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A B S T R A C T   

A preliminary study was conducted of the chemical, structural properties and immunomodulatory activities of 
fucoidan isolated from Sargassum Zhangii (SZ). Sargassum Zhangii fucoidan (SZF) was determined to have a sulfate 
content of 19.74 ± 0.01% (w/w) and an average molecular weight of 111.28 kDa. SZF possessed a backbone 
structure of (1,4)-α-D-linked-galactose, (3,4)-α-L-fucose, (1,3)-α-D-linked-xylose, β-D-linked-mannose and a ter-
minal (1,4)-α-D-linked-glucose. The main monosaccharide composition was determined as (w/w) 36.10% 
galactose, 20.13% fucose, 8.86% xylose, 7.36% glucose, 5.62% mannose, and 18.07% uronic acids, respectively. 
An immunostimulatory assay showed that SZF, compared to commercial fucoidans (Undaria pitnnaifida and Fucus 
vesiculosus sources), significantly elevated nitric oxide production via up-regulation of cyclooxygenase-2 and 
inducible nitric oxide synthase at both gene and protein levels. These results suggest that SZ has the potential to 
be a source of fucoidan with enhanced properties that may act as a useful ingredient for functional foods, 
nutritional supplements, and immune enhancers.   

Introduction 

Marine algae (or, as they are more colloquially known, seaweeds) are 
found in oceans all over the world. There are approximately 30,000 
identified types of algae in the ocean globally, which are usually divided 
into red, green, and brown seaweeds (Gomez-Zavaglia, Prieto Lage, 
Jimenez-Lopez, Mejuto, & Simal-Gandara, 2019). Seaweeds have the 
potential to be an outstanding target for blue farming, as they are low in 
fat, and contain abundant functional phytochemicals, such as 

polysaccharides, proteins, polyphenols, vitamins, and minerals (Yao, 
Qiu, Cheong, & Zhong, 2022). Marine algae are enriched with a wide 
range of complex polysaccharides, with a content ranging from 4% to 
76% of dry weight (Tian et al., 2020). 

A number of these polysaccharides have been identified as being of 
interest as high-value products. Of these, a notable type is those found in 
brown seaweeds, known as fucoidans. These are a class of highly 
sulfated polysaccharides residing chiefly in the intercellular spaces and 
fibrillar cell walls of brown algae (Cheong, Yu, Chen, & Zhong, 2022). 
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Fucoidans are promising targets for compounds of value in the func-
tional food and nutraceutical industries. In fact, fucoidans have been 
approved to be produced as food in China in 2019. Biologically, they 
have been found to have many beneficial effects such as antiviral, anti- 
inflammatory, anticancer, antithrombosis (Wang et al., 2017), and 
immunomodulatory activities with low side effects (Zha et al., 2018). 

Increasing the activity of the immune system is a significant bio-
logical function of fucoidans through either improved release of pro- 
inflammatory mediators or decreased anti-inflammatory response 
(Bahramzadeh, Tabarsa, You, Li, & Bita, 2019). The multifunctionality 
of fucoidan is highly variable, and greatly dependent upon its complex 
molecular structure. Therefore, it is commonly believed that the 
magnitude of immunomodulatory activities of fucoidans is dominated 
by compositional characteristics such as monosaccharide composition, 
molecular weight, and sulfate content (Borazjani, Tabarsa, You, & 
Rezaei, 2018). Structurally, fucoidans are highly branched hetero-
polysaccharides, and these structures vary within species, season, har-
vest location and maturity of the plant (Fletcher, Biller, Ross, & Adams, 
2017). Therefore, considering the complexity of fucoidan structures and 
their multiple functional abilities, significant potential exists to explore 
new seaweed sources in order to acquire natural polysaccharides with 
improved health benefits and biological activities. 

Sargassum species are present throughout subtropical and tropical 
areas globally and have been shown to produce many structural classes 
of metabolites such as sulfated polysaccharides, glycerides, polyphenols, 
and terpenoids, etc., which possess many therapeutic activities (Yende, 
Harle, & Chaugule, 2014). Therefore, Sargassum species have great po-
tential in the neutralceutical field, and have been identified as a key 
medicinal food of the twenty-first century. Sargassum Zhangii fucoidan 
(SZF) is an relatively unexplored compound; although it has been re-
ported to have cholesterol-lowering activity (Lin, Chen, & Zhong, 2022), 
little research has been conducted into its immunomodulatory activities. 

