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Abstract Many decisions are expressed as a preference for one item over another. When these items11

are familiar, it is often assumed that the decision maker assigns a value to each of the items and chooses12

the item with the highest value. These values may be imperfectly recalled, but are assumed to be stable13

over the course of an interview or psychological experiment. Choices that are inconsistent with a stated14

valuation are thought to occur because of unspecified noise that corrupts the neural representation of15

value. Assuming that the noise is uncorrelated over time, the pattern of choices and response times in16

value-based decisions are modeled within the framework of Bounded Evidence Accumulation (BEA),17

similar to that used in perceptual decision-making. In BEA, noisy evidence samples accumulate over18

time until the accumulated evidence for one of the options reaches a threshold. Here, we argue that19

the assumption of temporally uncorrelated noise, while reasonable for perceptual decisions, is not20

reasonable for value-based decisions. Subjective values depend on the internal state of the decision21

maker, including their desires, needs, priorities, attentional state, and goals. These internal states22

may change over time, or undergo revaluation, as will the subjective values. We reasoned that these23

hypothetical value changes should be detectable in the pattern of choices made over a sequence of24

decisions. We reanalyzed data from a well-studied task in which participants were presented with pairs25

of snacks and asked to choose the one they preferred. Using a novel algorithm (Reval), we show that the26

subjective value of the items changes significantly during a short experimental session (about 1 hour).27

Values derived with Reval explain choice and response time better than explicitly stated values. They28

also better explain the BOLD signal in the ventromedial prefrontal cortex, known to represent the value29

of decision alternatives. Revaluation is also observed in a BEA model in which successive evidence30

samples are not assumed to be independent. We argue that revaluation is a consequence of the process31

by which values are constructed during deliberation to resolve preference choices.32

Introduction33

A central idea in decision theory and economics is that each good can be assigned a scalar utility value34

that reflects its desirability. The concept of utility, or subjective value, provides a common currency35

for comparing dissimilar goods (e.g., pears and apples) such that decision-making can be reduced36

to estimating the utility of each good and comparing them (von Neumann and Morgenstern, 1944;37

Samuelson, 1937; Montague and Berns, 2002). The idea is supported by studies that have identified38

neurons that correlate with the subjective value of alternatives in various brain structures, most notably39

the ventromedial prefrontal cortex, and it is so pervasive that decisions based on preferences are often40

referred to as "value-based decisions" (Kable and Glimcher, 2007; Kim et al., 2008; Padoa-Schioppa41

and Assad, 2006).42

Choice and response time (RT) in simple perceptual and mnemonic decisions are often modeled within43

the framework of bounded evidence accumulation (BEA). The framework posits that evidence samples44

for and against the different options are accumulated over time until the accumulated evidence for one of45

the options reaches a threshold or bound (Ratcliff, 1978; Gold and Shadlen, 2007). A case in point is46

the random dot motion (RDM) discrimination task, in which participants must decide whether randomly47

moving dots have net rightward or leftward motion, while the experimenter controls the proportion of48
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dots moving coherently in one direction, termed the motion strength (e.g., Gold and Shadlen, 2007).49

BEA models explain the choice, RT, and confidence in the RDM task under the assumption that the rate50

of accumulation, often termed the drift rate, depends on motion strength (van Den Berg et al., 2016;51

Kiani et al., 2014). Value-based decisions have also been modeled within the framework of BEA. The52

key assumption is that at any given time, decision-makers only have access to a noisy representation of53

the subjective value of each item, and the drift rate depends on the difference between the subjective54

values of the items (Krajbich et al., 2010; Thomas et al., 2019; Sepulveda et al., 2020; Bakkour et al.,55

2019).56

A condition that renders the BEA framework normative is that the noise corrupting the evidence samples is57

independent, or equivalently, that the evidence samples are conditionally independent given the drift rate.58

For example, in modeling the RDM and other perceptual decision making tasks, evidence samples are59

assumed to be independent of each other, conditioned on motion strength and direction (e.g., Zylberberg60

et al., 2016). This assumption is sensible because (i) the main source of stochasticity in perceptual61

decision making is the noise affecting the sensory representation of the evidence, which has a short-lived62

autocorrelation, and (ii) these decisions are often based on an evidence stream (e.g., a dynamic random63

dot display) that provides conditionally independent samples, by design. The assumption of conditional64

independence justifies the process of evidence accumulation, because accumulation (or averaging) can65

only remove the noise components that are not shared by the evidence samples.66

For value-based decisions, the assumption of conditional independence is questionable. Alternatives67

often differ across multiple attributes (e.g., Busemeyer and Townsend, 1993; Tversky, 1977). For68

example, when choosing between different snacks, they may differ in calories, healthiness, palatability,69

and so on (Suzuki et al., 2017). The weight given to each attribute depends on the decision-maker’s70

internal state (Noguchi and Stewart, 2018; Juechems and Summerfield, 2019). This internal state71

includes desires, needs, priorities, attentional state and goals. We use the term mindset, or state of72

mind, to refer to all of these internal influences on valuation. A mindset can be persistent. For example,73

a famished decision-maker may prioritize the nutritional content of each food when making a choice.74

Under less pressing circumstances, the salience of an attribute may be suggested by snack alternatives75

themselves. For example, seeing French fries may make us aware that we crave something salty, and76

saltiness becomes a relevant attribute informing the current decision and possibly future decisions too.77

