
pathogens

Article

Microneme Protein 6 Is Involved in Invasion and Egress by
Neospora caninum

Xianmei Wang †, Di Tang †, Fei Wang, Gaowei Jin, Lifang Wang, Qun Liu and Jing Liu *

����������
�������

Citation: Wang, X.; Tang, D.; Wang,

F.; Jin, G.; Wang, L.; Liu, Q.; Liu, J.

Microneme Protein 6 Is Involved in

Invasion and Egress by Neospora

caninum. Pathogens 2021, 10, 201.

https://doi.org/10.3390/

pathogens10020201

Academic Editor: Stefania Perrucci

Received: 4 January 2021

Accepted: 10 February 2021

Published: 13 February 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University,
Beijing 100193, China; b20193050458@cau.edu.cn (X.W.); s20153050561@cau.edu.cn (D.T.);
s20173050647@cau.edu.cn (F.W.); jingaowei2015@cau.edu.cn (G.J.); wanglifang@cau.edu.cn (L.W.);
qunliu@cau.edu.cn (Q.L.)
* Correspondence: liujingvet@cau.edu.cn
† Xianmei Wang and Di Tang contributed equally to this work.

Abstract: Background: Neospora caninum, is the etiological agent of neosporosis, an infection that
causes abortions in cattle and nervous system dysfunction in dogs. Invasion and egress are the key
steps of the pathogenesis of N. caninum infection. Microneme proteins (MICs) play important roles
in the recognition, adhesion, and invasion of host cells in other apicomplexan parasites. However,
some MICs and their functions in N. caninum infection have rarely been reported. Methods: The
homologous recombination strategy was used to investigate the function of MIC6 in N. caninum
infection. Results: ∆NcMIC6 showed a smaller plaque size and weakened capacities of invasion
and egress than Nc1. Transcription levels of the egress-related genes CDPK1, PLP1, and AMA1
of ∆NcMIC6 were downregulated. Due to the lack of NcMIC6, virulence of the pathogen in the
infected mouse was weakened. The subcellular localization of NcMIC1 and NcMIC4 in ∆NcMIC6,
however, did not change. Nevertheless, the transcription levels of MIC1 and MIC4 in ∆NcMIC6 were
downregulated, and the expression and secretion of MIC1 and MIC4 in ∆NcMIC6 were reduced
compared with that in Nc1. Furthermore, the absence of NcMIC6 weakened the virulence in mice and
lower parasite load detected in mice brains. Conclusions: NcMIC6 is involved in host cell invasion
and egress in N. caninum and may work synergistically with other MICs to regulate the virulence
of the pathogen. These data lay a foundation for further research into the function and application
of NcMIC6.
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1. Introduction

Neospora caninum is an apicomplexan parasite that causes neuromuscular disease
in dogs and reproductive disorders in cattle, impacting the global livestock industry
greatly [1]. The ability of apicomplexan parasites to invade and egress from the host
cells in a regulated manner is essential for the establishment of infection. As an obligate
intracellular parasite, N. caninum actively invades the host cells and resides and replicates
safely within vacuoles, which are surrounded by the parasitophorous vacuole membrane
(PVM) [2]. This apicomplexan parasite shares a unique mode of substrate-dependent
motility, which is crucial for invasion and egress. Exocytosis of the micronemes, coupled
with the activation of the actomyosin system, is required for egress, which is the part of the
parasitic lifecycle involving movement and subsequent invasion of a new host cell [3,4].
Adhesins required for egress are typically termed microneme proteins (MICs) and exist as
complexes that are discharged at the apical tip of the parasite [5].

There are a few reports about the microneme proteins of N. caninum. NcMIC2 may
play a role in the attachment and invasion of host cells by N. caninum, and its secretion
is regulated by calcium [6]. Considering that anti-NcMIC8 serum effectively inhibits
in vitro host cell invasion by tachyzoites, NcMIC8 may be involved in the invasion of
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host cells by N. caninum and may interact and possibly form a complex with NcMIC3
during transportation [7]. Apical membrane antigen 1 (AMA1) is an antigen that cross-
reacts with N. caninum and Toxoplasma gondii, and its antibody inhibits host cell invasion
by both these parasites, implying that the process of invasion involving NcAMA1 may
be similar to that involving TgAMA1 [8]. T. gondii and N. caninum tachyzoites exhibit
different properties of adhesion to the host cell surface glycosaminoglycans, suggesting
that interactions of the host cell surface proteoglycans with N. caninum differ from those
with T. gondii; furthermore, NcMIC3 may also be involved in this process [9,10].