Motivated by this, the objective in this study was to determine the 
immune cell stimulating activities of SZF, and characterize its physi-
ochemical and structural properties through a number of approaches 
including ion chromatograph, high performance gel-permeation chro-
matography, Fourier transformation infrared spectroscopy (FTIR) and 
nuclear magnetic resonance (NMR), etc. The immunoregulatory activ-
ities of the fucoidans on RAW 264.7 macrophage cells were determined 
by the production of nitric oxide (NO), a key component of the immu-
nomodulatory pathway and tissue regeneration. Furthermore, the 
inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) 
immune cytokines, were also determined based on protein abundance 
and gene expression. The results show that SZF exhibit previously un-
reported immune stimulating activities. These results, taken together, 
identify SZF as an outstanding candidate for further development in the 
functional or nutraceutical food fields. 

Materials and methods 

Chemical suppliers 

Fucoidan Fuc1 (Undaria pinnatifida source, batch# 572001015) was 
obtained from Qingdao bright moon seaweed group co., LTD. (Qingdao, 
China). Samples Fuc2 (Undaria pinnatifida source, Lot# SLCK7680) and 
Fuc3 (Fucus Vesiculosis source, Lot# SLCJ3576) were purchased from 
Sigma-Aldrich (MO, USA). Murine RAW 264.7 cells were obtained from 
Biofavor Biotech (Wuhan, China). High glucose Dulbecco’s modified 
Eagle’s medium (DMEM) (with 4500 mg/L D-glucose, 3700 mg/L 

sodium bicarbonate, 584 mg/L L-glutamine, 110 mg/L sodium pyruvate 
and 15 mg/L phenol red), Fetal bovine serum (FBS), streptomycin and 
penicillin Trizol reagent were purchased from Sangon Biotech Co., Ltd. 
(Shanghai, China). Cytoplasmic and nuclear protein extraction kit, and 
nitric oxide (NO) detecting kit were obtained from Beyotime (Haimen, 
China). cDNA Synthesis SuperMix TransScript® and One-Step gDNA 
Removal were purchased from Transgen Biotechnology Co. (Beijing, 
China). Fluorescence real-time quantitative PCR premix (SYBR) and 
total RNA isolation kit were purchased from Tiangen Biotechnology Co. 
(Beijing, China). GAPDH, iNOS, COX-2 antibodies and HRP-linked anti- 
rabbit IgG (secondary antibody) were purchased from Abcam 
(Shanghai, China). The monosaccharide standards were obtained from 
BoRui Saccharide Biotech Co. Ltd (Yangzhou, China). Other chemical 
reagents were of analytical grade. 

Collection of seaweeds 

Five batches of SZ, with each 30 kg, were collected from the coastal 
area of Leizhou, Zhanjiang, Guangdong, China in October 2020, and 
were in the breeding period identified immediately after picking by 
Professor En-Yi Xie of Guangdong Ocean University. The collected SZ 
was washed with sea water and fresh water, and then was sunshine dried 
to a constant weight. The dried samples were ground using a food 
grinder and sieved using a 100-mesh sieve, then put into a sealed bag 
and deposited at − 20 ◦C at the College of Food Science and Technology, 
Guangdong Ocean University, Zhanjiang, China. 

Extraction of SZF 

The SZF powder was extracted via the method described in our 
previous work (Li et al., 2022). The SZ powder (20.0 g) was suspended in 
600 mL distilled water, and the pH of the solution was adjusted to 6.0. 
The crude polysaccharide was extracted under magnetic stirring at 650 
r/min, 80 ◦C for 3.5 h, then extracted using ultrasonication at room 
temperature for 50 min at a working power of 350 W, and the crude 
polysaccharide solution was obtained. 

Purification of SZF 

The SZF solution obtained in Section 2.3 was centrifuged for 10 min 
at 4000 r/min, and the precipitation was disposed. A rotary evaporator 
(EYELA, 100 N-1300 V-WB, Tokyo, Japan) was used to concentrate the 
supernatant to 33% of its original volume. 30% (v/v) of anhydrous 
ethanol based on the volume of the concentrated supernatant was 
added, then centrifuged for 10 min at 4000 r/min. 80% (v/v) of anhy-
drous ethanol based on the volume of the supernatant was added to the 
supernatant. Anhydrous ethanol and acetone were used to wash the 
precipitation, respectively, then the precipitation was dissolved in 30 
mL distilled water. Next, the protein was removed by the addition of 
savage reagent in the ratio of 6:1 (v/v), and oscillated for 20 min using a 
vortex oscillator. A dialysis bag (15000 kDa) was used to dialyze the 
samples for 24 h at 4 ◦C, and distilled water was replaced 3 times during 
this process. Then SZF was obtained after freeze-drying of the extracted 
sample. The yield rate and extraction rate were calculated using the 
following equations, respectively. 

