-

lation of the si-th CD that is present only when si = sj, and the domain-independent correlation

between the two segments (see Methods).

The goal of our method is to identify the domain solution s that best represents the pattern

in the correlation matrix C. To evaluate how well a domain solution s explains the correlation

pattern in the data, we calculate the log likelihood LðC; sÞ that the observed correlation C was

drawn from an underlying set of domains s. We also impose an additional preference to more

parsimonious solutions; instead of explicitly fixing the number of domains, K, we penalize

solutions with more fragmented domains, in terms of the generalized number of domains

KðsÞ. We combine the two measures into a single family of objective functions, parameterized

by λ, and look for solution ŝ that maximizes:

ŝl ¼ max
s
½LðC; sÞ � lKðsÞ� ð1Þ

(see Methods for the mathematical details and the optimization procedure). The free parame-

ter λ (� 0) controls how strongly the problem prefers parsimonious solutions: with a larger λ,

the solution ŝ for the optimization problem would tend to have fewer numbers of domains.

When N is fixed, we can also say that a larger λ prefers solutions with domains that are larger
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in the genomic scale. Solving at multiple values of λ (Fig 2B), therefore, would reveal the multi-
scale domain structure in data.

There is a mathematical analogy between the form of the objective function in Eq 1, and the

grand canonical ensemble in statistical physics (see Methods for details). The analogy to the

well-studied physical formulation provides a useful conceptual framework, and justifies the

use of efficient inference procedures such as simulated annealing (see Methods). We also note

that, in this view, the parameter λ has a physical interpretation as the effective chemical poten-
tial of a domain in the solution, which is associated with the creation of a new domain or the

merging of two domains into one.

Putting together, we present Multi-CD, a unified framework for modeling, inferring and

interpreting the hidden chromatin domains (CDs) from Hi-C data.

Discovery of CDs at multiple scales

Now we show how our method can be used to characterize the multi-scale structure of the

chromosome and generate new insights. We applied Multi-CD to a sample subset of Hi-C data

from a commonly used human lymphocyte cell line, GM12878, at 50-kb resolution. After the

transformation of the raw Hi-C (Fig 3A) into a correlation matrix (Fig 3B), Multi-CD was

employed to infer a family of CD solutions that vary with λ (Fig 3C). We also applied Multi-

CD to four other cell lines, HUVEC, NHEK, K562, and KBM7 (Fig 3D), and analyzed the CD

solutions for all five cell lines. All results shown in the main text consider chromosome 10. See

See S2 Fig for similar results from three other chromosomes (chr4, 11, 19).
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Fig 2. An overview of the Multi-CD method. (A) We first pre-process Hi-C data to extract a correlation matrix C.

Given C, we infer the chromatin domain (CD) solutions s at multiple scales by varying a single parameter λ. At each λ,

the best domain solution is found through simulated annealing, in which the effective temperature T is gradually

decreased (inner blue box). A complete Multi-CD algorithm involves repeating the process for different values of λ
(outer red box), to obtain a family of solutions. (B) An example of the normalized Hi-C matrix, (C) and the correlation

matrix that results from pre-processing. Shown is the full chromosome 10 in GM12878 (50-kb Hi-C), which is used as

an example dataset throughout the paper. (D) Simplified schematic for the resulting family of domain solutions, {sλ}, at

varying parameter λ. Each s is a vector of domain indices; line breaks illustrate domain boundaries. These solutions are

not meant to be the optimal solutions for the shown data, but they illustrate how the typical domain scale increases

with λ.

https://doi.org/10.1371/journal.pcbi.1008834.g002
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We observed several general features from the families of CD solutions in these cell lines:

(i) The average domain size hni always increased monotonically with λ (Fig 3E), as expected

from our construction of the prior.

(ii) The domain sizes were relatively homogeneous in the small-domain regime (small λ), but

became heterogeneous after a cross-over point (Fig 3F). To quantify this, we defined the

index of dispersion for the domain sizes, i.e., the variance-to-mean ratio D ¼ s2
n=hni. If the

domains were generated by randomly selecting the boundaries along the genome, D = 1; a

smaller D< 1 indicates that domain sizes are more homogeneous than random. A larger

D> 1 means that the domain sizes are heterogeneous. The crossover points arise at
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Fig 3. Multi-scale chromatin domain solutions for various cell types. (A) A subset of 50-kb resolution Hi-C data,

covering a 10-Mb genomic region of chr10 in GM12878. (B) The cross-correlation matrix Cij for the corresponding

subset. (C) Multi-CD applied to the correlation matrix in B. Domain solutions determined at 4 different values of λ =

0; 10; 30; 50. (D) Hi-C data from the same chromosome (chr10) in four other cell lines: HUVEC, NHEK, K562, and

KBM7. Same subset as in A. (E-G) Characteristics of the domain solutions determined for all five cell lines in A and D:

(E) the average domain size, hni (F) the index of dispersion in the domain size, Dð¼ s2
n=hniÞ (G) the normalized

mutual information, nMI. (H-I) Comparison of domain solutions across cell types. (H) Average cell-to-cell similarity

of domain solutions, in terms of Pearson correlations, at varying λ. (I) Domain solutions obtained at λ = 10 for 5

different cell types. See S3 Fig for solutions at λ = 0 and λ = 40. (J) Similarity between domain solutions at different λ’s,

shown for GM12878. See S4 Fig for corresponding results for the other four cell lines. (K) RNA-seq signals from the

five cell lines (colored hairy lines), on top of the TAD solutions (filled boxes), in a genomic interval that contains the

regulatory elements associated with a gene APBB1IP. APBB1IP is transcriptionally active only in two cell lines,

GM12878 and KBM7, where the regulatory elements are fully enclosed in the same TAD. See S5 Fig for additional

examples.

https://doi.org/10.1371/journal.pcbi.1008834.g003
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λcr� 30 − 40 (hnicr� 1.6 Mb) for GM12878, HUVEC, and NHEK; and λcr� 60 − 70 (hnicr
� 2.2 Mb) for K562 and KBM7. We observed that the onset of heterogeneity was related to

the appearance of non-local domains (Fig 3C).

(iii) We quantified the goodness of each CD solution by comparing its corresponding binary

matrix against the Hi-C data in terms of the normalized mutual information (nMI; see

Methods). There is a scale, λ�, at which the diagonal block pattern manifested in Hi-C data

is most accurately captured. In Fig 3G, the best solution was found at λ� � 30 for

GM12878, HUVEC, and NHEK; the λ�’s were identified at larger values for K562 and

KBM7. As an interesting side note, K562 and KBM7 belong to immortalized leukemia cell

lines, whereas the other three cell types are normal cells; the different statistical property of

Hi-C patterns manifested in λ� may hint at a link between the pathological state and a

coarser organization of the chromosome.