NcMIC1 reportedly binds to the sulfated host cell surface glycosaminoglycans [11]
and NcMIC4 exhibits unique lactose binding with chondroitin sulfate A glycosaminogly-
cans [12]. NcMIC6 was identified in our previous studies [13]. Its secretion depends on the
intracellular calcium concentrations, and it interacts with the soluble microneme proteins
NcMIC1 and NcMIC4. During invasion, NcMIC6 translocates from the apical tip of a
tachyzoite to its posterior region, and it may play roles in parasite motility and host cell
invasion. In the present study, NcMIC6 was entirely removed from the parent strain to
study its role in N. caninum infection.

2. Results
2.1. Successful Construction of an NcMIC6-Knockout Strain

To understand the role of NcMIC6 in N. caninum, we disrupted the endogenous
genetic locus using double homologous recombination. We used the complete knockout
plasmid pTCR-CD, which included genes of chloramphenicol acetyl transferase (CAT), and
the negatively-selected bacterial cytosine deaminase (CD). The plasmid was modified to
replace NcMIC6 with the CAT gene (Figure 1A). Following the transfection of the plasmid
into Nc1, a stable transgenic line, on chloramphenicol and 5-flucytosine, was selected. The
clonal lines were then screened for successful disruption using PCR, meanwhile primers
Np6 and Np21 were used to amplify Neospora caninum-specific Nc5 gene (Figure 1B). To
confirm NcMIC6 deficiency in the transgenic parasites, we analyzed NcMIC6 expression
using anti-NcMIC6 antibodies. No expression of NcMIC6 was detected in the knockout
strain in Western blotting (Figure 1C) and immunofluorescence assays (IFA) (Figure 1D),
indicating the complete deletion of NcMIC6.

2.2. NcMIC6 Was Involved in the Invasion by N. caninum

To investigate the function of NcMIC6, we first analyzed the effect of NcMIC6-
knockout on the efficient completion of the asexual lytic lifecycle of the parasite. To monitor
NcMIC6′s role overall lytic cycle, we performed a plaque assay by adding 500 freshly
purified ∆NcMIC6 and wild-type parasites to fresh Human foreskin fibroblast (HFFs)
monolayers. After culturing for nine days, the HFFs were stained using crystal violet.
∆NcMIC6 had a smaller plaque size than Nc1 (Figure 2A,B). In order to detect the prolifer-
ation ability of N. caninum in the absence of MIC6, we analyzed the number of tachyzoites
in each parasitophorous vacuole (PV) (i.e., two, four, or eight tachyzoites) under a fluo-
rescence magnifying lens 24 h after the invasion of host cells. Results of the proliferation
assay showed similar replication rates of Nc1 and ∆NcMIC6 (Figure 2C), indicating that
NcMIC6 did not affect intracellular parasitic proliferation. The results of the invasion assay
clearly demonstrated a decreased ability of the knockout tachyzoites to invade the host
cells (Figure 2D). These results suggested that NcMIC6 was involved in invasion during
the lytic cycle.

2.3. Absence of NcMIC6 Reduced the Expression and Secretion of NcMIC1 and NcMIC4

NcMIC6 reportedly formed a complex with two other soluble microneme proteins,
NcMIC1 and NcMIC4 [13]. To explore whether the deletion of NcMIC6 affected NcMIC1
and NcMIC4, we used separate assays to test their subcellular localization, expression, and
secretion. Results of IFA showed that NcMIC1 and NcMIC4 localized to the micronemes
in the ∆NcMIC6 strain (Figure 3A). Thus, NcMIC6 was not essential for the correct sub-
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cellular localization of NcMIC1 and NcMIC4. qPCR revealed that, compared to Nc1, the
transcription levels of NcMIC1 and NcMIC4 in the ∆NcMIC6 strain were down-regulated
(Figure 3B). Western blotting was used to evaluate the secretion (in the supernatant) and
expression (in the pellet) of NcMIC1 and NcMIC4. Compared with Nc1, ∆NcMIC6 exhib-
ited reduced secretion and expression of NcMIC1 and NcMIC4 (Figure 3C). The increased
secretion of NcMIC8 in ∆NcMIC6 may be due to a compensatory mechanism for correct
invasion by N. caninum.

Pathogens 2021, 10, 201 2 of 13 
 

host cell invasion by tachyzoites, NcMIC8 may be involved in the invasion of host cells by 
N. caninum and may interact and possibly form a complex with NcMIC3 during transpor-
tation [7]. Apical membrane antigen 1 (AMA1) is an antigen that cross-reacts with N. cani-
num and Toxoplasma gondii, and its antibody inhibits host cell invasion by both these par-
asites, implying that the process of invasion involving NcAMA1 may be similar to that 
involving TgAMA1 [8]. T. gondii and N. caninum tachyzoites exhibit different properties 
of adhesion to the host cell surface glycosaminoglycans, suggesting that interactions of 
the host cell surface proteoglycans with N. caninum differ from those with T. gondii; fur-
thermore, NcMIC3 may also be involved in this process [9,10]. 