Yield rate (%) =
Weight of SZF

Weight of seaweed powder
x100% (1)   

Extraction rate (%) =
Weight of SZF

Weight of total sugar content of seaweed powder
x100% (2)   
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Chemical analysis 

The total sugar content was determined using the phenol–sulfuric 
acid method at 490 nm, and D-fucose was used as the standard (Dubois, 
Gilles, Hamilton, Rebers, & Smith, 1956). The content of sulfate was 
tested using the barium chloride gelatin method at 360 nm, and potas-
sium sulfate was used as the standard (Dodgson & Price, 1962). The 
protein content was analyzed using the Coomassie bright blue at 595 
nm, with bovine serum albumin as the standard (Kawai, Seno, & Anno, 
1969). The total phenolic content of the sample was estimated by the 
Folin-Ciocalteu reagent method at 760 nm, with gallic acid as the 
standard, and the results are expressed in milligrams of gallic acid 
equivalent (mg GAE) per gram of SZF (Singleton, Orthofer, & Lamuela- 
Raventós, 1999). 

Monosaccharide analysis 

Monosaccharide components were tested using ion chromatograph 
(ThermoFisher, America) according to the approach we used previously 
(Li et al., 2022). Samples were hydrolyzed thoroughly using trifluoro-
acetic acid (TFA, 3 mol/L) at 120 ◦C for 3 h, and then dried by nitrogen 
blowing. The residue obtained was fully dissolved in 5 mL of pure water 
through vortexing, and diluted to 20 times the volume of the sample, 
then centrifuged at 12000 rpm for 5 min. Next, the supernatant was 
washed out at 30 ◦C with a Dionex Carbopac TMPA20 column (3.0 mm 
× 150 mm) at an elution speed of 0.3 mL/min. A volume of 5 µL of the 
sample was injected, and the eluent was composed of A, H2O; B, 15 mM 
NaOH; C, 15 mM NaOH and 100 mM NaOAC. The samples were 
detected using an electrochemical detector. Standard monosaccharide 
mixture containing fucose; galactose hydrochloride, rhamnose, arabi-
nose, glucosamine hydrochloride galactose; glucose, N-acetyl-D-glucos-
amine, xylose, mannose, fructose, ribose, galactose acid, guluronic acid, 
glucuronic acid, and mannuronic acid. The amount of each mono-
saccharide was calculated based on peak aera of each standard. 

Molecular property determination 

Molecular property of SZF was analyzed by high-performance gel- 
permeation chromatography (Shimadzu, Australia). A BRT105-104-102 
tan-dem gel column (7.8 mm × 300 mm i.d.) (Borui Saccharide, Biotech. 
Co. Ltd.) equipped with a refractive index detector (RI-10A) was used to 
determine the molecular property of SZF. Briefly, the samples and 
standards were prepared at 5 mg/mL concentration, and centrifuged for 
10 min at 12,000 rpm. The supernatant was filtered using a 0.22 μm 
Millipore membrane, then 20 μL of sample was transferred to a 1.8 mL 
vial. Dextran with different relative Mw (5000, 11,600, 23,800, 48,600, 
80,900, 148,000, 273,000, 409,800, 667,800 kDa) was used as 
standards. 

FTIR analysis 

The featured groups of SZF were analyzed using an FTIR spectro-
photometer (BRUKER TENSOR-2, BRUKER, Germany). The sample was 
ground with pure potassium bromide (KBr, 1:100) and pressed into the 
disc under vacuum. The scanning range was from 4000 to 400 cm− 1 at a 
resolution of 4 cm− 1 with 32 scans, and the wavenumber ranges used for 
analysis in this study was 4000–500 cm− 1. 

NMR analysis 

1H and 13C NMR analysis was conducted using an advance spec-
trometer (600 MHz Bruker model). 10 mg of the fucoidan was dissolved 
in 0.25 mL of D2O (Deuterium oxide), and 0.5 mL was transferred to a 1H 
and 13C NMR tube, respectively. NMR spectra was recorded at 25 ◦C, and 
the chemical shift was expressed in parts per million (ppm). 