(iv) The CD solutions inferred by Multi-CD, especially the families of local CDs, appeared to

be conserved across different cell types (Fig 3H and 3I). We quantified the extent of domain

conservation in terms of the Pearson correlation (Methods), averaged over all pairs of dif-

ferent cell types. Domain conservation was strong for smaller domains at λ� 30 (hni≲ 1.5

Mb), with the strongest conservation at λ = 10 (Fig 3H). The CDs at λ = 10 are shown in

Fig 3I for five different cell types.

(v) Finally, we quantified the similarity between pairs of CD solutions obtained at different

scales, again using the similarity measure based on Pearson correlation. In the case of

GM12878, the family of CD solutions is divided into two regimes; the smaller-scale CD

solutions from a range of 10� λ� 40 are correlated among themselves, and the larger-

scale CD solutions from λ> 40 as well. CD solutions below and above λ� 40 are not corre-

lated with each other (Fig 3J; also see S4 Fig for the other cell lines).

The division boundary in (v) is found at a λ value in the similar range with the best-cluster-

ing scale λ�, and the crossover λcr from local/homogeneous to non-local/heterogeneous CDs

(compare S4 Fig to Fig 3F and 3G). Hereafter we will refer to the two regimes as the family of

local CDs with homogeneous size distribution (λ≲ λ�), and the family of non-local CDs with

heterogenous size distribution (λ≳ λ�).

TAD-like organizations in the family of local CDs

We identified at least three important scales in the family of local CDs. First of all, there is a

scale at which domain conservation is maximized across different cell types (λ = 10). This

observation is consistent with the widely accepted notion that TADs are the most well-con-

served, common organizational and functional unit of chromosomes, across different cell

types [27, 59]. Thus, for the example from human chromosome 10, we identify the CDs found

at this scale λ = 10 as the TADs. The average domain size at λ = 10 is hni � 0.9 Mb, which

agrees with the typical size of TADs as suggested by previous studies [22, 23].

The goodness of clustering, on the other hand, is maximized at a larger scale, λ� 30 (hni �
1.5 Mb) for GM12878. The CDs at this scale turn out to be aggregates of multiple TADs in the

genomic neighborhood, from visual inspection (see Fig 3C), or as quantified in terms of a nest-

edness score (Methods). We therefore identify these CDs as the “meta-TADs”, a higher-order

structure of TADs, adopting the term of Ref. [8]. In contrast to a previous analysis that

extended the range of meta-TADs to the entire chromosome [8], we use the term meta-TAD

exclusively for the larger-scale local CDs, distinguishing them from the non-local structures

(i.e., compartments, discussed below). We note, however, that the terminologies of TADs and
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the meta-TADs are still not definitive—a recently proposed algorithm based on structural

entropy minimization [60] found that the “best” solutions were found at * 2 Mb domains,

which is consistent with our findings, although these domains were called the TADs in

Ref. [60].

Finally, a trivial but special scale is λ = 0, where no additional preference for coarser CDs

is imposed. The CDs at this scale are supposed to best explain the local correlation pattern that

is reflected in the strong Hi-C signals near the diagonal. These smaller CDs are almost

completely nested in the TADs and the meta-TADs; we can therefore call them the sub-TADs.

We also confirm that the sub-TAD solutions are not limited by the resolution of the Hi-C

data; sub-TADs are robustly reproduced from a finer, 5-kb Hi-C (S6 Fig).

The first three panels in Fig 3C shows three representative TAD-like CD solutions at λ�
λ�: sub-TADs (λ = 0; smallest CDs), TADs (λ = 10, strongest domain conservation), and meta-

TADs (λ = λ� = 30, largest nMI). The nested structure is reminiscent of the hierarchically

crumpled structure of chromatin chains [37].

Chromatin organization and its link to gene expression

The CD solutions from Multi-CD can provide important insights into the link between chro-

matin organization and gene expression. To demonstrate this, we overlaid the RNA-seq pro-

files on the TAD solutions, identified for the corresponding subset of the chr10 of five cell lines

(GM12878, HUVEC, NHEK, K562, KBM7) (Fig 3K). At around 26.8 Mb position of this chro-

mosome, we found a gene APBB1IP, which is transcriptionally active in GM12878 and KBM7

but not in HUVEC, NHEK and K562. Consulting the GeneHancer database [61], we identified

the regulatory elements for this gene (enhancers and promoters) in the interval between 26.65

and 27.15 Mb. Notably, our Multi-CD solutions show that for the case of APBB1IP gene

the interval associated with the regulatory elements is fully enclosed in the same TAD in

GM12878 and KBM7, whereas it is split into different TADs in the other three cell lines (Fig

3K). This is an important demonstration of how the 3D chromosome structure regulates the

gene expression level, which is also consistent with the understanding that TADs are the func-

tional units of the genome [7, 8, 17, 20]. More generally, the observation suggests that gene

expression depends on the spatial organization of the genome, captured by our TAD solutions,

which constrains the interaction between the gene and the regulatory elements (also see S5 Fig

for additional examples of TAD structure-dependent cell type specific gene expression).

Compartments as the best domain solution that coexists with TAD-like

domains

Looking at the correlation pattern in Hi-C data (for example Fig 2B and 2C), one can hardly

miss the prominent global structure with a characteristic checkerboard pattern demonstrated

in the off-diagonal part of the matrix. These highly non-local, super-Mb-sized domains are

generally defined as the compartments in the chromosome organization [27]. Given the large

scale of the compartments, compartment-like solutions were initially anticipated in the large-λ
limit of Multi-CD. However, a naïve application of Multi-CD by increasing λ failed in identify-

ing the compartments; some non-local CDs were found (Fig 3C), but the characteristic pattern

of compartments was not obtained by merely increasing the value of λ.

We hypothesized that compartments correspond to a secondary CD solution that coexists

with the primary solution (in this case the TAD-like domains, as already identified), rather

than belonging to the same family of solutions. As described in Methods, such secondary solu-

tion can be inferred by applying an extended version of Multi-CD, effectively taking out the

contribution of the primary solution from the correlation matrix C. We consider a simplified

PLOS COMPUTATIONAL BIOLOGY Multi-scale discovery of chromatin domains

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008834 March 16, 2021 8 / 27

https://doi.org/10.1371/journal.pcbi.1008834


version of this problem, and remove from C a diagonal band of width 2 Mb, corresponding to

the known size of meta-TADs (Fig 4A). Along with our prior knowledge of the primary solu-

tion, this approximation has the advantage that the secondary inference (for compartments)

can be performed independently from the outcome of the primary inference (for the TAD-like

domains). In this case, the algorithm successfully captures the non-local correlations, and

identifies two large compartments with alternating patterns (Fig 4B). The correspondence is

clearer when the indices of segments are re-ordered (Fig 4C). Because the larger CD (k = 1)

shows a greater number of contacts (Fig 4D), it can be associated with the B-compartment,

which is usually more compact; k = 2 is associated with the A-compartment. Further validation

of the two compartments will be presented below, through comparisons with epigenetic

markers.

To compare the goodness of our compartments with existing methods, we calculated the

nMI against the CO/E matrix, the conventional form for compartment identification (Methods)

[18]. We find that Multi-CD outperforms GaussianHMM [19], a widely accepted benchmark

algorithm, in capturing the large-scale structures in Hi-C (Fig 4E).