NcMIC1 reportedly binds to the sulfated host cell surface glycosaminoglycans [11] 
and NcMIC4 exhibits unique lactose binding with chondroitin sulfate A glycosaminogly-
cans [12]. NcMIC6 was identified in our previous studies [13]. Its secretion depends on 
the intracellular calcium concentrations, and it interacts with the soluble microneme pro-
teins NcMIC1 and NcMIC4. During invasion, NcMIC6 translocates from the apical tip of 
a tachyzoite to its posterior region, and it may play roles in parasite motility and host cell 
invasion. In the present study, NcMIC6 was entirely removed from the parent strain to 
study its role in N. caninum infection. 

2. Results 
2.1. Successful Construction of An NcMIC6-Knockout Strain 

To understand the role of NcMIC6 in N. caninum, we disrupted the endogenous ge-
netic locus using double homologous recombination. We used the complete knockout 
plasmid pTCR-CD, which included genes of chloramphenicol acetyl transferase (CAT), 
and the negatively-selected bacterial cytosine deaminase (CD). The plasmid was modified 
to replace NcMIC6 with the CAT gene (Figure 1A). Following the transfection of the plas-
mid into Nc1, a stable transgenic line, on chloramphenicol and 5-flucytosine, was selected. 
The clonal lines were then screened for successful disruption using PCR, meanwhile pri-
mers Np6 and Np21 were used to amplify Neospora caninum-specific Nc5 gene. (Figure 
1B). To confirm NcMIC6 deficiency in the transgenic parasites, we analyzed NcMIC6 ex-
pression using anti-NcMIC6 antibodies. No expression of NcMIC6 was detected in the 
knockout strain in Western blotting (Figure 1C) and immunofluorescence assays (IFA) 
(Figure 1D), indicating the complete deletion of NcMIC6. 

 
Figure 1. Generation and identification of the ΔNcMIC6 strain. (A) Schematic representation of the experimental design 
of the NcMIC6-knockout strain is shown. A knockout vector (pTCR–CD–MIC6) was constructed to target the complete 

Figure 1. Generation and identification of the ∆NcMIC6 strain. (A) Schematic representation of the experimental design
of the NcMIC6-knockout strain is shown. A knockout vector (pTCR–CD–MIC6) was constructed to target the complete
NcMIC6. CAT, Chloramphenicol acetyltransferase; CD, bacterial cytosine deaminase. (B) Genomic PCR identification of
the ∆NcMIC6 strain was performed. P5, P6, P7, and P8 were used to amplify different regions of NcMIC6. Np6 and Np21
were used to amplify N. caninum-specific Nc5. The position of the primers is shown in the pattern diagram. (C) Western
blotting was performed on total extracts from ∆NcMIC6 and Nc1 with mouse anti-NcMIC6 antibody. NcActin was used as
the control. (D) Immunofluorescence assay (IFA) analysis of the expression of NcMIC6 was performed. The parasites were
stained with mouse anti-NcMIC6 (green), rabbit anti-NcSRS2 (red), and the nuclear DNA was stained with Hoechst (blue).
Each was performed in three independent experiments. Scale-bars, 5 µm.

2.4. NcMIC6 Was Engaged in Egress by N. caninum

Most insights on the egress by coccidian parasites was provided by inducing egress
with treatments that directly or indirectly elevated the parasitic cytosolic Ca2+ [14]. To
determine the efficiency of ionophore-induced egress, we treated ∆NcMIC6 as well as Nc1
with A23187 for different durations. Apparently, ∆NcMIC6, compared to Nc1, showed
a strong delay in egress after treatment for different durations (Figure 4A). To identify
the pathway that was influenced by the absence of NcMIC6, the transcription levels of
several crucial molecules related to egress, including the perforin-like protein 1 (PLP1),
apical membrane antigen 1 (AMA1), rhoptry neck 2 protein (RON2), and Ca2+-dependent
protein kinase 1 (CDPK1), were measured. Analysis using qRT-PCR revealed that the
transcription levels of NcCDPK1, NcPLP1, and NcAMA1 proteins of ∆NcMIC6, compared
with those of Nc1, were significantly reduced (Figure 4B). However, NcRON2 was increased
(Figure 4B), and this may have been to ensure the correct formation of moving junctions.
The generation of NcRON2 by N. caninum increased following the decrease in AMA1.
Considering that the deletion of MIC6 affected the capability of the parasite cells to egress
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in vitro, NcMIC6 was involved in egress during the lytic cycle, and it might be associated
with different pathways.
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Figure 2. Comparison of the phenotypes of Nc1 and ∆NcMIC6. (A) These strains were grown on the Human foreskin
fibroblast (HFF) cells for nine days before fixation and staining with crystal violet. Plaque assay showed that ∆NcMIC6 had
a smaller plaque size than Nc1; scale-bar, 200 µm. (B) Statistics suggested that the plaque area of ∆NcMIC6 (Monoclonal
-6# and -9#) was significantly smaller than that of Nc1. Data are presented as the mean ± SD from three independent
experiments, each performed in triplicate. Plaque size was measured with the Adobe Photoshop CC2018 (Adobe, San
Jose, CA, USA) using the Pixel plugin. Data were analyzed with one-way ANOVA with a Tukey test, ns = no significant
difference, ** p < 0.01. (C) Intercellular replication assays showed no significant differences in cell replication of Nc1 and
∆NcMIC6. Data were analyzed with the Chi-square test, ns = no significant difference. (D) Invasion assay demonstrated
that the ability of cell invasion was obviously reduced after the deletion of NcMIC6. Data are presented as the mean ± SD
from three independent experiments, each performed in triplicate. Data were analyzed with One-way ANOVA with Tukey,
ns = no significant difference, ** p < 0.01.