The examples illustrate how a decision-maker’s mindset can shift rapidly or meander, based on the78

attributes in focus or the identity of the items under consideration (Shadlen and Shohamy, 2016; Stewart79

et al., 2006). Importantly, mindset is dynamic. It can change abruptly, motivated by a thought in an earlier80

trial or by interoception during deliberation (e.g., thirst). Unlike perceptual decision-making, where the81

expectation of a sample of evidence is thought to be fixed, conditional on the stimulus, the expectation of82

the evidence bearing on preference is itself potentially dynamic.83

We sought to test the notion that the desirability of an item changes as a result of the deliberation that84

leads to a choice. We hypothesized that if subjective values are dynamic, then value-based decisions85

should exhibit serial dependencies when multiple decisions are made in a sequence. A choice provides86

information not only about which option is preferred, but also about the decision maker’s mindset at87

the moment of the choice (e.g., whether they prioritize satiation or palatability). Therefore, a choice is88

informative about future choices because the decision maker’s mindset is likely to endure longer than a89

single decision, or even multiple decisions.90

We reanalyzed data from Bakkour et al. (2019). Participants were presented with pairs of snacks and91

had to choose the one they preferred. This Food choice task has been used extensively to study the92

sequential sampling process underlying value-based decisions (e.g., Krajbich et al., 2010). Crucially,93

in the Bakkour et al. (2019) experiment, each item was presented multiple times, allowing us to infer94

how preference for an item changes during a single experimental session. Using a novel algorithm we95

call Reval, we show that the subjective value of items changed over the session. The revaluation was96

replicated in a sequential sampling model in which successive samples of evidence are not assumed to97

be conditionally independent. We argue that the revaluation process we observed reflects a process by98

which the value of the alternatives is constructed during deliberation by querying memory and prospecting99

for evidence that bears on desirability (Lichtenstein and Slovic, 2006; Johnson et al., 2007).100
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Results101

Food choice task102

We re-examined data from a previous study in which 30 participants completed a food choice task103

(Bakkour et al., 2019). Prior to the main experiment, participants were asked to indicate their willingness104

to pay for each of 60 snack items on a scale from 0 to US$3 (Fig. 1A). We refer to these explicitly105

reported values as s-values, or 𝑣𝑠 (where 𝑠 stands for ‘static’ as opposed to the ‘dynamic’ values we106

define below). In the main experiment (conducted in an MRI scanner), participants were shown pairs of107

images of previously rated snack items and had to choose which snack they would prefer to consume at108

the end of the study (Fig. 1B).109
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Figure 1. Food choice task

(A) In an initial ‘ratings’ task, participants were shown 60 individual appetizing snack items and asked to indicate how
much they would be willing to pay for each item using a monetary scale ranging from $0 to $3.
(B) In the main experiment, participants were presented with pairs of snack items and asked to choose which one
they would prefer to consume at the end of the session. After making their choice, the chosen item was highlighted by
a square box for an additional 0.5 s. Each of the 30 participants completed 210 trials, with each item appearing 7
times during the experiment. A subset of 60 item pairs were repeated once.
(C) Proportion of trials in which participants selected the right item as a function of the difference in value between the
right and left items (Δ𝑣𝑠). Proportions were first determined for each participant and then averaged across
participants. Error bars indicate the standard error of the mean (s.e.m.) across participants.
(D) Mean response time as a function of the difference in value between the right and left items. Error bars indicate
the s.e.m. across participants. Red curves in panels C-D are fits of a drift-diffusion model (DDM).

The data from Bakkour et al. (2019) replicate the behavior typically observed in the task. Both choice110

and response time were systematically related to the difference in s-value, (Δ𝑣𝑠), between the right and111

left items. Participants were more likely to choose the item to which they assigned a higher value during112

the rating phase (p<0.0001; 0 ∶ 𝛽1 = 0; Eq. 2). They were also more likely to respond faster when the113

absolute value of the difference between the items was greater (p<0.0001; 0 ∶ 𝛽1 = 0; Eq. 3).114

The relationship between Δ𝑣𝑠, choice, and response time is well described by a bounded evidence115

accumulation model (Krajbich et al., 2010; Bakkour et al., 2019). The solid lines in Fig. 1C-D illustrate116

the fit of such a model in which the drift rate depends on Δ𝑣𝑠. Overall, the behavior of our participants in117

the task is similar to that observed in other studies using the same task (e.g., Krajbich et al., 2010; Folke118

et al., 2016; Sepulveda et al., 2020).119
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Limited power of explicit reports of value to explain binary choices120

An intriguing aspect of the decision process in the food choice task is its highly stochastic nature. This121

is evident from the shallowness of the choice function (Fig. 1C): participants chose the item with a122

higher s-value in only 64% of the trials. This variability is typically attributed to unspecified noise when123

recalling item values from memory (e.g., Krajbich et al., 2010). An alternative explanation is rooted124

in constructive value theories, which suggest that the value of each item is constructed, not retrieved,125

during the decision process (Lichtenstein and Slovic, 2006; Shadlen and Shohamy, 2016; Johnson et al.,126