Multi-scale, hierarchical organization of CDs

Now that we identified four classes of CD solutions, namely sub-TADs, TADs, meta-TADs

and compartments, we examined their relationships. Note that these CDs were obtained inde-

pendently at the respective λ values, not through a hierarchical merging. Sub-TADs or TADs

are almost always nested inside a meta-TAD, and TADs inside a meta-TAD, whereas there are

mismatches between the TAD-like domains and the compartments (Fig 5). We quantified this

relationship in terms of a nestedness score h, such that h = 0 indicates the chance level and
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https://doi.org/10.1371/journal.pcbi.1008834.g004
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h = 1 a perfect nestedness (Methods), along with a visual comparison of each pair of CD solu-

tions (Fig 5A). This analysis confirms that there exists an appreciable amount of hierarchy

between any pair of TAD-like domains (sub-TADs, TADs, and meta-TADs). On the other

hand, the hierarchical links between the TAD-like domains and compartments are much

weaker, which is again consistent with the recent reports that TADs and compartments are

organized by different mechanisms [62, 63].

Although the nestedness score between sub-TADs and compartments (nestedness score

h = 0.67) is not so large as those among the pairs of TAD-based domains, it is still greater than

those between TADs and compartments (h = 0.55) or between meta-TADs and compartments

(h = 0.43). Thus, sub-TAD can be considered a common building block of the chromatin

architecture (see Fig 5B).

Validation of domain solutions

The CD solutions from Multi-CD are in good agreement with the results of several existing

methods that specialize in particular domain scales. Specifically, our CDs correspond to the

previously proposed sub-TADs [19] at λ = 0, to the TADs [22] at λ� 10, and to the compart-

ments [19] at λ� 90 (S7 Fig). When assessed in terms of the nMI, Multi-CD outperforms the

corresponding alternatives (ArrowHead [19], DomainCaller [22], GaussianHMM [19] for

sub-TADs, TADs, meta-TADs) at the respective scales (Fig 6A).

We also compared our CD solutions with several biomarkers that are known to be corre-

lated with the spatial organization of the genome [64]. All results shown here are for chr10 of

GM12878.

First, we calculated how much the boundaries of our sub-TAD and TAD solutions are cor-

related with the CTCF signals, which are known to be linked to TAD boundaries [22, 23] (Fig

6B). We quantified this in terms of a correlation function, χ(d), where d is the genomic
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distance between a domain boundary and each CTCF signal (Methods). Compared with those

of ArrowHead and DomainCaller, the correlation function calculated for the results from

Multi-CD shows a similar enrichment of CTCF signals at domain boundaries (high peak of

correlation at d� 0), along with better precisions (fast decay of correlation as d increases) (see

Fig 6B). Specifically, when fitted to exponential decays, the correlation lengths are 34 kb (λ =

0) and 143 kb (λ = 10) for Multi-CD, compared to ≳ 900 kb for the two previous methods

(Fig 6B).

Next, we compared our compartment solutions (CDs at λ = 90, shown in Fig 4B) with the

replication timing profiles (Repli-Seq), which are known to correlate differently with the A-

and B- compartments [9, 65]. Our inferred compartments exhibit the anticipated patterns of

replication timing (Fig 6C); the A-compartment shows an activation of replication signals in

the early-phases (G1, S1, S2) and a repression in the later phases (S3, S4, G2), whereas the B-

compartment shows an opposite trend. There is a clear anti-correlation between the replica-

tion patterns in the two compartments along the replication cycle (Fig 6C), which is also quan-

tified in terms of the Pearson correlation (Fig 6D). Comparison to other epigenetic markers,

such as the pattern of histone modifications, further confirms the association of our CD solu-

tions with the A/B-compartments (S8 Fig).

Discussion

Multi-CD is a unified framework for Hi-C data analysis and a principled interpretation of Hi-

C from the viewpoint of polymer and statistical physics, enabling identification of CDs at vari-

ous genomic scales. As a computational algorithm, Multi-CD includes two core steps: the pre-

processing of raw Hi-C data into a correlation matrix, and the inference of chromatin domain

(CD) solutions from the correlation matrix.
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The pre-processing, based on a model of the chromosome as a gaussian polymer network,

allows us to make a physically justifiable interpretation of the Hi-C data. This fundamentally

differentiates our approach from other methods in which the target patterns need to be

selected empirically. Moreover, the polymer physics-based transformation obviates the need

for the arbitrary use of a nonlinear (most often logarithmic) scaling to enhance the correlation

patterns in the Hi-C data.

The inference problem is rigorously formulated based on a statistical mechanical model of

the pairwise correlation matrix in the presence of hidden correlated domains. We note that in

the current model, domains are defined very generally in terms of a many-to-one grouping of

the chromatin segments. As a result, our method deals with non-local CDs (occupying non-

consecutive locations on the genome) as naturally as it does with the local CDs (consecutive

intervals between two boundaries on the genome). This differentiates Multi-CD from previous

methods that focus on local features in Hi-C, such as CD boundaries or loops enriched with

higher contact frequencies.

As an important feature, Multi-CD offers a one-method-fits-all framework to identify CDs

at multiple scales, tuning a single parameter λ to control the preference to coarser solutions.

Because the resulting family of CD solutions share the same formulation, it is possible to make

quantitative comparisons between CD solutions at different scales. Moreover, Multi-CD can

find CDs across a wide range of scales without having to adjust or down-sample the Hi-C data

to match the scale of CDs to be identified, which is an important improvement over many

existing methods.

Applying Multi-CD to Hi-C data from five human cell lines, our analysis revealed special

scales at which the CD solutions are particularly interesting: sub-TADs (λ = 0), TADs (λ = 10,

where domain conservation was strongest), and meta-TADs (λ = 30, where the correlation pat-

tern was best captured). At larger scales, we found that compartments (λ = 90) emerge as a sec-

ondary solution that can be inferred after explaining away the contributions from the TAD-

like solutions. We confirmed that Multi-CD successfully reproduces, or even outperforms, the

existing methods to identify CDs at the specific scales. Importantly, Multi-CD achieves this

performance through a single unified algorithm, which not only identifies the specific CD

solutions accurately, but also allows a comparative analysis of the multi-scale family of

solutions.

In particular, we characterized the hierarchical organization of the chromatin by quantify-

ing the similarity and the nestedness between CD solutions at two different scales. We showed

that the characteristics of CD solutions shared by the local, TAD-like domains do not precisely

hold together in the non-local, compartment-like domains. This finding is consistent with the

recent studies which report that compartments and TADs are formed by different mechanisms

of motor-driven active loop extrusion and microphase separation, and that they do not neces-

sarily have a hierarchical relationship [63, 66–68]. It is also consistent with our modeling

assumptions that compartments are the secondary solution, whereas the TAD-like domains

belong to the family of primary solutions. The ability of our model to appropriately describe

the secondary solution, in addition to a family of primary solutions, further highlights the

strength of our framework. Meanwhile, the sub-TADs are nested in each of the other three

solutions, including the compartments (Fig 5), indicating that sub-TADs are the fundamental

building blocks of the higher-order CD organization. We note that this is not a trivial conse-

quence of the finite data resolution; the sub-TADs are robustly recovered when Multi-CD was

applied to Hi-C data at a 10-fold finer resolution of 5kb (S6 Fig).