2.5. The Absence of NcMIC6 Weakened the Virulence in Mice

To evaluate the contribution of NcMIC6 to parasite virulence, we measured the survival
time of mice infected with ∆NcMIC6 or its parental strain. Mice infected with Nc1 showed
different survival rates. The survival rates of the Nc1 low-dose (2 × 106 tachyzoites), middle-
dose (4 × 106 tachyzoites), and high-dose (8 × 106 tachyzoites) groups were 33.3%, 16.7%,
and 16.7%, respectively. Surprisingly, mice infected with any dose of ∆NcMIC6 (low-dose
(2 × 106 tachyzoites), middle-dose (4× 106 tachyzoites), and high-dose (8 × 106 tachyzoites))
continued to live during the 30-day observation period, displaying a 100% survival rate
(Figure 5A). Furthermore, compared with that of the Nc1 group (2 × 106 parasites), the
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cerebral parasite load of the ∆NcMIC6 group (2 × 106 parasites) was significantly decreased
(Figure 5B).
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NcActin was used as a loading control. Each was performed in three independent experiments. 

Figure 3. Analysis of NcMIC1 and NcMIC4 in the ∆NcMIC6 strain. (A) IFA analysis of the subcellular localization of
NcMIC1 and NcMIC4 in ∆NcMIC6 strain was performed. The parasites were stained with mouse anti-NcMIC1, mouse
anti-NcMIC4, and rabbit anti-NcSRS2. The results of IFA showed that NcMIC1 and NcMIC4 continued to localize to the
micronemes in the ∆NcMIC6 strain, as they did in the Nc1 strain. Scale-bar: 5 µm. (B) qPCR revealed that the transcription
level of NcMIC1 and NcMIC4 in the ∆NcMIC6 or Nc1 strain. Data were analyzed with one-way ANOVA with a Tukey test,
* p < 0.05. (C) Western blotting of the supernatant and lysates was performed to form the Nc1 and ∆NcMIC6 strains using
mouse anti-NcMIC1, mouse anti-NcMIC4, mouse anti-actin, and mouse anti-NcMIC8. A slight decrease in the expression
and secretion of NcMIC1 and NcMIC4 protein and a slight increase in NcMIC8 were apparent in ∆NcMIC6. NcActin was
used as a loading control. Each was performed in three independent experiments.
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Figure 4. NcMIC6 affects the cellular capability of N. caninum to egress. NcMIC6 is required for the calcium ionophore-
induced quick egress from the host cells. (A) ∆NcMIC6 and wild-type parasite vacuoles were stimulated by the calcium
ionophore A23187 for 2–10 min, and the percentage of the egressed vacuoles was determined by IFA. The percentage of the
egressed vacuoles markedly decreased in the ∆NcMIC6 strain. (B) RT-PCR measured the transcription levels of several
crucial molecules related to invasion or egress, including PLP1, AMA1, RON2, and CDPK1. Loss of NcMIC6 significantly
downregulated the transcription levels of PLP1, AMA1, and CDPK1. Data are presented as the mean ± SD from three
independent experiments, each performed in triplicate. Data were analyzed with one-way ANOVA with a Tukey test,
* p < 0.05 and ** p < 0.01.
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3. Discussion