2007). This construction process is sensitive to the context in which it is elicited (e.g., the identity of127

items being compared), so the values reported during the valuation process may differ from those used128

in the choice task. According to this idea, the apparently stochastic choice is a veridical reflection of the129

constructed values.130

If this were true, then the choice on any one cynosure trial—that is, the trial we are scrutinizing—would131

be better explained by values inferred from the choices on the other trials than by the s-values. We132

therefore compared two regression models that produce the log odds of the choice on each cynosure133

trial. The first regression model uses the s-values plus a potential bias for the left or right item. The134

second regression model includes one regression coefficient per item plus a left/right bias. It uses all the135

other trials (except repetitions of the identical pair of items) to establish the weights. While this model136

has more free parameters, the comparison is valid because we are using the models to predict the137

choices made on trials that were not used for model fitting. The better model is the one that produces138

larger log odds of the choice on the cynosure trial. As shown in Fig. 2, the second regression model is139

superior.140
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Figure 2. Individual choices are better explained by values inferred from the other trials than values reported
in the ratings task
Gray data points represent the total log-likelihood of each participant’s choices, given two types of predictions:
(abscissa) from a logistic regression, fit to the static values; (ordinate) from a procedure that infers the values based
on choices on the other trials. Predictions derived from the other trials is better in all but four participants. The red
markers were obtained using the same procedure, applied to choices simulated under the assumption that the
s-values are the true values of the items. It shows that the inferential procedure is not guaranteed to improve
predictions.

To ensure that this result is not produced artifactually from the algorithm, we performed the same analysis141

on simulated data. We fit the experimentally observed choices using a logistic regression model with142

Δ𝑣𝑠 and an offset as independent variables, and simulated the choices by sampling from Bernoulli143

distributions with parameter, 𝑝, specified by the logistic function that best fit each participant’s choices144

(i.e., weighted-coin flips). We repeated the model comparison using the simulated choices and found145

that, contrary to what we observed in the experimental data, the model using explicit value reports is the146

better predictor (Fig. 2, red).147

Taken together, these analyses show that explicit value reports have limited power to predict choices,148

which partially explains their apparent stochasticity (Konovalov and Krajbich, 2019; Verhoef and Franses,149

2003; Wardman, 1988). In the following sections, we elaborate on this observation. Not only do the150

values used to make the binary choices differ from the s-values, they drift apart during the experiment.151
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We show that these changes arise through the deliberative process leading to the preference decisions152

themselves.153

Preferences change over the course of the experiment154

In the experiment, a subset of the 60 snack pairs were presented twice, in a random order within the155

sequence of trials. These trials allow us to assess whether preferences change over the course of156

a session. For these duplicated item pairs, we calculate the average number of times that the same157

item was chosen on both presentations—which we refer to as the match probability. Participants were158

more likely to select the same option when presentations of the same pair were closer in time (Fig. 3).159

To assess the significance of this effect, we fit a logistic regression model using all pairs of trials with160

identical stimuli to predict the probability that the same item would be chosen on both occasions. The161

regression coefficient associated with the number of trials between repetitions was negative and highly162

significant (p<0.0001; t-test, Eq. 8). It therefore follows that preferences are not fixed, not even over the163

course of a single experimental session.164
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Figure 3. Preferences change over time
Probability of making the same choice on the two trials with the same item pair, shown as a function of the difference
in trial number between them (Δtr). Trial pairs with identical items (N=1726) were sorted by Δtr, and the match
probabilities were smoothed with a boxcar function with a width of 100 observations.

Choice alternatives undergo revaluation165

We propose a simple algorithm to characterize how preferences changed over the course of the session.166

It assumes that on each decision, the value of the chosen item increases by an amount equal to 𝛿, and167

the value of the unchosen item decreases by the same amount (Fig. 4A). We refer to the updated values168

as d-values, or 𝑣𝑑 , where 𝑑 stands for ‘dynamic’.169

Fig. 4B illustrates how the value of the items changes over the course of the session, for a given value of170

𝛿, for three snack items. For example, while the item shown with the green curve is initially very valuable,171

as indicated by its high initial rating, its value decreases over the course of the session each time it was172

not selected.173

We determined the degree of revaluation that best explained the participants’ choices. For each174

participant, we find the value of 𝛿 that minimizes the deviance of a logistic regression model that uses175

the d-values to fit the choices made on each trial,176

logit[𝑝choice] = 𝛽0 + 𝛽1𝑣
(lef t)
𝑑 + 𝛽2𝑣

(right)
𝑑 , (1)

where 𝑝choice is the probability of choosing the item that was presented on the right. The d-values are177

initialized to the explicitly reported values for all items, and they are updated by plus or minus 𝛿 when178

an item is chosen or rejected, respectively. Importantly, the updated values only affect future decisions179

involving the items.180

Fig. 4C shows the deviance of the logistic regression model for a representative participant, as a function181

of 𝛿. For this participant, the best explanation of the choices is obtained with a value of 𝛿 ≈ $0.15. We182

fit the value of 𝛿 independently for each participant to minimize the deviance of the logistic regression183
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Figure 4. Revaluation algorithm
(A) Schematic example of the revaluation algorithm applied to one decision. After a choice between items A and B,
the value of the chosen item is increased by 𝛿 and the value of the unchosen item is decreased by the same amount.
(B) Example of value changes due to revaluation, for three items, as a function of the presentation number within the
session. In the experiment, each item was presented 7 times. (C) For a representative participant, deviance of the
logistic regression model that uses the revalued values to explain the choices, for different values of 𝛿. The best fitting
value is ∼$0.15. The inset shows a histogram of the best-fitting 𝛿 values across participants.