While there are methods that report hierarchical CDs [33, 34], Multi-CD makes significant

advances both algorithmically and conceptually. Multi-CD can detect non-local domains

with better flexibility instead of finding a set of intervals. Multi-CD also avoids the high
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false-negative rate that is typical of the previous method (e.g., TADtree [33]) that focuses on

the nested domain structure (S9 Fig). Further, employing an appropriate prior to explore the

solution space effectively, Multi-CD can avoid the problem encountered in Armatus [34]

which skips detection of domains in some part of Hi-C data while its single scale parameter is

varied (S9 Fig).

Multi-CD is a method of great flexibility that can be readily applied to analyze any dataset

that exhibits pairwise correlation patterns. However, two cautionary remarks are in place for

more careful interpretation of the results. (i) In general, the relevant values of λ depend on the

resolution of the input Hi-C dataset, as well as on the cell type. While λ is a useful parameter

that allows comparative analysis, its specific value does not carry any biological significance.

Although we referred to a specific CD solution by the corresponding value of λ in the current

analysis (Fig 3), the lesson should not be that TADs, for instance, always correspond to the par-

ticular value of λ; instead, TADs should be identified as the most conserved CD solutions

across cell types after scanning a range of λ’s. (ii) Multi-CD is agnostic about whether the col-

lected data is homogeneous or heterogeneous. Application of Multi-CD to single-cell Hi-C

data, and the subsequent interpretation of the result, would be straightforward; however, if the

input Hi-C data were an outcome of a mixture of heterogeneous subpopulations, the solution

from Multi-CD would correspond to their superposition. This is a fundamental issue inherent

to any Hi-C data analysis method. Nevertheless, the population-averaged pattern manifest in

Hi-C carries a rich set of information that is specific to the cell type. The need for interpretable

inference methods that can extract valuable insights into the spatial organization of the

genome, including ours, is still high.

To recapitulate, in order to glean genome function from Hi-C data that varies with the

genomic state [12–15], a computationally accurate method for characterizing the domain

organization is of vital importance. Multi-CD is a physically principled method that identifies

the multi-scale structure of CDs, by solving a family of optimization problems with a single

tuning parameter. We find the resulting CD solutions in excellent match with biological data

such as CTCF binding sites and replication timing signal. Our framework enables quantitative

analyses of CD structures identified across multiple genomic scales and various cell types,

offering general physical insights into the chromatin organization inside cell nuclei.

Methods

Interpretation of Hi-C data

We first describe our physical interpretation of Hi-C. We construct a polymer network model

of the chromosome, and assume that Hi-C is essentially a sampling procedure for the contact

probability between pairs of segments in the network.

Gaussian polymer network model for the chromosome. For a polymer chain whose

long-range pairwise interactions are restrained via harmonic potentials with varying stiffness,

the probability density function of the distance between a pair of segments i and j is written in

the following form:

Pðrij; gijÞ ¼
4
ffiffiffi
p
p g

3=2

ij r2

ij expð� gijr
2

ijÞ; ð2Þ

where γij amounts to the “stiffness” or the “spring constant” of the harmonic potential, up to a

factor of the energy unit kBT. (Note that this T is the physical temperature, which should not

be confused with the effective temperature for the simulated annealing in the inference proce-

dure). This γij is directly related to the positional covariance determined by the topology of

polymer network [16, 69]. More specifically, we describe the spatial positions of the polymer
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segments using a gaussian distribution with zero mean and and a covariance matrix S, with

elements (S)ij = σij = hδri � δrji. Then it follows that the distance rij = |ri − rj| between two dif-

ferent monomers i and j (i 6¼ j) can be described in the form of a weighted gaussian function

(Eq 2) where the variance (2γij)
−1 is associated with the covariance matrix elements as

g� 1
ij ¼ 2ðsii þ sjj � 2sijÞ: ð3Þ

The contact probability between the two segments, pij, is the probability that their pairwise

distance rij is below a cutoff distance rc. The contact probability is then calculated as

pij ¼
R rc

0
dr Pðr; gijÞ. Once we obtain the contact probability pij from the Hi-C data (more

details below), this model allows us to reversely solve for the correlation matrix C. Specifically,

there is a one-to-one mapping from the contact probability pij to the stiffness parameter γij,
which allows one to determine the covariance matrix {σij}, and consequently the cross-correla-

tion matrix, ðCÞij ¼ sij=
ffiffiffiffiffiffiffiffiffi
siisjj
p

with −1� (C)ij� 1 for i 6¼ j and (C)ii = 1 (correlation of the

self-interaction is unity) (more details below). In summary, the following transformation from

pij to (C)ij is conceived (see also Fig 2):

pij � ! gij � ! sij � ! ðCÞij: ð4Þ

Normalization and contact probability. Here we describe how the Hi-C data can be

interpreted as a set of contact probabilities for pairs of genomic segments, pij. Typically, a Hi-C

matrix have widely varying row-sums; for example, the net count of the i-th segment in the

experiment is much larger than the net count of the j-th segment. To marginalize out this site-

wise variation and only focus on the differential strengths of pairwise interactions, the raw Hi-

C matrix Mraw is normalized to have uniform row and column sums. This is achieved using

the Knight-Ruiz (KR) algorithm [70], which finds a vector v = (v1, � � �, vN) for calculating (Mij

= vivj(Mraw)ij, such that each row (column) in M sums to 1.

We assume that the normalized Hi-C signal is proportional to the contact probability: (M)ij

/ pij. Note that pij is the probability that the two segments i and j are within a contact distance,

and the rows of the contact probability matrix (P)ij = pij is not required to sum to 1. Because

the proportionality constant is unknown a priori, however, we have a free parameter to choose.

We do this by fixing the average nearest-neighbor contact probability, �p1 ¼ hpi;iþ1i. We expect

the �p1 to be relatively close to 1, assuming that nearest-neighbor contact is likely; but not

exactly 1, because there are variations among the nearest-neighbor Hi-C signal. In this work

we chose �p1 ¼ 0:9. The resulting contact probability matrix P is given as ðPÞij ¼ minð1; p̂ijÞ,

with p̂ij ¼ ð�p1=mÞðMÞij, where μ = hMi,i+1i is the Hi-C signals averaged over the nearest-neigh-

bors. At �p1 ¼ 0:9, in our case, the fraction of over-saturated elements (p̂ij > 1) was sufficiently

small.