Micronemes are apical specialized organelles that exocytose their contents in a tightly
regulated environment, and are critical for egress, gliding, and invasion [15], which seem
to be conserved among the apicomplexan parasites. The handling of the dynamic invasion
of host cells is preceded by the initial contact of the apical tip with the host cell surface,
coinciding with the discharge of micronemes. Exocytosis of the micronemes, which are
conveyed over the surface of the parasites, then occurs as part of the interaction between
the parasites and host cells [15]. Additionally, microneme proteins are fundamental for the
parasites’ gliding motility, which powers movement over biological obstructions and for
dynamic entry into the host cell and egress from the infected cells [16]. Several MICs in N.
caninum have been identified. Previous studies showed that NcMIC6 is a transmembrane
microneme protein that localized to the micronemes and translocated from the apical tip of
the tachyzoite to its posterior end during invasion into the host cells. This protein possesses
three EGF domains, and its secretion is regulated by Ca2+, which may be involved in
mediating adhesive properties [13]. In our study, complete knockout of MIC6 in N. caninum
resulted in impairment in the invasion and egress abilities, indicating that NcMIC6 was an
important factor in the N. caninum lytic cycle, and was involved in the progressive entry of
the parasites into the host cells and egress from the infected cells.

Earlier studies also showed that NcMIC6 interacted with NcMIC1 and NcMIC4,
forming a complex [13]. In T. gondii, the TgMIC1–MIC4–MIC6 complex was the first to
be identified and was shown to be critical in invasion [17]. TgMIC1 and TgMIC4 bind
to host cells, and MIC6, along with adhesins, establishes a bridge between the host cells
and parasite during invasion [18]. The third EGF-like domain (EGF-3) of TgMIC6 plays
a role in escorting two dissolvable proteins MIC1 and MIC4 to the micronemes. TgMIC1
and TgMIC4 are mistargeted in ∆TgMIC6 and accumulate in the dense granules and PVs.
Unlike those in T. gondii, NcMIC1 and NcMIC4 in N. caninum continued to localize to the
micronemes in the ∆NcMIC6 strain (Figure 4A). Thus, NcMIC6 was not essential for the
correct subcellular localization of NcMIC1 and NcMIC4. This suggested a difference in
the functional mechanism of invasion by N. caninum and T. gondii. It was worth noting
that we found that the absence of NcMIC6 decreased the expression and secretion of
NcMIC1 and NcMIC4, illustrating that MIC6 influenced the complex MIC1-4-6, and was
consistent with the emergence and maturation of both MIC1 and MIC4. Decreased MIC1
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and MIC4 in the ∆NcMIC6 strain might inhibit binding to the host cells, thereby weakening
its invasion capacity.

Insights on parasitic egress in apicomplexans, except Plasmodium and T. gondii, have
rarely been reported. Dong et al. (2011) found that a premature egression of the sporozoites
from the Eimeria tenella-infected primary chicken kidney cells or chicken peripheral blood
mononuclear cells occurred when the cells were co-cultured with spleen lymphocytes from
the E. tenella-infected chickens in vitro [19]. Mossaad et al. (2015) showed that calcium
ions were involved in the egress of Babesia bovis merozoites from bovine erythrocytes [20].
David, Elliott and Clark (2003) reported that a nonapoptotic death of the host cells was
induced on egress of C. parvum from the infected cells [21].

It is evident that the egress of an intracellular parasite from the host cell is regulated
by cyclic nucleotides, phosphatidic acid (PA), and the Ca2+ signaling pathway [22]. Indi-
vidual pathways are tuned to different environmental cues, and multiple pathways may
communicate and converge [23]. In the absence of an immune response, parasite growth
triggers a breach in the host cell plasma membrane, leading to an efflux of K ionic cues
that stimulate parasitic motility. In other circumstances, parasite growth depletes essential
host cell resources, and egress requires the secretion of a microneme and an activated
actinomyosin machinery [24]. The increase in the intracellular Ca2+ by ionophores induces
gliding motility and a conoid extrusion [25,26]. Rapidly-dividing N. caninum tachyzoites
use endodyogeny, a binary replication process, which implicates a single round of DNA
replication followed by nuclear mitosis, cytokinesis, and the concomitant assembly and
budding of two daughter cells within the mother cell [27,28]. Our data showed that the
disruption of NcMIC6 delayed ionophore-induced egress, indicating that the ability of the
parasite to egress was weakened. To investigate which pathway was influenced by the
absence of NcMIC6, the transcription level of several crucial molecules related to invasion
or egress, including PLP1, AMA1, RON2, and CDPK1, were measured. These molecules
are conserved in apicomplexans, in which PLP1 ensures lysis of the PVM and host PM [29].
AMA1 forms moving junctions by interacting with the RON2 protein and transducing the
force generated by the parasite motor during internalization [30]. CDPK1 is required for the
Ca2+-regulated microneme exocytosis and assembly of the actomyosin system; this controls
motility, invasion, and egress from the host cells [31–33]. In our study, the transcription
levels of NcCDPK1, NcPLP1, and NcAMA1 in the∆NcMIC6 strain decreased significantly
compared to those in Nc1 (Figure 4B), while NcRON2 was increased (Figure 4B). Consider-
ing that AMA–RON pairs reflect the molecular plasticity at the disposal of Apicomplexa to
compensate for the dysfunction of the core invasion machinery in T. gondii [34], NcRON2
may be increased to compensate for AMA1 dysfunction to ensure the correct formation of
the moving junctions. The data showed that NcMIC6 might be associated with different
pathways and might eventually affect the capability of the parasite to egress.