model fit to the choices. On average, each choice changed the value of the chosen and unchosen items184

by $0.18 ± 0.016 (mean ± s.e.m., Fig. 4C, inset).185

The values derived from the Reval algorithm explain the choices better than the explicit value reports.186

The choices are more sensitive to variation in Δ𝑣𝑑 , evidenced by the steeper slope (Fig. 5A). When Δ𝑣𝑑187

and Δ𝑣𝑠 are allowed to compete for the same binomial variance, the former explains away the latter. This188

assertion is supported by a logistic regression model that incorporates both Δ𝑣𝑠 and Δ𝑣𝑑 as explanatory189

variables (Eq. 7). The coefficient associated with Δ𝑣𝑠 is not significantly different from zero while the one190

associated with Δ𝑣𝑑 remains positive and highly significant (Figure 5–Figure Supplement 1).191

More surprisingly, Reval allows us to explain the response times better than the explicit value reports,192

even though RTs were not used to establish the d-values. We used the d-values to fit a drift-diffusion193

model to the single-trial choice and response time data, and compared this model with the one that was194

fit using the s-values (Fig. 5A). To calculate the fraction of RT variance explained by each model, we195

subtracted from each trial’s RT the models’ expectation, conditional on Δ𝑣𝑥 (with 𝑥 ∈ {𝑒, 𝑟}) and choice.196

The model that relies on the d-values explains a larger fraction of variance in RT than the model that197

relies on the s-values (Fig. 5B). This indicates that the re-assignment of values following Reval improved198

the capacity of a DDM to explain the response times.199

The DDM that uses the dynamic values also explains the combined choice-RT data better than the200

one that uses the static values. We compared their goodness of fit using the Bayesian Information201

Criteria (BIC), penalizing the DDM that uses the dynamic values for the revaluation update parameter,202

𝛿. For all participants, the DDM that uses the dynamic values provided a better fit than the DDM that203

uses the static values (Figure 5–Figure Supplement 2A). To control for the possibility that the model204

comparison is biased by the extra parameter in the dynamic model (𝛿), we simulated choice and RT205

data for each participant from the DDM model fit to the static values, and fit these simulated data to the206

DDMs using static and dynamic values (in the latter case applying the Reval algorithm prior to fitting).207

For the simulated data, the model comparison favored the DDM using static values for most participants208

(Figure 5–Figure Supplement 2B), indicating that the additional parameter in the dynamic model does209
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Figure 5. Revaluation explains choice and RT better than explicit values
(A) Proportion of rightward choices (top) and mean response time (bottom) as function of the difference in d-value between the two items. The red solid
lines are fits of a drift-diffusion model that uses the d-values. The dashed line corresponds to the fits of a DDM that uses the s-values (same as in
Fig. 1C-D). Error bars indicate s.e.m. across trials. Participants are more sensitive to d-values than s-values (top) and the d-values better explain the full
range of RTs (bottom). (B) Percentage of variance in response times explained by a DDM in which the drift rate depends on either Δ𝑣𝑑 (abscissa) or Δ𝑣𝑠
(ordinate). Each data point corresponds to a different participant. For most participants, the model based on the dynamic values explained a greater
proportion of the variance. (C) d-values are better than s-values at predicting the difficulty of a decision as reflected in the response times. Data points
represent the difference in mean RTs between difficult and easy decisions. Positive values indicate that difficult decisions take longer on average than
easy ones. Difficult and easy are defined relative to the median of the absolute value of Δ𝑣𝑠 (left) or Δ𝑣𝑑 (right). The lines connect the mean RTs of each
participant. P-value is from a paired t-test.
Figure 5–Figure supplement 1. Dynamic values explain away the effect of static values on choice.
Figure 5–Figure supplement 2. Comparison of DDM fits using static and dynamic values.
Figure 5–Figure supplement 3. Similar 𝛿 values obtained by Reval and logistic regression.

not strongly bias the model comparison.210

The time it takes to make a decision, and the difference in value between the items under comparison,211

can be considered complementary measures of decision difficulty. On average, the more similar in212

value the two items are, the longer it would take to commit to a choice. Under this assumption, we can213

compare how well the static and the dynamic values predict the difficulty of the choices as judged by214

their response times. The application of Reval revealed that some decisions that were initially considered215

difficult, because Δ𝑣𝑠 was small, were actually easy, because Δ𝑣𝑑 was large, and vice versa. Grouping216

trials by the Δ𝑣𝑑 led to a wider range of mean RTs compared to when we grouped them by Δ𝑣𝑠 (Fig. 5C).217