Cell culture and determination of nitric oxide production 

RAW 264.7 macrophages were cultivated in DMEM complemented 
with 100 µg/mL streptomycin, 100 U/mL penicillin, and 10% FBS, and 
kept in a 37 ◦C humidified incubator with 5% CO2. The experiment was 
performed using Griess assay. 100 μL of RAW 264.7 cells (1 × 105 cells/ 
well) were inoculated into 96-well plates, then treated with 100 μL of 
fucoidan samples at 25, 50, and 100 μg/mL. The supernatants were 
collected to detect NO contents after 24 h incubation. 

RT-qPCR analysis 

RAW 264.7 macrophages (1 × 106 cells/mL) were cultured with SZF 
at concentrations of 25, 50 and 100 μg/mL, respectively. After 24 h 
incubation, a Trizol assay kit was applied on the conditioned cells to 
extract total RNA. Briefly, 1 μg of RNA was determined using qRT-PCR, 
and PCR amplification was carried out via incorporation of SYBR green 
(Roche). The amplification primer sequences GAPDH, iNOS, and COX-2 
involved in this experiment were purchased from Sangon Biotech 
(Shanghai), GAPDH: Forward-GGTGAAGGTCGGTGTGAACG, Reverse- 
CTCG-CTCCTGGAAGATGGTG; iNOS: Forward-CCTCCTCGTTCAGCTCA 
CCT, Reverse-CAATCCACAACTCGCTCCAA; COX-2: Forward- TGAGTA 
CCGCAAA-CGCTTCT, Reverse- ACGAGGTTTTTCCACCAGCA. The expre 
ssion of genes was analyzed using the 2-△△Ct method. 

Immunofluorescence staining 

The RAW 264.7 macrophages (1 × 105 cells/mL) were cultured with 
samples at the concentration of 25, 50, and 100 µg/mL for 24 h. Cells 
were then fixed with 4% polyformaldehyde for 10 min and then blocked 
with 10% BSA for 1 h. Next, RAW 264.7 cells were cultured with the 
primary COX-2 and iNOS antibodies at 4 ◦C overnight, respectively, then 
washed three times using TBST, followed by incubation with a 
fluorescence-conjugated secondary antibody for 1 h at room tempera-
ture. Finally, the cells were stained with 4′,6-diamidino-2-phenylindole 
(DAPI) at 1:1000 for 10 min. Between each procedure, cells were 
washed three times with PBS. A Cytation 5 cell-imaging multimode 
reader (Olympus SpinSR10 spinning disk confocal super resolution mi-
croscope, Tokyo, Japan) was used for imaging. 

Western blot analysis 

Cells were treated with fucoidan at a concentration of 25, 50, and 
100 µg/mL for 2 h, respectively, then cells were extracted in lysis buffer. 
Aliquots of protein (30 μg) were electrophoresed on a 4–12% Bis-Tris 
SDS–PAGE gel and then transferred to nitrocellulose membranes 
(ThermoFisher, Waltham, MA, USA), and the membranes were incu-
bated in 1 × TBST containing 4% milk for 1 h at room temperature, then 
incubated with primary antibodies (GAPDH, iNOX, and COX-2 solu-
tions) at 4 ◦C overnight, and next incubated with secondary antibody for 
1 h at room temperature. Bio-Rad image analysis system (Bio-Rad Lab-
oratories, Hercules, CA) was used to image protein bands. Protein ex-
pressions were quantified using ImageJ 1.53q (Wayne Rasband and 
contributors, National Institutes of Health, Bethesda, Maryland, USA). 

Table 1 
Yields and chemical analysis of Sargassum Zhangii fucoidan (SZF).   

Composition Content 

Yields Yield rate 2.85 ± 0.35 (%, w/w) 
Extraction rate 10.06 ± 0.56 (%, w/w) 

Chemical composition Total sugar 82.77 ± 0.40 (%, w/w) 
Sulfate 29.74 ± 0.01 (%, w/w) 
Total protein 1.92 ± 0.38 (%, w/w) 
Total polyphenol 1.40 ± 0.12 (mgGAE/g SZF)  

R. Li et al.                                                                                                                                                                                                                                        
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Statistical analysis 

Results were expressed as the means ± standard deviation (SD) of 
triplicate tests. One-way analysis of variance (ANOVA) and Tukey’s 
multiple comparisons tests were used to analyze the differences between 
samples using GraphPad Prism 8 (GraphPad Software LLC., San Diego, 
California, USA). 