Thus, prevention of invasion and egress eventually decreases the virulence of ∆NcMIC6.
In mice, decrease in the invasion ability probably prolonged the extracellular time and,
hence, it was easier for the host immune system to eliminate the parasites. Meanwhile, the
weakened capacity to egress might make it difficult for the parasite to transfer itself among
different tissues. What is more, there was much lower parasite load detected in mice brains
infected with ∆NcMIC6. These data lay a foundation for further research into the function
and application of NcMIC6.

4. Materials and Methods
4.1. Host Cells and N. caninum Culture

Human foreskin fibroblasts (HFFs) or the African green monkey kidney cells (Vero)
were cultured in Dulbecco’s modified Eagle’s medium (DMEM) containing L-glutamine
supplemented with 16% or 8% fetal bovine serum (FBS). The Nc1 and NcMIC6-knockout
strains were cultured in DMEM supplemented with 2% FBS, penicillin (50 U/mL), and
streptomycin (50 µg/mL), and the medium was incubated at 37 ◦C with 5% CO2 in a
humidified incubator.
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4.2. Generation of the NcMIC6-Knockout Strain

To investigate the function of MIC6 in N. caninum infection, we used the homologous
recombination strategy to generate the NcMIC6-knockout strain. The parental Nc1 strain
was used to generate the knockout strain according to a previously described method [35].
The primer sequences used in this study are listed in Supplementary Table S1. Briefly,
approximately 1800 bp of the 5′-flanking (P1/P2) and 3′-flanking (P3/P4) sequences of
NcMIC6 from the Nc1 genome were amplified. These sequences were flanked with ApaI
and XhoI, and EcoRV and SpeI, respectively, and then cloned into the pTCR–CD vector. The
knockout plasmid was named pTCR–CD NcMIC6 KO, which included the CAT (chloram-
phenicol resistance), and CD (bacterial cytosine deaminase, N. caninum negative-selected
marker gene) genes. We used the plasmid pTCR–CD NcMIC6 KO as a template to PCR
amplify linearized pTCR–CAT–NcMIC6 KO, 1 × 107 Nc1 tachyzoites were used to electro-
porate with 10 µg PCR amplicon. At 24 h after electroporation and recovery, we began drug
selection for the chloramphenicol (20 µM). Passages were repeated until the drug-resistant
pool became stable (it is usually 5–6 passages until the culture stabilizes). Parasite cloning
was screened by limiting dilution and then verified using PCR and Western blotting.

4.3. PCR

To screen for the NcMIC6-knockout strain (∆NcMIC6), we outlined two pairs of
primers, based on the NcMIC6 (NCLIV_061760)-coding sequence, for the appropriate
amplification of the gene from different clones. P5/P6 and P7/P8 were the preliminary
sequences. Nc5 served as an internal reference for the primer match Np6/Np21. The PCR
conditions were as follows: 95 ◦C for 5 min, 30 cycles at 95 ◦C for 30 s, 56 ◦C for 30 s, 72 ◦C
for 1 min, and 72 ◦C for 10 min. The PCR products were then subjected to electrophoresis
to visualize the bands.

4.4. Western Blotting

Parasites were gathered and purified by filtration through a 5-µm filter, collected
by centrifugation at 1400× g for 10 min, and washed in phosphate-buffered saline (PBS).
Freshly separated parasites were then lysed in the RIPA buffer (50 mM Tris pH 7.4, 150 mM
NaCl, 1% Triton X-100, 1% sodium deoxycholate, 0.1% SDS; Beyotime, Shanghai, China)
containing the protease inhibitor PMSF (Phenylmethanesulfonyl fluoride, Beyotime, Shang-
hai, China); next, 7–10 µg of the lysate was utilized for SDS-PAGE (12% w/v) and then
transferred onto polyvinylidene fluoride (PVDF) membranes (Millipore, Burlington, MA,
USA). The membranes were blocked with 5% (w/v) skim milk in PBS. Then, the membranes
were incubated at 37 ◦C for 1 h with the primary antibodies in this study which were mouse
anti-NcMIC1, anti-NcMIC4, and anti-NcMIC6 antibody (National Animal Protozoa Labo-
ratory, China Agricultural University, 1:500), rabbit anti-N. caninum F-actin subunit beta
(Ncactin, National Animal Protozoa Laboratory, China Agricultural University) (1:5000).
The secondary antibodies were goat anti-mouse (Sigma, Aldrich, Saint Louis, MO, USA,
1:5000) or anti-rabbit IgG (H + L) horseradish peroxidase (Sigma, Aldrich, Saint Louis,
MO, USA, 1:10000). Finally, chemiluminescence reagents (CoWin Biotech Co. Ltd., Beijing,
China) were used to visualize reactive bands.