The effect can also be observed for individual participants. For each participant, we grouped trials into218

two categories depending on whether the difference in value was less than or greater than the median219

difference. We then calculated the mean RT for each of the two groups of trials. The difference in RT220

between the two groups was greater when we grouped the trials using the d-values than when we used221

the s-values. This implies the d-values were better than the s-values at assessing the difficulty of a222

decision as reflected in the response time.223

We verified that the improvement in fit was not just due to the additional free parameter (𝛿). To do this, we224

again used simulated choices sampled from logistic regression models fit to the participants’ choices, as225

we did for Fig. 2. Because the choices are sampled from logistic functions fit to the choice data, they lead226

to a psychometric function that is similar to that obtained with the experimental data. We reasoned that227

if revaluation were an artifact of the analysis method, then applying the revaluation algorithm to these228

simulated data should lead to values of 𝛿 and goodness of fit similar to those of the real data. To the229
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contrary, (i) the optimal values of 𝛿 for the simulated data were close to zero (Fig. 6A); (ii) the reduction230

in deviance after applying Reval was negligible compared to the reduction in the actual data (Fig. 6B);231

and (iii) we found no difference in the RT median splits between s-values and d-values (Fig. 6C). This232

shows that the improvements in fit quality due to Reval are neither guaranteed nor an artifact of the233

procedure.234
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Figure 6. No revaluation in simulated data
(A) Histogram of the best-fitting revaluation update (𝛿) for data simulated by sampling choices from a logistic function fit to the participants’ choices. The
best-fitting 𝛿 values for the simulated choices are centered around 0. For reference, we have also included a histogram of the 𝛿 values obtained from the
fits to the participants’ data, showing all positive values (gray). (B) Deviance of the logistic regression model used to explain the choices (Eq. 1), fit using
either the static values (ordinate) or the Reval algorithm (abscissa). Each data point corresponds to a different participant. Experimental data are shown in
gray and simulated data (as in panel A) are shown in red. The marked reduction in deviance in the experimental data is absent in the data simulated by
sampling from logistic regressions fit to the static values. (C) Similar to Fig. 5C, for the simulated data. The values obtained from Reval were no better than
the static values at explaining the RTs, as expected, since the 𝛿 values were ∼0 and thus 𝑣𝑑 ≈ 𝑣𝑠.

Imperfect value reports do not explain revaluation away235

The idea that a choice can induce a change in preference is certainly not new (Festinger, 1957). Choice-236

induced preference change (CIPC) has been documented using a free-choice paradigm (Brehm, 1956),237

whereby participants first rate several items, and then choose between pairs of items to which they have238

assigned the same rating, and finally rate the items again. A robust finding is that items that were chosen239

are given higher ratings and items that were not chosen are given lower ratings relative to pre-choice240

ratings, leading to the interpretation that the act of choosing changes the preferences for the items under241

comparison. However, it has been suggested that the CIPC demonstrated with the free-choice paradigm242

can be explained as an artifact (Chen and Risen, 2010). Put simply, the initial report of value may be a243

noisy rendering of the true latent value of the item. If two items, A and B, received the same rating but A244

was chosen over B, then it is likely that the true value for item A is greater than for item B, not because245

the act of choosing changes preferences, but because the choices are informative about the true values246

of the items, which are unchanging.247

We examined whether Reval could be explained by the same artifact. We considered the possibility that248

the items’ valuation in the choice phase are static but potentially different from those reported in the249

ratings phase. If the values are static, but different from those explicitly reported, then Reval could still250

improve choice and RT predictions by revealing the true subjective value of the items.251

We reasoned that if values were static, the improvements we observed in the logistic fits when we applied252

Reval should be the same regardless of how we ordered the trials before applying it. To test this, we253

applied Reval in the direction in which the trials were presented in the experiment, and also in the reverse254

direction (i.e., from the last trial to the first). If the values were static, then the quality of the fits should255

be statistically identical in both cases. In contrast, we observed that the variance explained by Reval256

was greater (i.e., the deviance was lower) when it was applied in the correct order than when it was257

applied in the opposite order (Fig. 7A; p<0.0001, paired t-test). This rules out the possibility that the258

values were static. Moreover, the values produced by applying Reval in the reverse direction explained259

the choices better than the static values (Fig. 7B). This might seem counterintuitive, given that the initial260

values for the Reval algorithm are the s-values, which are explicitly reported before the main experiment.261
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Figure 7. Reval is sensitive to trial order
(A) Deviance obtained by applying Reval to the trials in the order in which they were completed (abscissa) and in the
reverse order (ordinate). Each data point corresponds to a different participant. The deviance is greater (i.e., the fits
are worse) when Reval is applied in the reverse direction. (B) The deviance of the logistic regression model used to
explain the choices (Eq. 1), obtained by applying Reval in the backward direction (ordinate), is lower than the deviance
obtained using the static values (abscissa). Each data point corresponds to a different participant. Experimental data
are shown in gray and data simulated from the logistic fits to the static values (as in Fig. 6A-B) are shown in red.

In a later section, we show that this effect stems from the same process that gives rise to revaluation (Is262

revaluation a byproduct of deliberation?).263

Asymmetric value-updating for chosen and unchosen options264

So far we have assumed that a choice increases the value of the chosen option by 𝛿 and decreases the265

value of the unchosen option by the same amount. Here, we evaluate the possibility that the degree266

of revaluation is different for the chosen and unchosen options. We fit a variant of the Reval algorithm267

with two values of 𝛿, one for the chosen option (𝛿chosen) and one for the unchosen option (𝛿unchosen). Fig. 8268

shows the values that best fit the data for each participant. For each participant, 𝛿chosen>0 and 𝛿unchosen<0;269

in other words, the value of the chosen item typically increases, while the value of the unchosen item270

tends to decrease following a choice. Further, for most participants, the degree of revaluation is greater271

for the chosen option than for the unchosen option. As we speculate in the discussion, this result may be272

related to the unequal distribution of attention between the chosen and unchosen items (Krajbich et al.,273