Results and discussion 

Yield rate and extraction rate 

The total sugar content of SZ powder was 27.88 ± 0.36%. As shown 
in Table 1, the yield rate and extraction rate of SZF were 2.85 ± 0.35% 
(based on the weight of raw material) and 10.06 ± 0.56% (based on the 

Fig. 1. The monosaccharide composition chromatogram of Sargassum Zhangii fucoidan (SZF). (A) Standards of monosaccharide and (B) monosaccharide composition 
of SZF. (1. Fuc, fucose; 2, GalN, galactose hydrochloride; 3. Rha, rhamnose; 4. Ara, arabinose; 5. GlcN, glucosamine hydrochloride; 6. Gal, galactose; 7. Glc, glucose; 
8. GlcNAc, N-acetyl-D-glucosamine; 9. Xyl, xylose; 10. Man, mannose; 11. Fru, fructose; 12. Rib, ribose; 13. GalA, galactose acid; 14. GulA, guluronic acid; 15. GlcA, 
glucuronic acid; 16. ManA, mannuronic acid.) 
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weight of the total sugar content of raw material), respectively. How-
ever, the yield rate was lower than that of other polysaccharide-rich 
species such as Nizamuddinia zanardinii (6.5%) and Sargassum angusti-
folium (6.35%) (Tabarsa et al., 2020). Previous research has shown that 

both extraction method and seaweed species had a significant effect on 
extraction yield rate (Rodrigues et al., 2015). Some research has found 
that there were no statistical differences in extraction by ultrasound 
procedures in comparison to hot water extraction (Rodrigues et al., 
2015), or even lower (Alboofetileh et al., 2019; Wang et al., 2021), this 
could be due to the loss of low molecular weight polysaccharides during 
dialysis, because ultrasonication assisted extraction can degrade poly-
saccharides based on the extraction time and ultrasonic power (Wang 
et al., 2021). Furthermore, the diversity, amount, and complexity of 
polysaccharides in the seaweeds’ cell wall could reduce the yield rate 
especially with traditional extraction methods (Wijesinghe & Jeon, 
2012). The low yield rate of this research may be related to the amount 
of the polysaccharide distributed in the cell wall of the seaweed, and also 
may be due to the loss of extracted polysaccharide during the dialysis 

Table 2 
Molecular properties of Sargassum Zhangii fucoidan (SZF).  

Relative molecular weight (kDa) Relative Percentage 
of peak area (%) 

Mw Mn Mp Polydispersity (PDI, 
Mw/Mn)   

7121.79  3380.83  4231.04  2.11  0.71  
739.71  411.33  504.15  1.80  9.01  
111.28  70.63  85.07  1.58  90.27  

Fig. 2. (A) Fourier transformation infrared spectroscopy (FTIR) spectra of Sargassum Zhangii fucoidan (SZF); (B) 1H NMR analysis of SZF. (C) 13C NMR analysis 
of SZF. 
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Fig. 3. Effects of commercial fucoidan samples and Sargassum Zhangii fucoidan (SZF) on nitric oxide (NO) release of RAW 264.7 cells. (A) Fucoidan 1 (Undaria 
pitnnaifida source) of Qingdao bright moon seaweed group co., LTD., Mw 23.91 kDa; (B) Fucoidan 2 (Undaria pitnnaifida source) of Sigma, Mw 19.52 kDa; (C) 
Fucoidan 3 (Fucus vesiculosus source) of Sigma, Mw 11.61 kDa; (D) SZF, Mw 111.28 kDa. (E) Effect of SZF on the mRNA expression level of cyclooxygenase-2 (COX-2), 
and (F) inducible nitric oxide synthase (iNOS). * (p < 0.05), ** (p < 0.01), *** (p < 0.001), and **** (p < 0.0001) compared to the control, respectively. # (p < 0.05), 
## (p < 0.01), ### (p < 0.001), and #### (p < 0.0001), compared with each other of sample groups. 
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process. However, other research has shown that the extraction yield of 
Sargassum wightii fucoidan was much higher of ultrasonication assisted 
method than that of the hot water extraction method (Hanjabam et al., 
2019). 

Chemical analysis of SZF 

The total sugar content of SZF was 82.77 ± 0.40% (Table 1). The 
sulfate content was 29.74 ± 0.01%, which was lower than that of the 
commercial fucoidan samples Fuc1 (42.30 ± 0.51%), Fuc2 (57.54 ±
5.25%) and Fuc3 (47.44 ± 3.24%) used in this study (Tai et al., 2022). 
Other similar research has reported that fucoidans extracted from the 
brown algae Fucus distichus subsp. evanescens and Saccharina latissimi 
had a sulfate content ranging from 15.5% to 38.0% (Nguyen et al., 
2020). Finally, small amounts of protein (1.92 ± 0.38%) and polyphenol 
(1.40 ± 0.12 mg GAE/g SZF) were also detected. 