4.5. Immunofluorescence Assay

Immunofluorescence assays (IFAs) were performed according to a method described
previously [36]. Parasites were seeded onto HFFs that were already arranged on glass
coverslips in 12-well plates. Infected cells were incubated at 37 ◦C with 5% CO2 for 24 h,
fixed for 30 min in 4% formaldehyde, permeabilized with 0.25% Triton X-100 for 15 min,
and then blocked with 3% bovine serum albumin (BSA) for 30 min. Subsequently, the
cells were incubated with mouse anti-rNcMIC6 polyclonal antibody [13] stored in our
laboratory, diluted to a 1:50 ratio at 37 ◦C for 1 h and then with, FITC-conjugated goat-anti
mouse IgG (H + L) (Sigma, Aldrich, Saint Louis, MO, USA), diluted to a 1:100 ratio with
3% BSA at 37 ◦C for 1 h. Nuclear DNA was stained with Hoechst33258 (Sigma, Aldrich,
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Saint Louis, MO, USA) for 5 min. The coverslips were observed, and images were obtained
using a Leica confocal microscope system (Leica, TCS SP52, Wetzlar, Germany). Rabbit anti-
NcSRS2 polyclonal antibody (preserved in our lab) was used to stain the tachyzoites. The
brightness and contrast of the images were adjusted using the LAS AF lite 2.2.0 software,
and the images were exported from this software to analyze the NcMIC6 knockout in
intracellular parasites.

4.6. Plaque Assay

Plaque assay was performed on the HFFs cultured in six-well plates (Corning costar,
Cambridge, CA, USA) according to a method described previously [36]. Five hundred
freshly collected parasites were seeded onto the HFF monolayers and incubated at 37 ◦C
with 5% CO2 for nine days. After nine days, the medium was removed, and the cells were
washed three to five times with PBS. The cell monolayers were fixed with 4% formaldehyde
for 10 min, stained with 0.2% crystal violet dye for 30 min, washed with deionized water,
and visualized by microscopy (Olympus Co., Tokyo, Japan). The six-well plates were
scanned under a Canon digital scanner (Model: F917500, Canon, Tokyo, Japan). At least
50 plaques of each strain were chosen arbitrarily, the plaque range was counted utilizing
Pixel within the Photoshop C6S program (Adobe, San Jose, CA, USA), and data from three
independent tests were compiled.

4.7. Proliferation Assay

Freshly separated parasites (1 × 106) were inoculated onto the HFF monolayers in
12-well plates (Corning costar, USA). After 30 min, extracellular parasites were removed by
washing three to five times with PBS. After incubation for 24 h, the infected cells were fixed
with 4% formaldehyde, and the parasites were stained using rabbit anti-NcSRS2-positive
serum following the IFA protocol. The proliferation stages were analyzed by checking the
number of tachyzoites in each parasitophorous vacuole (PV) (i.e., 2, 4, or 8 tachyzoites)
under a fluorescence magnifying lens; approximately 100 PVs were observed for each
strain, as assessed via three independent tests.

4.8. Invasion Assay

Freshly isolated parasites (1 × 106) were harvested and seeded onto the HFF mono-
layers in 12-well plates. After 30 min, the extracellular parasites were removed by washing
three to five times with PBS, and the culture plate was then incubated at 37 ◦C for 24 h
with 5% CO2. The medium was removed, and the cells were fixed with 4% formaldehyde.
To observe parasite invasion and analyze the invasion proportion, IFA was performed
following a method described above. Counting was performed under the fluorescence
microscope, and data from three independent tests, each performed in triplicate, were
compiled. The proportion of the number of infected cells to the total number of cells in one
field of view was calculated.

4.9. Secretion Assay

The secretion assay was performed using a modified method [37]. Briefly, purified
tachyzoites (2 × 108) of Nc1 or ∆NcMIC6 suspended in Hank’s balanced salt solution
(HBSS) (100 µL) were transferred to a microfuge tube, 100% ethanol (1 µL) was added,
and the mixture was incubated at 37 ◦C in a water bath for 10 min. After removal of the
parasite by centrifugation (1300× g, 10 min, 4 ◦C), the supernatants were processed by
SDS-PAGE followed by Western blotting. Meanwhile, NcMIC8 antibody [7] used as a
noncomplex microneme protein control and an actin antibody (Ncactin, National Animal
Protozoa Laboratory, China Agricultural University) used as the internal control to exclude
inadvertent tachyzoite lysis.
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4.10. Egress Assay