Building the correlation matrix from Hi-C. Here we continue to build the connection

between the contact probability and the correlation matrices. The contact probabilities can be

calculated from the distribution of pairwise distances (Eq 2), by saying that two segments i and

j are in contact when their distance rij is below a cutoff, rc. In other words, we write

pij ¼

Z rc

0

Pðrij; gijÞdrij ¼ erfðg1=2

ij rcÞ � 2rc

ffiffiffiffi
gij

p

r

e� gijr2c ; ð5Þ

where erfðxÞ ¼ 2ffiffi
p
p

R x
0
dte� t2 . Because this pij is a monotonically increasing function of γij, the

value of γij is uniquely determined for each pij. It is straightforward to perform this inverse
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mapping numerically; see our publicly available code for a simple Matlab implementation of

the procedure.

Once we have the γij’s, we can reconstruct the covariance matrix {σij} using Eq 3. Depending

on the Hi-C pipeline, the Hi-C-derived contact matrix, pij, may or may not contain the diago-

nal entries, which reflect the contact frequency within each genomic region; however, regard-

less of the value of pii, the correlation of self-interaction is unity by definition ((C)ii = 1). Note

that although the value of γij depends on the choice of rc, its effect is only to scale the γij’s as

gij ! r2
c gij, and consequently the σij’s.

Finally, we normalize the covariance matrix to build the correlation matrix C:

ðCÞij ¼
sij
ffiffiffiffiffiffiffiffiffi
siisjj
p ¼

sij

sc
¼ 1 �

1

4scgij
: ð6Þ

where we assume a uniform variance σii = σjj = σc along the diagonal, so as to set the overall

intensity of C. Here, we chose the value of σc as the median of 1/4γij, i.e., σc = median(1/4γij).
This choice of σc was motivated to ensure that the resulting C has balanced fractions of positive

and negative correlation, making the most of the value range [−1, 1] such that the global corre-

lation pattern is clearly visible. This also cancels out the scaling effect of rc in σij, so that the

choice of rc does not affect the ultimate construction of the correlation matrix C.

Generative model for the correlation matrix

We now consider a generative model for the cross-correlation matrix C that displays corre-

lated domains. Specifically, we adapt a statistical mechanical formalism known as the group
model [56–58], which is used to cluster correlated domains in a given correlation data.

The group model. Let us assume that each genomic segment i 2 {1, 2, � � �, N} belongs to a

chromatin domain si. Then the vector s = (s1, s2, . . ., sN) can be called the domain solution for

the N segments. For example, a state s = (1, 1, 1, 2, 2, 3) describes a structure where the 6 geno-

mic segments are clustered into 3 domains. Indexing of the domains is arbitrary. If there are K
distinct domains in the solution, we can always index the domains such that si 2 {1, 2, � � �, K}.

We also assume that the cross-correlation matrix C can be represented by the correlation

between a set of hidden variables {xi} where xi denotes the “genomic state” of the i-th chroma-

tin segment. Without loss of generality, we only consider the case where xi has zero mean and

unit variance. Adapting the formalism in Refs. [56, 57], we assume that xi obeys the following

stochastic equation

xi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
gsi

1þ gsi

s

Zsi þ
1
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ gsi

p �i ð7Þ

where Zsi and �i are two independent and identically distributed (i.i.d) random variables with

Zsi ; �i � N ð0; 1Þ, that are linked to the domain (si) and the individual segment (i) respectively.

The clustering strength parameter gsið� 0Þ is associated with each domain si, such that a larger

gsi indicates a stronger contribution from the domain-dependent variable Zsi . The cross-corre-

lation between two segments i and j is written as

hxixji ¼
gsi

1þ gsi
dsisj þ

1

1þ gsi
dij: ð8Þ

In light of Eq 8, the first term of Eq 7 on the right hand side contributes to intra-CD correla-

tion of the si-th CD; the second term of Eq 7 corresponds to the domain-independent noise.

With a larger gsi , the domain si becomes more clearly discernible from other domains (sj 6¼ si).
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We are interested in the inference problem in which the model correlation matrix hxi xji is

fitted against the data correlation matrix C,

ðCÞij , hxixji; ð9Þ

to find the best domain solution si along with the corresponding clustering strength parameter

gsi .
Incorporating the secondary group to the group model. The group model assumes that

the correlation pattern in C is generated from a single level of group structure. However, there

may be more complex situations in which the correlation pattern is hierarchical, not fully

described by a single group. Here we expand the model to include up to the secondary group,

whose contribution is, by construction, weaker than the primary group.

Suppose that the underlying grouping was bivariate, i 7! (si, ui), such that each genomic

locus i simultaneously belongs to a primary group si and a secondary group ui. Generalizing

Eq 7, we assume a linear model

xi ¼
�i þ

ffiffiffiffiffigsi
p

Zsi þ
ffiffiffiffiffiffi
hui

q
xui

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ gsi þ hui

q ð10Þ

where xui and hui
are, respectively, the random variable and the grouping strength parameter

for the secondary group ui. If we further assume that si and ui are statistically independent, the

pairwise correlation between two loci i and j can be written as

hxixji ¼
dij þ gsidsi ;sj þ hui

dui ;uj

1þ gsi þ hui

; ð11Þ

the contributions from different groups are additive. We can rearrange Eq 11 to write

1þ gsi þ hui

1þ hui

hxixji �
gsi dsi ;sj

1þ gsi þ hui

 !

¼
dij þ hui

dui ;uj

1þ hui

; ð12Þ

such that the right-hand side becomes the single-group model. The left-hand side of this

expression is a normalized residual of the correlation, which we will call (Cres)ij. If we have

already inferred the primary group si and the corresponding strength ~g si
without considering

the secondary group, the correspondence to this two-group model (due to normalization) is

given as gsi ¼ ð1þ hui
Þ~g si

. Substituting this and replacing the model correlation hxi xji with the

data (C)ij simplify the left-hand side of Eq 12 to

ðCresÞij ¼ ð1þ ~g si
Þ ðCÞij � ~g si

dsi ;sj : ð13Þ

Note that Cres is independent of the unknown secondary solution u (and h). Now u is the solu-

tion of a modified single-group problem, using this residual correlation Cres as the input data.

To infer the secondary group solution, therefore, one can simply repeat the inference proce-

dure for the single-group problem after obtaining the primary group solution.