2010).274

Representation of revalued values in the ventromedial prefrontal cortex275

Several brain areas, in particular the ventromedial prefrontal cortex (vmPFC), have been shown to276

represent the value of decision alternatives during value-based decisions (Kennerley et al., 2009;277

Plassmann et al., 2007; Bartra et al., 2013). Based on our finding that the d-values provide a better278

explanation of the behavioral data than the s-values, we reasoned that the d-values might explain the279

BOLD activity in these areas beyond that explained by the s-values. We included both the s-value and the280

d-value of the chosen item in a whole-brain regression analysis of BOLD activity. This parameterization281

reveals significant correlation of the BOLD signal in the vmPFC with d-value, controlling for s-value (Fig. 9282

and Table S1). In fact, in a separate model that only included s-value, the effect of s-value on BOLD in283

the vmPFC did not survive correction for familywise error rate at a whole-brain level (Figure 9–Figure284

Supplement 1 and Table S2 top). In contrast, another model that only included d-value revealed a285

robust effect of d-value on BOLD in vmPFC that survived whole-brain correction (Figure 9–Figure286

Supplement 1 and Table S2 middle). Finally, to evaluate whether the effect shown in Fig. 9 is not287

simply captured by the difference in d-value and s-value, we ran a fourth model that included only288

(d-value − s-value). The effect of this difference between d-value and s-value on BOLD in vmPFC did289

not survive whole-brain correction (Figure 9–Figure Supplement 1 and Table S2 bottom). Collectively,290

these findings provide additional evidence for revaluation, as capturing a meaningful aspect of the data,291

in the sense that it accounts for the activity of brain areas known to reflect the value of the choice292

alternatives.293
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Figure 8. Stronger revaluation for the chosen than for the unchosen item
We fit a variant of the Reval algorithm that includes separate update values (𝛿s) for the chosen and unchosen options.
The best-fitting 𝛿 value for the chosen option (abscissa) is plotted against the best-fitting value for the unchosen
option (ordinate). Each data point corresponds to one participant. The increase in value for the chosen option is
greater than the decrease in value for the unchosen option (paired t-test).

Z=3.1 Z=3.6

Figure 9. Revaluation reflected in BOLD activity in ventromedial prefrontal cortex
Brain-wide fMRI analysis revealed a significant correlation between d-values and activity in the vmPFC, after
controlling for s-values. The statistical map was projected onto the cortical surface. Shown here are the medial view
of the right and left hemispheres of a semi-inflated surface of a template brain. Heatmap color bars range from z-stat
= 3.1 to 3.6. The map was cluster corrected for familywise error rate at a whole-brain level with an uncorrected
cluster-forming threshold of z = 3.1 and corrected extent of p < 0.05. The full unthresholded map can be viewed here:
https://identifiers.org/neurovault.image:869963.
Figure 9–Figure supplement 1. Representation of d-value, s-value and their difference in BOLD activity.

Revaluation in other datasets of the food-choice task294

To assess the generality of our behavioral results, we applied Reval to other publicly available datasets.295

All involve binary choices between food snacks, similar to Bakkour et al. (2019). We analyze data from296

experiments reported in Folke et al. (2016) and from the two value-based decision tasks reported in297

Sepulveda et al. (2020).298

Reval yields results that are largely similar to those observed in the data from Bakkour et al. (2019).299

The values derived from Reval led to a better classification of choice difficulty than the explicit value300

reports (Fig. 10A). In all three datasets, the 𝛿 values were significantly larger than those obtained from301

simulated data under the assumption that the values were static and equal to the explicitly reported302

values (Fig. 10B). Furthermore, the reduction in the deviance resulting from the application of Reval303

(Eq. 7) was significantly greater than the reduction observed in simulated data (Fig. 10C). [All p-values,304

derived from two-tailed paired t-tests, are shown in the figure].305

In the dataset from Folke et al. (2016), the deviance was significantly smaller when Reval was applied in306
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the forward than in the backward direction, replicating the result in our main experiment. However, in the307

dataset of Sepulveda et al. (2020), no significant difference in deviance was observed (Fig. 10D). We308

do not know what explains this discrepancy, although we believe that the differences in experimental309

design may play a role. In the experiment of Sepulveda et al. (2020), unlike the other two datasets that310

we analyzed, participants performed the experiment in two framing conditions: one in which they chose311

the item the liked the most, and another one in which the chose the item the disliked the most. These312

two conditions alternated in short blocks of 40 trials. This alternation may affect valuation in a way that is313

not captured by the Reval algorithm. We expand on this in Discussion.314

Is revaluation a byproduct of deliberation?315

We hypothesize that the sequential dependencies we identified with Reval may be a corollary of the316

process by which values are constructed during deliberation. The subjective value of an item depends317

on the decision-maker’s mindset, which may change more slowly than the rate of trial presentations.318

Therefore, the subjective value of an item on a given trial may be informative about the value of the item319

the next time it is presented. Subjective values are not directly observable, but choices are informative320

about the items’ value.321

We assessed the plausibility of this hypothesis with a bounded evidence accumulation model that322

includes a parameter that controls the correlation between successive evidence samples for a given323

item. We call this the correlated-evidence drift-diffusion model (ceDDM). We assume that the decision is324

resolved by accumulating evidence for and against the different alternatives until a decision threshold is325

crossed.326

The model differs from standard drift-diffusion, where the momentary evidence is a sample drawn from a327