To test the parasites for induced egress, a method similar to that performed for T.
gondii was performed [38]. Freshly isolated parasites (1 × 105) were harvested and seeded
onto the HFF monolayers in 12-well plates. After incubation at 37 ◦C for 30 min, the
extracellular tachyzoites were removed by washing three to five times with PBS, and the
medium was then incubated again at 37 ◦C with 5% CO2. After 30 h of growth, the parasites
were incubated at room temperature in serum-free DMEM containing A23187 calcium
ionophore (5 µM) for 2, 3, 4, 6, 8, or 10 min. The cells were then fixed and stained with the
NcSRS2 antibody using IFA, as previously described. A minimum of 100 vacuoles were
counted in five randomly chosen fields of view of each well, and the proportion of the
egressed versus the non-egressed vacuoles was calculated by counting 100 vacuoles in
triplicate measurements from three independent biological replicates.

4.11. QRT-PCR

Total RNA was extracted from tachyzoites (2 × 107) of each strain using the TRIzol
reagent (Invitrogen, Carlsbad, CA, USA). cDNA was synthesized using the EasyScript First-
Strand cDNA Synthesis SuperMix kit (TransGen, Beijing, China). Specific primers were de-
signed for the rhoptry neck protein (NcRON2), the microneme proteins (NcAMA1, NcMIC1,
NcMIC4), perforin-like protein 1 (PLP1), Ca2+-dependent protein kinase 1 (CDPK1), and
the endogenous reference genes (NcActin, Nc18sRNA). The specificity of these primers
was evaluated using conventional quantitative real-time PCR (qRT-PCR). qRT-PCR was
conducted using the Roche LightCycler System (Biosystems Inc., Foster City, CA, USA)
with SYBR Green (Takara Biotechnology, Dalian, China), following the manufacturer’s
instructions. The resulting RNA concentrations were normalized using NcActin and Nc18
sRNA, and the relative expression levels of the target genes were analyzed using the ABI
Prism 7500 software v2.0.5 (Biosystems Inc., Foster City, CA, USA). The qRT-PCR condi-
tions were as follows: 95 ◦C for 3 min, 40 cycles at 94 ◦C for 10 s, 60 ◦C for 30 s, and 72 ◦C
for 30 s. The relative expression levels of the genes were calculated using the quantification
cycle (Cq) value and standardized by the 2-∆∆Cq method. Standard deviation (SD) was
calculated from three replicates [39].

4.12. Virulence Assay in Mice

Virulence of the parasites was evaluated according to a method described previ-
ously [36]. Six-week-old BALB/c female mice were purchased from the Laboratory Animal
Center of the Academy of Military. Rodent laboratory chow and tap water were provided,
and the mice were maintained under specific pathogen-free conditions and acclimatized for
seven days before each experiment. Parasites were injected intraperitoneally into the mice
at doses of 2 × 106, 4 × 106, or 8 × 106 tachyzoites (six mice/group). All the infected mice
were monitored for clinical signs and mortality every 8 h. The mice were observed daily
for 30 days post-infection (dpi). The survival data were compiled from two independent
experiments. The mice were humanely euthanized by cervical dislocation, and the cerebral
parasite load in the mouse brains was detected at 30 dpi, using qRT-PCR, according to
a method described previously [40]. Real-time product formation was monitored using
the SYBR Green qPCR Master Mix (Takara, Kyoto, Japan). A 76-bp DNA fragment, corre-
sponding to the N. caninum-specific Nc5 was amplified, and the 28S rRNA host gene was
quantified to compare the parasite load in different samples.

All animal experiments were approved by the Institutional Animal Care and Use
Committee of China Agricultural University (Approval No.: 18049).

4.13. Statistical Analysis

Statistical analysis of all the data among groups was performed with GraphPad Prism
8 software (San Diego, CA, USA). Data were analyzed using the two-tailed, one-way
ANOVA or Chi-square test or Log-rank test. p-values are represented by asterisks. p values
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represented in the figures are as follows: * p < 0.05; ** p < 0.01; *** p < 0.001; ns, not
significant. A p value < 0.05 was considered statistically significant.

5. Conclusions

In summary, functional studies of the microneme protein 6 provided and revealed
insights about N. caninum invasion and egress from the host cells. This protein may work
synergistically with other microneme proteins to regulate the virulence of N. caninum. The
absence of NcMIC6 weakened the virulence in mice and lower parasite load detected in
mice brains. Hence, the parasitic variant ∆NcMIC6 can be potentially used as a preponder-
ant live attenuated vaccine against neosporosis.

Supplementary Materials: The following are available online at https://www.mdpi.com/2076-081
7/10/2/201/s1, Table S1: The sequence of primers.
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