Formulating the inference problem

Our goal is to identify the domain solution s = (s1, s2, � � �, sN) that best represents the pattern in

the correlation matrix C, with an appropriate set of strength parameters g = (g1, g2, � � �, gK),

where K is the number of distinct domains in the solution. Using the group model described

above, we can calculate the likelihood p(C|s, g) that the observed correlation matrix C was
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drawn from an underlying set of domains s with strengths g [58] (See S2 Appendix for deriva-

tion). The log-likelihood, log p(C|s, g), is written as a sum over all domains in the solution s:

log pðCjs; gÞ ¼ �
1

2

XK

k¼1

ð1þ gkÞ nk �
gkck

1þ gknk

� �

� nk logð1þ gkÞ þ logð1þ gknkÞ

� �

; ð14Þ

where nk ¼
PN

i¼1
dsi ;k is the size of domain k, and ck ¼

PN
i;j¼1

Cijdsi ;kdsj;k is the sum of all

intra-domain correlation elements. The log-likelihood in Eq 14 is maximized at

ĝ k ¼ ðck � nkÞ=ðn2
k � ckÞ for each k, allowing us to consider the reduced likelihood

pðCjsÞ � maxg pðCjs; gÞ ¼ pðCjs; ĝÞ.
For convenience, we write the likelihood function as pðCjsÞ / expð� EðsjCÞ=TÞ to resem-

ble a Boltzmann distribution, where E corresponds to the energy or to � LðC; sÞ introduced in

Eq 1, and T is the effective temperature that will be used later in the simulated annealing. At

g ¼ ĝ, EðsjCÞ reads

EðsjCÞ ¼
1

2

XK

k¼1

log
ck
nk
þ ðnk � 1Þ log

n2
k � ck

n2
k � nk

� �

: ð15Þ

The problem of finding the maximum likelihood solution s is equivalent to finding the energy-

minimizing s for EðsjCÞ.
Besides evaluating how well a domain solution s explains the correlation pattern in the

data, we also want to impose an additional preference to more parsimonious solutions. Instead

of explicitly fixing the number of domains, K, we modify the optimization problem using the

method of Lagrange multiplier:

min
s

HlðsjCÞ; HlðsjCÞ ¼ EðsjCÞ þ lKðsÞ; ð16Þ

where K is a generalized number of domains. Specifically, we define KðsÞ as

KðsÞ ¼ exp �
XK

k¼1

pk log pk

 !

; pk ¼
nk

N
; ð17Þ

such that logKðsÞ is the entropy of s. In particular, this quantity reduces to KðsÞ ¼ K in the

regime where the domain sizes are uniform. The Lagrange multiplier λ(� 0) is a parameter

that controls how strongly the problem prefers parsimonious solutions: with a larger λ, the

solution s� for the optimization problem would tend to have fewer domains. Equivalently, a

larger λ prefers a larger-scale domain solution. Solving at multiple values of λ, therefore, may

reveal the multi-scale domain structure in data.

In parallel to the statistical physics problem of a grand-canonical ensemble, H corresponds to

the effective Hamiltonian of the system. In this view, λ amounts to the negative chemical potential
for adding extra domains to the solution. From the Bayesian viewpoint, on the other hand, our

formulation is equivalent to considering a prior distribution of the form pðsÞ / expð� lKðsÞ=TÞ,
and a posterior distribution pðsjCÞ / pðCjsÞ pðsÞ / expð� HlðsjCÞ=TÞ. The maximum a pos-
teriori inference is equivalent to solving the minimization problem for HlðsjCÞ.

Solving the inference problem

We solve the optimization problem at a fixed value of λ, to find the minimizer s� for HlðsjCÞ.
As the s-space is expected to be high-dimensional and is likely characterized with multiple

local minima, we use simulated annealing [71], in which the sampled distribution is narrowed

down as T is gradually decreased. At each value of T, we use a Markov chain Monte Carlo
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sampling method to approximate the posterior distribution pðsjCÞ / expð� HlðsjCÞ=TÞ. See

S3 Appendix for details.

We repeat the procedure to determine the best domain solutions at each different value of

λ. This yields a family of multi-scale domain solutions, {sλ}. We note that there is no a priori
notion of an optimal λ at this point; instead, certain sλ’s may be more interesting or relevant,

depending on the specific dataset and context. In Results, we applied our method to example

Hi-C datasets, and identified and discussed the existence of such interesting solutions.

Analysis and evaluation of domain solutions

Similarity between two CD solutions. To measure the extent of similarity between two

CD solutions s and s0, we evaluate the Pearson correlation. The binary matrices B and B0 that

represent the two CD solutions, are defined such that the matrix element are all 1’s within the

same CD and 0 otherwise. i.e., ðBÞij ¼ Bij ¼ dsisj . The similarity between B and B0 is quantified

using the Pearson correlation

r ¼
hdBdB0i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hðdBÞ2i hðdB0Þ2i
q ; ð18Þ

where hdBdB0i ¼ hðBij �
�BÞðB0ij � �B 0Þii6¼j, and hðdBÞ2i ¼ hðBij �

�BÞ2ii6¼j. The average h�ii6¼j runs

over all distinct pairs.

Normalized mutual information. We use the mutual information to evaluate how well a

CD solution s captures the visible patterns in the pairwise correlation data. We consider the

binary grouping matrix ðBÞij ¼ Bij ¼ dsi ;sj for the CD solution of interest, and compare it to the

input data matrix (A)ij = Aij. In this study, either log10 M or CO/E was used for A. Treating the

matrix elements a 2 A and b 2 B as two random variables, we construct the joint distribution

pðA;BÞ ¼ hdAij;a
dBij;bii6¼j ð19Þ

where h�ii6¼j is an average over all distinct pairs. The Kronecker delta for the continuous vari-

able a is defined in a discretized fashion: that is, dAij;a
¼ 1 if Aij 2 [a, a + Δa) and 0 otherwise,

where Δa(= [max{Aij} − min{Aij}]/100) is used for discretization into 100 bins. Then we can

calculate the mutual information,

IðA;BÞ ¼
X

a2A

X

b2B

pða; bÞ log
pða; bÞ
pðaÞpðbÞ

� �

; ð20Þ

and the normalized mutual information (nMI),

nMIðA;BÞ ¼
IðA;BÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
HðAÞ � HðBÞ

p ; ð21Þ

where H(X) = −∑x2X p(x) log p(x) is the marginal entropy.

Nestedness of CD solutions. Here we define a measure to quantify the nestedness

between two CD solutions, s (assumed to have smaller domains on average) and s0 (larger

domains). The idea is the following: s is perfectly nested in s0 if, whenever two sites belong to a

same domain in s, they also belong to a same domain in s0. For each domain k 2 s, we consider

the best overlap of this domain k on the other solution s0:

h1ðk! s0Þ ¼ max
k02s0

vk;k0
nk

ð22Þ

PLOS COMPUTATIONAL BIOLOGY Multi-scale discovery of chromatin domains

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008834 March 16, 2021 18 / 27

https://doi.org/10.1371/journal.pcbi.1008834


where vk,k0 is the number of overlapping sites between two domains k 2 s and k0 2 s0, and nk is

the size of domain k. The highest score h1(k! s0) = 1 is obtained when domain k is fully

included in one of the domains in s0. The null hypothesis corresponds to where the domains in

s and s0 are completely uncorrelated, in which case h1 only reflects the overlap “by chance”.