Normal distribution with expectation equal to Δ𝑣𝑠 plus unbiased noise,  (0,
√

𝑑𝑡). Instead, the value of328

each of the items evolves separately such that the expectations of its value updates are constructed as a329

Markov chain Monte Carlo (MCMC) process thereby introducing autocorrelation between successive330

samples of the unbiased noise (see Methods). Crucially, the correlation is not limited to the duration331

of a trial but extends across trials containing the same item. When an item is repeated in another trial,332

the process continues to evolve from its value at the time a decision was last made for or against the333

item.334

We fit the model to the data from Bakkour et al. (2019). The model was able to capture the relationship335

between choice, response time and Δ𝑣𝑠 (Fig. 11A). Fig. 11B shows the degree of correlation in the336

evidence stream as a function of time, for the model that best fit each participant’s data. After 1 second337

of evidence sampling, the correlation was 0.1062 ± 0.0113 (mean ± s.e.m. across participants). This338

is neither negligible (which would make the model equivalent to the DDM) nor very high (which would339

render sequential sampling useless, since it can only average out the noise that is not shared across340

time).341

The assumptions embodied by the ceDDM are consistent with the results of the Reval analysis. We342

applied the Reval algorithm to simulated data obtained from the best-fitting ceDDM. The results were in343

good agreement with the experimental data. The best-fitting 𝛿 values were positive for all participants344

and in a range similar to what we observed in the data (Fig. 11C). Reval increased the range of RTs345

when trials were divided by difficulty, implying that Reval led to a better classification of easy and difficult346

decisions (Fig. 11D). Reval applied to the trials in the true order explained the simulated choices better347

than when applied in the opposite direction (Fig. 11E). This is because the model assumes that when an348

item first appears, the last sample obtained for that item was the value reported in the ratings phase349

for that item. As more samples are obtained for a given item, the correlation with the explicit values350

gradually decreases. Additionally, the values obtained from applying Reval in the backward direction351

provided a better explanation of the simulated choices than the static values (Fig. 11F), mirroring the352

pattern observed observed in the behavioral data (Fig. 7B). Taken together, the success of ceDDM353

implies that the sequential dependencies we identify with Reval may be the result of a value construction354

process necessary to make a preferential choice.355

Discussion356
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Figure 10. Revaluation observed in other datasets
We applied the Reval method to other publicly available datasets of the food choice task. In the experiment of Folke
et al. (2016) (first column), participants reported their willingness to pay (WTP) for each of 16 common snack items.
In the choice task, they were presented with each unique pair of items and asked to choose the preferred item. Each
unique pair was presented twice for a total of 240 trials per participant. In the experiment of Sepulveda et al. (2020)
(second and third columns), participants (N=31) reported their willingness to pay (WTP) for each of 60 snack items.
They were then presented with pairs of items from which to choose. Pairs were selected based on participants’ WTP
reports to provide comparisons between pairs of high-value, low-value and mixed-value items. The choice task was
performed under two framing conditions: like-framing, selecting the more preferred item, and dislike framing, selecting
the less preferred item. The task consisted of six alternating blocks of like- and dislike-framing (40 trials per block).
(A) RT difference between easy and difficult trials, determined as a median split of |Δ𝑣|. Same analysis as in Fig. 5C.
(B) Histogram of the best-fitting revaluation update (𝛿) for data simulated by sampling choices from a logistic function
fit to the participant’s choices (red), and for the actual data (gray). Same analysis as in Fig. 6A. (C) Comparison of the
deviance with and without Reval. Same analysis as in Fig. 6A. (D) Comparison of the deviance applying Reval in the
forward and backward directions. Same analysis as in Fig. 7A. All p-values shown in the figure are from paired t-tests.
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Figure 11. Revaluation occurs in a DDM with temporally-correlated noise
A drift-diffusion model with non-independent noise (ceDDM) captures the main features of revaluation. (A) The ceDDM accounts for choices (top) and
response times (bottom), plotted as a function of the difference in values obtained from explicit reports (Δ𝑣𝑠). Same data as in Fig. 1C-D. Red curves are
simulations of the best-fitting model. Each trial was simulated 100 times. Simulations were first averaged within trials and then averaged across trials.
Error bars and bands indicate s.e.m. across trials. (B) Noise correlations as a function of time lag, obtained from the best-fitting model. Each curve
corresponds to a different participant. Each curve corresponds to a different participant. (C) 𝛿 parameters derived by applying Reval to simulated data
from the best fitting ceDDM model to each participant’s data. As in the data, 𝛿 > 0 for all participants. (D) Similar analysis as in Fig. 5C applied to
simulations of the ceDDM. As for the data, Reval increased the range of RTs obtained after grouping trials by difficulty (by s-values on the left and d-values
on the right; p-value from paired t-test). (E) Similar analysis to that of Fig. 7A, using the simulated data. As observed in the data, the deviance resulting
from applying Reval in the correct trial order (abscissa) is smaller than when applied in the opposite order (p-value from paired t-test). (F) Similar analysis
to that of Fig. 7B, using the simulated data.