Fig. 1(A-B) gives a representative monosaccharide chromatogram of 
SZF. In Fig. 1C, it is shown that neutral sugars (81.92%, w/w) consti-
tuted most of the structures of SZF, with some acidic fractions (18.08%, 
w/w). Specifically, it was observed that the neutral sugars of SZF were 
mainly composed of relative amounts of galactose (36.10%), fucose 
(20.13%), xylose (8.86%), glucose (7.36%), mannose (5.62%) (w/w), 
etc., and three uronic acids including glucuronic acid (8.93%), man-
nuronic acid (6.28%), and guluronic acid (2.87%) (w/w). In other 
similar studies, galactose, fucose, mannose and xylose were character-
ized as the majority of fucoidan but in different ratios, in which galac-
tose was the majority of a fucoidan fraction extracted from 
Nizamuddinia zanardinii (Tabarsa et al., 2020). Our recent research 
showed that the main monosaccharides of Sargassum Hemiphyllum 
fucoidan consisted of glucose (32.68%), galactose (24.81%), fucose 
(20.75%) (w/w), and a low level of uronic acid content (8.91%) 
compared to that of SZF (Li et al., 2022). 

Molecular properties 

The molecular properties of SZF are shown in Table 2. The PDI shows 
the ratio of Mw and Mn, indicating a wide distribution of polymer 
molecular weights distribution, as a larger PDI denotes a more inho-
mogeneous molecular weight distribution. Table 2 shows that the mo-
lecular weight of SZF was 111.28 kDa (90.27%, w/w). Rioux et al. 
showed that the molecular weight of fucoidan was dependent on the 
sources and species of brown algae ranging from 1.4 kDa (Yuan & 
Macquarrie, 2015) to 2000 kDa (Fitton, Dell’Acqua, Gardiner, Karpi-
niec, Stringer, & Davis, 2015), which agrees well with our findings. 
Fucoidans can be classified as low-molecular-weight (<10 kDa), 
medium-molecular-weight (10–10000 kDa), and high-molecular-weight 
fucoidans (>10,000 kDa) (Van Weelden et al., 2019). From Table 2 we 
can see that over 90% of SZF’s molecules possessed an Mw of 111.28 
kDa, which places them amongst the medium molecular weight fucoi-
dans. The Mn and Mp of SZF were 70.63 kDa and 85.07 kDa, 
respectively. 

Most genetically encoded biopolymers (such as proteins) are usually 
monodispersed with a PDI of about 1. However, polysaccharides are 
produced in a less tightly regulated fashion, and as such are polydisperse 
with PDIs higher than 1. The PDI of SZF was 1.58 (over 90% of its 
molecules), and it fell within the reported fucoidan PDI value range of 
1–6.2 (Alboofetileh et al., 2019; Ammar, Hafsa, Le Cerf, Bouraoui, & 
Majdoub, 2016). The PDI value also shows that SZF was heterogeneous 
and had a relative broad molecular weight distribution. 

Structural characterization of SZF 

FT-IR analysis 
Fig. 2(A) shows that the broad peak at 3468 cm− 1 corresponded to 

the O–H stretching vibration of SZF. The band at 2945 and 1611 cm− 1 

was corresponding to C-6 group of fucose, galactose or C–H stretching 

pyranoid ring and O–H vibrations, respectively. Furthermore, the band 
at 1611 cm− 1 also indicated C––O vibration of uronic acid. Another peak 
at 1256 cm− 1 was due to the sulfate esters (S––O), and a peak at 829 
cm− 1 indicated the presence of the sulfate group (C–O–S) and α-type 
glycosidic bond (Alboofetileh et al., 2019). The band at 1423 cm− 1 

indicated a variety of C–H vibration of polysaccharides composed of 
fucose, D-glucose, D-mannose, D-xylose, and galacturonat acid (Palanis-
amy, Vinosha, Marudhupandi, Rajasekar, & Prabhu, 2017). Meanwhile, 
the absorption at 1124 cm− 1 was due to the stretching of the glycosidic 
C–O group of SZF, a strong peak near 1038 cm− 1 was responsible for 
hemiacetal stretching, and the weak signals near 970 cm− 1 were 
assigned to the asymmetrical stretching vibration of C–O–S bond (Lim 
et al., 2014). The above results were similar to the bands observed for 
fucoidan of Sargassum polycystum and other brown algae (Mar-
udhupandi, Ajith Kumar, Lakshmanasenthil, Suja, & Vinothkumar, 
2015; Palanisamy et al., 2017). 