The chance level �h1ðk! s0Þ is calculated by making nk random draws from s0; we averaged

over 100 independent trials. We normalize the score as

ĥ1ðk! s0Þ ¼
h1 �

�h1

1 � �h1

; ð23Þ

such that ĥ1ðk! s0Þ ¼ 0 indicates the chance level, and ĥ1ðk! s0Þ ¼ 1 means a perfect nest-

edness. Finally, we define the nestedness score h(s! s0) for the entire CD solution as a

weighted average:

hðs! s0Þ ¼
X

k2s

ĥ1ðk! s0Þ �
nk

N
: ð24Þ

The observed/expected matrix and its Pearson correlation matrix. The observed/

expected (O/E) matrix was used to account for the genomic distance-dependent contact num-

ber due to random polymer interactions in chromosome [18]. Each pair (i, j) in O/E matrix is

calculated by taking the count number Mij (observed number) and dividing it by average con-

tacts within the same genomic distance d = |i − j| (expected number). Since the expected num-

ber could be noisy, one smooths it out by increasing the window size (see refs. [18, 19] for

further details). In this study, we used the expected number obtained from [19]. The Pearson

correlation matrix of the O/E (CO/E) represents the overall contact pattern through pairwise

correlation coefficients between segments.

Correlation between CTCF signal and domain boundaries. The validity of domain

boundaries, determined from various CD-identification methods including Multi-CD, is

assessed in terms of their correlation with the CTCF signal. Suppose that the CTCF signal at

genomic segment i is given as ϕCTCF(i). Then, we can consider an overlap function between

ϕCTCF(i) and a CD-boundary indicating function ψDB(i), where ψDB(i) = 1 if the i-th segment

is precisely at the domain boundary; ψDB(i) = 0, otherwise. We evaluated a distance-depen-

dent, normalized overlap function χ(d), defined as

wðdÞ ¼
hd�CTCFðiþ dÞcDBðiÞii

hcDBi
; ð25Þ

where δϕCTCF = ϕCTCF − hϕCTCFi. If the domain boundaries determined from Multi-CD is

well correlated with TAD-capturing CTCF signal, a sharply peaked and large amplitude over-

lap function (χ(d)) is expected at d = 0.

Correlation between epigenetic marks and compartments. We calculate the correlation

of our compartment solutions with the epigenetic marks. Given a compartment solution s

with two large domains A and B, we consider two binary vectors q(A) and q(B), where

qðAÞi ¼ þ1 if the i-th segment belongs to compartment A, and q(A) = −1 otherwise. For a set of

epigenetic marks measured across the genome is represented with h, where its component hi
denotes the value at the i-th genomic segment, the correlation between the solutions of
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compartment A and B and the epigenetic marks can be evaluated using the Pearson correla-

tions as:

cA ¼
ðqðAÞ � hÞ
jqðAÞjjhj

; cB ¼
ðqðBÞ � hÞ
jqðBÞjjhj

: ð26Þ

Data acquisition

All data used in the paper were obtained from publicly available repositories.

Hi-C data. We used Hi-C data from [19], available at NCBI GEO database [72] (https://

www.ncbi.nlm.nih.gov/geo/), accession GSE63525. Analysis was performed using the intra-

chromosomal contact matrices files for GSE63525- celltype, where celltype is replaced by one

of the five cell type identifiers (GM12878-primary, HUVEC, NHEK, K562, and KBM7).

Genomics data. Information about genes on the human chromosome was obtained from

the Known Gene table in the UCSC Genome Browser [73], and their annotated regulatory

elements from the GeneHancer [61] interaction table, both accessed through the UCSC

Table Browser [74] (https://genome.ucsc.edu/cgi-bin/hgTables). All data were consistent with

the human genome assembly GRCh37 (hg19). Information about the APBB1IP gene was spe-

cifically obtained from the GeneCards database [75] (https://www.genecards.org).

Biological markers. The domain solutions from Multi-CD were compared with known

biological markers. We obtained these data mostly from the ENCODE project [76]; the NCBI

GEO [72] accession numbers are provided below. We used the enrichment data of the tran-

scriptional repressor CTCF measured in a ChiP-seq assay from GEO accession GSM749704

(narrowpeak file). We binned the CTCF assay at 50-kb resolution, to match the Hi-C format.

If there are multiple signal enrichments in a single bin, we took the average value. Because

each CTCF signal has a finite width, there are occasional cases where a signal ranges across

two bins; in those cases we evenly divided the signal strength into the two bins. The Repli-seq

signals in the six phases G1, S1, S2, S3, S4, and G2 were obtained from GEO accession

GSM923451, and the 11 histone mark signals from accession GSE29611. The Repli-seq and

histone mark signals were averaged over 50-kb windows along the genome to construct the

replication timing profiles. The RNA-seq data for the four cell lines GM12878, HUVEC,

NHEK and K562 were obtained from GEO accession GSE33480. RNA-seq for the cell line

KBM7 were separately obtained from [77] (https://opendata.cemm.at/barlowlab/2015_

Kornienko_et_al/hg19/AK_KBM7_2_WT_SN.F.bw).

Code availability

The Matlab software package and associated documentation are available online (https://

github.com/multi-cd).
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S1 Fig. Distance distributions of segment pairs are described by Gaussian. (A) Gaussian

probability distribution plotting P(rij) with different values of γij (Eq 2). The shaded area in dif-

ferent colors represents the corresponding values of contact probabilities, (Eq 5 at rc = 1) (B)

Distance distributions between one TAD (TAD17) and other TADs on Chr21 in human

IMR90 cells measured with FISH. This figure was adapted from Fig 3A in [21]. (C) Distance

distributions between three FISH probes on the X chromosome of male Drosophila embryos.

The experimental data were digitized from Fig 3B in [42]. Their best fits to Eq 2 are plotted

with solid lines. (D) Distance distributions between five pairs of FISH probes on chr1 in fibro-

blast cells. The experimental data (histograms) were digitized from Fig 4B in [43]. The fits

using Eq 2 are plotted with solid lines. (E) Distance distributions between seven pairs of FISH

probes in the Tsix/Xist region on the X chromosome of mouse ESC. The experimental data

(black lines) were digitized from Fig 2F in [44], and their corresponding fits are shown in red.

(PDF)

S2 Fig. Chromatin domain solutions for chromosomes 4, 10, 11 and 19. Extension of Fig 3.

(A) Relative sizes of chromosomes considered, aligned at the centromeres. The gray shade in

each chromosome indicates the 10-Mb interval for which we show the Hi-C data in the next

panels. (B-E) Hi-C data for the corresponding 10-Mb genomic intervals of (B) chr4, (C)

chr10, (D) chr11, and (E) chr19, for the five different cell lines respectively. All the panels for

chr10 are reprints of Fig 3 in the main text. (F-I) Statistics of the domain solutions for chr4,

chr10, chr11, and chr19. The five cell lines are color coded as indicated at the top of (B). (F)

Mean domain size hni as a function of λ. (G) The index of dispersion Dð¼ s2
n=hniÞ of domain

sizes. (H) The goodness of domain solutions, measured in terms of the normalized mutual

information with respect to Hi-C data (log10 M). (I) The similarity of domain solutions across

the five different cell types, measured by the Pearson correlation between binarized contact

matrices. For each chromosome, arrows indicate the likely TAD scale (highest cell-to-cell simi-

larity) and the likely meta-TAD scale (where the nMI is high and the index of dispersion D
starts to diverge).

(PDF)

S3 Fig. Examples of Multi-CD domain solutions at different scales. Extension of Fig 3.