1H and 13C NMR 
The chemical structure of SZF was further determined using NMR 

spectra of 1H (Fig. 2B) and 13C (Fig. 2C). With the 1H NMR chemical 
shifts of SZF at δH 5.23 (H-1), 3.59 (H-2), 3.77 (H-3), 3.90 (H-4), 4.04 
(H-5), and δH 3.77 (H-6), and the 4.80 ppm signal was attributed to D2O 
(Fig. 2B), and 13C NMR spectrometry chemical shifts at δC 100.02 (C-1), 
69.93 (C-2), 71.36 (C-3), 77.91 (C-4), 75.79 (C-5), and 61.57 (C-6) 
(Fig. 2C), these data supported the signal corresponding to a (1,4)-α-D- 
linked-galactose (Zhang et al., 2021), and the absorption at δC 75.79 (C- 
4) correlated with absorption at δH 3.59 (H-4) was corresponding to a 
terminal (1,4)-α-D-linked-glucose (Chen et al., 2019). Similarly, as 
shown in the NMR spectra, the absorption at δC 102.75 (C-1) correlated 
with absorption at δH 5.06 (H-1) represented to (3,4)-α-L-fucose 
(Schilling, Klau, Aachmann, Rühmann, Schmid, & Sieber, 2022), and the 
signal at δ5.06/97.89 and δ4.66/102.75 were assigned to H1/C1 of β-D- 
linked-mannose and (1,3)-α-D-linked-xylose respectively (Luo, Wang, Li, 
& Yu, 2018; Zhang et al., 2022), which confirmed the major residues of 
the SZF. 

Pro-inflammatory assessment via activation of Macrophages 

Analysis of cellular nitric oxide (NO) production 
Macrophages play important roles on the immunomodulatory system 

by keeping homoeostasis and providing defense against pathogen in-
vasion. It is commonly recognized that pro-inflammatory mediator NO 
produced by activated macrophages is directly involved in the immu-
nomodulatory activities, and the detection of NO content is one of the 
most reliable experiments to assess classical macrophage activation 
(Green, Mellouk, Hoffman, Meltzer, & Nacy, 1990). Therefore, NO 
secretion from a macrophage cell line, RAW 264.7, was investigated as 
an indicator of the immunomodulatory activity of SZF. In this study, 
RAW 264.7 murine macrophages in attachment-based tissue culture 
plates were incubated with solution of fucoidans at concentrations of 25, 
50, and 100 μg/mL, and three commercial fucoidans Fuc1 (Undaria 
pitnnaifida), Fuc2 (Undaria pitnnaifida), and Fuc3 (Fucus vesiculosus) 
were used as positive controls. Fig. 3(A-D) shows that the solutions of 
the three commercial fucoidans had a small yet significant reduction in 
NO production compared to the control (*p < 0.05) that was indepen-
dent of concentration, whereas NO release in SZF-induced RAW 264.7 
cells was increased significantly at concentrations of 50 and 100 µg/mL 
in a dose-dependent manner (*p < 0.001). At a concentration 25 μg/mL, 
SZF exhibited only a weak effect on NO release in macrophages (*p >
0.05), suggesting a minimum concentration required for effect. 
Compared to our recent study, the production of NO was higher than 
that of the Sargassum Hemiphyllum fucoidan (SHF) treated RAW 264.7 
cells at the same concentration (Li et al., 2022), indicating that SZF was a 
more effective agent to stimulate proliferation of macrophages. The 
different effects over the commercial fucoidans, SHF and SZF on NO 
secretion may be due to differences in their chemical structure, e.g. 
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Fig. 4. Sargassum Zhangii fucoidan (SZF) up-regulated 
expression of cyclooxygenase-2 (COX-2) (A) and induc-
ible nitric oxide synthase (iNOS) (B) detected by immu-
nofluorescence staining. COX-2 and iNOS were shown by 
green fluorescence, and DAPI-stained nuclei were shown 
by blue fluorescence. Scale bar = 50 µm. Western blot 
images of effects of SZF (25, 50, 100 µg/mL) on COX-2 and 
iNOS promotion (C), and quantitative analysis of COX-2 
(D) and iNOS (E). * (p < 0.05), ** (p < 0.01), *** (p <
0.001) and **** (p < 0.0001) compared to the control, 
respectively. # (p < 0.05), ## (p < 0.01), ### (p <
0.001), and #### (p < 0.0001), compared with each 
other of sample groups. (For interpretation of the refer-
ences to colour in this figure legend, the reader is referred 
to the web version of this article.)   
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molecular weight, sulfate content, and monosaccharide composition 
(Hao et al., 2019). Some studies have suggested that polysaccharides 
with lower molecular weights had better stimulating effects on the im-
mune system (Liao et al., 2015), which confirms the trend we have 
observed in SZF and SHF. 

COX-2 and iNOS mRNA expression in macrophages activated by SZF 
Since both COX-2 and iNOS are isoenzymes that are responsible for 

the production of NO (Raso et al., 2002), the influence of SZF on the 
ability of RAW 264.7 cells to secrete NO was analysed at the molecular 
level. Here, the mRNA associated with the expression of COX-2 and 
iNOS were investigated using quantitative RT-PCR. 

As shown in Fig. 3E, the mRNA expression of COX-2 was significantly 
up-regulated by SZF in a concentration-dependent manner (*p < 0.05), 
and the expression of COX-2 mRNA of cells treated by 100 µg/mL SZF 
was dramatically higher than that of cells treated by 25 µg/mL SZF (#p 
< 0.01), although there was no significant difference between the 
adjacent sample groups (#p > 0.05). Similarly, the mRNA expression of 
iNOS was elevated dose-dependently with SZF stimulation at concen-
trations of 50 and 100 µg/mL (*p < 0.05), and significant difference was 
observed between each group (#p < 0.001) (Fig. 3F). These results show 
an increasing trend as demonstrated by the NO secretion, which further 
supported the result that macrophages could be activated by SZF. This 
result also indicates that the NO release of macrophages induced by SZF 
stimulation matches the up-regulation of COX-2 and iNOS mRNA. 

COX-2 and iNOS protein expression activated by SZF 
To further confirm the stimulation of RAW 264.7 macrophages, the 

protein expression of COX-2 and iNOS were assessed by immunofluo-
rescence and Western blotting. In the SZF-triggered groups, the fluo-
rescence intensity of COX-2 (Fig. 4A) and iNOS (Fig. 4B) increased with 
the increase of SZF concentration compared with the control group, 
suggesting that the SZF treatments resulted in an up-regulated protein 
expression of COX-2 and iNOS in the RAW 264.7 cells. This result again 
was consistent with the observed trends in NO production of the RAW 
264.7 cells. 

As shown in Fig. 4C, the appearance of strong and distinctive bands 
of COX-2 and iNOS indicated the promotion of protein expression in 
activated cells. After quantifying the Western blot images using ImageJ, 
we could see that the protein content of COX-2 and iNOS in the SZF 
treated cells were significantly higher than those of the control (*p <
0.05), and both proteins showed the consistent trend in concentration- 
dependent induction by SZF at concentrations of 50 and 100 µg/mL. 
The protein expression closely matched the trends observed in, and 
further confirmed the results of, the NO secretion, COX-2 and iNOS 
mRNA upregulation. Therefore, the activation assays of RAW 264.7 cells 
all indicate that SZF is a potent potential candidate to act as functional 
compound for a range of applications such as food ingredient, immune 
enhancer or immunodulator, to name a few. 

Conclusions 

In this study, the unreported potential of the sulfated hetero-
polysaccharide, SZF were identified. SZF possessed a main chain of 
(1,4)-α-D-linked-galactose, (3,4)-α-L-fucose, (1,3)-α-D-linked-xylose, β-D- 
linked-mannose and a terminal (1,4)-α-D-linked-glucose. SZF had 
immune-stimulating activities, resulting in promoting NO production in 
RAW 264.7 cells via the up-regulation of both the mRNA and protein 
expression of iNOS and COX-2 in a dose-dependent manner, while the 
commercial fucoidans (Undaria pitnnaifida source and Fucus vesiculosus 
source) decreased NO production in macrophages. The preliminary re-
sults of SZF indicate it has great potential to act as functional food and/ 
or nutritional food ingredients, immune enhancer or immunodulators 
due to its excellent immune-boosting activities. Furthermore, SZF is also 
a promising raw material for the fabrication of novel delivery systems 
such as nanoemulsions, nanoparticles, etc. by interacting with other 

natural biopolymers such as proteins due to its polyanion property, 
thereby providing synergistic immunomodulatory effects during the 
delivery of the packaged functional components. The promising data 
highlighted in this paper warrants further research, exploring and 
expanding the applications of SZF and its responding immune- 
stimulating activities in vivo. Future study should focus on the further 
purification and the precise chemical structure characterization of SZF; 
the in vivo experiments about the immune-boosting activities of SZF also 
need further research. 
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