Shown are the domain solutions obtained from Multi-CD for the five different cell lines

(GM12878, HUVEC, NHEK, K562, KBM7), at (A) λ = 0 and (B) λ = 40.

(PDF)

S4 Fig. Scale-to-scale similarity of domain solutions for different cell lines. Extension of Fig

3. We calculate the similarity between domain solutions at different λ in terms of Pearson cor-

relation. The calculation was performed for chromosome 10 from five different cell lines.

(PDF)

S5 Fig. Link between chromatin organization and gene expression. Extension of Fig 3K

(gene APBB1IP, reproduced in the left panel), with two additional genes SVIL (middle panel)

and TSPAN15 (right panel). Top five rows: Colored blocks indicate the TAD solutions for the

five cell lines, as identified from our method. Colored hairy lines show the RNA-seq signal for

the respective cell lines. Bottom two rows: Black horizontal bar and the gray shade mark the

known position range of the gene. Finally, positions of all known regulatory elements for the

gene are shown, as annotated in the GeneHancer database [61].

(PDF)

S6 Fig. Identification of sub-TAD boundaries at 5-kb resolution. (A) The optimum

cluster size, best describing 5-kb resolution Hi-C map in terms of nMI, is determined at
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hni = 0.35 Mb, which is consistent with the sub-TAD size determined from 50-kb resolution

Hi-C at λ = 0. (B-C) Comparison between Multi-CD solutions at different resolutions of the

input Hi-C data, that point to the robustness of sub-TAD boundaries regardless of Hi-C res-

olution. (B) The best CD solution (corresponding to λ = λ� in panel (A)) for the 5-kb resolu-

tion Hi-C data in the 120-124 Mb region of the genome. (C) Solution for the same genomic

interval from 50-kb Hi-C, determined at λ = 0. The two CD solutions are effectively identi-

cal, which supports our interpretation of sub-TAD as the unit of hierarchical chromosome

organization.

(PDF)

S7 Fig. Comparison of domain solutions from Multi-CD and other methods at specific

scales. Comparison between domain solutions obtained by three popular algorithms (Arrow-

Head, DomainCaller, GaussianHMM) (right column) and those by Multi-CD (left column),

applied to 50-kb resolution Hi-C data. Three subsets from the same Hi-C data (log10 M), with

different magnification (5, 10, and 40 Mb from top to bottom), are given in the middle col-

umn. ArrowHead algorithm [19] was used for identifying the domain structures of sub-TADs,

DomainCaller [22] for TADs, and Gaussian Hidden Markov Model (GaussianHMM) [19] for

compartments. Multi-CD use λ = 0, 10, 90, as the parameter values for identifying sub-TADs,

TADs, and compartments, respectively.

(PDF)

S8 Fig. Comparison of histone marks and compartments. Extension of Fig 6C and 6D,

which make comparison between the CD solutions for A/B-compartments by Multi-CD

and epigenetic marks. The upper part with Repli-Seq signals is a reprint from the main text

figure. The lower part shows histone marks on the corresponding genomic range. Majority

of the histone marks are correlated with the A-compartment. The values of Pearson correla-

tion between Repli-Seq signal or histone marks and A/B-compartment are given on the

right.

(PDF)

S9 Fig. Comparison to existing algorithms for identifying domains at multiple scales. (A,

B) Normalized mutual information between domain solutions at multiple scales, from Multi-

CD, Armatus [34] and TADtree [33] respectively, and the log10 of KR-normalized Hi-C

matrix for chr10 of the cell line GM12878. The scale of a domain solution s is measured in two

ways, in terms of (A) the effective number of clusters, KðsÞ ¼ expð�
PK

k¼1
ðnk=NÞ logðnk=NÞÞ,

where nk ¼
PN

i¼1
dsi ;k is the domain size; and (B) the total area of 1’s in the corresponding

binary contact matrix, ðareaÞ ¼
PN

i;j¼1
Bij where Bij ¼ dsi ;sj . All domain solutions from TADtree

and Armatus were obtained using the respective default parameter settings. (C-F) Visual com-

parison of domains found by (C, D) TADtree and Multi-CD, and (E, F) Armatus and Multi-

CD, at matching scales in terms of the average domain size. Domain solutions are shown in

the upper triangle, colored by red (intra-domain) and white (extra-domain) for effective visu-

alization. The lower triangle plots the corresponding subset of the Hi-C data (KR-normalized

and in log10). Refer to the original papers [33, 34] for the definitions of the respective control

parameters α (TADtree) and γ (Armatus).

(PDF)

Acknowledgments

We thank Roger Oria Fernandez for feedback on the code. We thank the Center for Advanced

Computation in KIAS for providing computing resources.

PLOS COMPUTATIONAL BIOLOGY Multi-scale discovery of chromatin domains

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008834 March 16, 2021 22 / 27

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008834.s010
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008834.s011
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008834.s012
https://doi.org/10.1371/journal.pcbi.1008834


Author Contributions

Conceptualization: Ji Hyun Bak, Min Hyeok Kim, Changbong Hyeon.

Data curation: Ji Hyun Bak.

Formal analysis: Ji Hyun Bak, Min Hyeok Kim.

Funding acquisition: Changbong Hyeon.

Investigation: Ji Hyun Bak, Min Hyeok Kim, Lei Liu, Changbong Hyeon.

Methodology: Ji Hyun Bak, Min Hyeok Kim, Lei Liu, Changbong Hyeon.

Project administration: Changbong Hyeon.

Resources: Changbong Hyeon.

Software: Ji Hyun Bak, Min Hyeok Kim.

Supervision: Changbong Hyeon.

Validation: Ji Hyun Bak, Min Hyeok Kim.

Visualization: Ji Hyun Bak, Min Hyeok Kim.

Writing – original draft: Ji Hyun Bak, Min Hyeok Kim, Lei Liu, Changbong Hyeon.

Writing – review & editing: Ji Hyun Bak, Changbong Hyeon.

References
1. Misteli T. Beyond the sequence: cellular organization of genome function. Cell. 2007; 128(4):787–800.

https://doi.org/10.1016/j.cell.2007.01.028 PMID: 17320514

2. Davies JO, Oudelaar AM, Higgs DR, Hughes JR. How best to identify chromosomal interactions: a com-

parison of approaches. Nat Methods. 2017; 14(2):125. https://doi.org/10.1038/nmeth.4146 PMID:

28139673

3. Dekker J, Rippe K, Dekker M, Kleckner N. Capturing chromosome conformation. Science. 2002;

295(5558):1306–1311. https://doi.org/10.1126/science.1067799 PMID: 11847345

4. Bickmore WA, van Steensel B. Genome architecture: domain organization of interphase chromosomes.

Cell. 2013; 152(6):1270–1284. https://doi.org/10.1016/j.cell.2013.02.001 PMID: 23498936

5. Franke M, Ibrahim DM, Andrey G, Schwarzer W, Heinrich V, Schöpflin R, et al. Formation of new chro-
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