Sequential dependencies and choice-induced preference change357

We identified sequential dependencies between choices in a value-based decision task. Participants358

performed a task in which they had to make a sequence of choices among a limited set of items. The359

best explanation for future choices was obtained by assuming that the subjective value of the chosen item360

increases and the value of the unchosen item decreases after each decision. Evidence for revaluation361

was obtained by analyzing the probability that participants make the same decision in pairs of trials with362

identical options. We also identified revaluation using an algorithm we call Reval. The same algorithm363

allowed us to identify revaluation in other datasets obtained with the food-choice task (Folke et al., 2016;364

Sepulveda et al., 2020).365

The sequential effects we identified can be interpreted as a manifestation of choice-induced preference366

change. The usual paradigms for detecting the presence of CIPCs are based on the comparison of367

value ratings reported before and after a choice (for a review see Izuma and Murayama, 2013; Enisman368

et al., 2021). After a difficult decision, the rating of the chosen alternative often increases and that369

of the rejected alternative often decreases—an effect termed the “spreading of alternatives”. Many370

variants of the free choice paradigm have been developed to control for or eliminate the statistical artifact371

reported by Chen and Risen (2010). One common approach is to compare the “spreading of alternatives”372

observed in the free-choice paradigm (rate-choose-rate, or RCR) with a control task in which a different373

set of participants rate the items twice before the choice phase (RRC). Any spread observed in the RRC374

condition cannot be explained by the CIPC, since in the RRC condition there is no choice between the375

two rating phases. The CIPC is measured indirectly, as the difference in the spread of the alternatives376

between the RCR and the RRC. Other approaches involve asking participants to rate an item that they377

are led to believe they have chosen, when in fact they have not (Sharot et al., 2010; Johansson et al.,378
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2014). Any change in ratings cannot be due to the information provided by a choice, since no real choice379

was made. In addition to the complications introduced by deceiving the participants (e.g., participants380

may suspect the deception but not mention it to the experimenter), the elimination of a real choice381

prevents these paradigms from being used to study the process through which subjective values undergo382

revision during decision formation.383

In contrast, our approach to identify changes in value does not require pre- and post-choice ratings.384

Instead, it requires a sequence of trials in which the same items are presented multiple times (as in385

Luettgau et al., 2020). The revaluation effect we find cannot be explained by the artifact identified by386

Chen and Risen (2010). Using trials with identical items, we show that the nearer in time the trials with387

identical items are to each other, the more likely people are to choose the same option. Further, the388

revaluation algorithm explains choices better when applied in the order in which the trials were presented389

than when applied in the reverse order. These observations are inconsistent with the notion that item390

values are fixed (i.e., do not change) during the experiment, regardless of whether values are the same391

or different from those reported during the rating phase.392

Revaluation during of after deliberation?393

We cannot determine with certainty whether the revaluation occurs after the decision or during the394

deliberation process leading up to the decision. At face value, it might seem that Reval implements395

change after each decision (Festinger, 1957). Yet, Reval simply identifies a change in value, which may396

well occur during the deliberation leading to the decision, perhaps owing to a comparison of other items397

(on other trials) that happen to suggest a dimension of comparison that increases in importance on the398

current trial (Lee and Daunizeau, 2020; Lichtenstein and Slovic, 2006). More broadly, the subjective399

value of an option depends on the mindset of the decision maker. This internal state, which in the400

food-choice task includes aspects such as degree of satiety or sugar craving, can vary over time, causing401

the value of the items to vary as well. If changes in mindset are slow—that is, lasting longer than the402

duration of a decision—then the value of items will be correlated over time.403

We proposed a decision model (ceDDM) in which evidence samples are correlated over time. Fitting the404

model to account for each participant’s choices and response times produces a revaluation of magnitude405

similar to what we observed experimentally. It also predicts that applying Reval in the direction in which406

the trials were presented explains the choices better than applying it in the opposite direction, as we407

observed in the data. This modeling exercise suggests that the CIPC-like effects we identified may be408

due to processes that occur during the deliberation leading up to a choice, rather than post-decision409

processes that attempt to reduce cognitive dissonance. To be clear, we interpret the ceDDM only as a410

proxy for a variety of more nuanced processes. If the mindset endures many individual decisions, the411

subjective value of an item will be correlated over time. While the ceDDM captures only a small aspect412

of this complex process, it has allowed us to explain the sequential dependencies we identified with413

Reval.414

The ceDDM belongs to a class of sequential sampling models in which the drift rate varies over time.415

Such models have already been studied in the context of value-based decisions. For example, in416

the attentional drift-diffusion model (Krajbich et al., 2010), the drift rate varies depending on which417

item is attended, as if the value of the unattended items are discounted by a multiplicative factor. In418

Dynamic Field Theory (Busemeyer and Townsend, 1993), the drift rate varies depending on which419

attribute is attended. Recently, Lee and Pezzulo (2022) showed that a sequential sampling model in420

which the drift rate varies over time can explain the ‘spreading of alternatives’ (SoA) characteristic of421

choice-induced preference change. Lee and Pezzulo (2022) propose that the initial rating of the items422

may be constructed using only the most salient attributes of each item, while in a difficult decision423

more attributes may be considered, leading to a revaluation that informs the rating reported after the424

decision phase (see also Voigt et al., 2019). Consistent with our proposal, Lee and Pezzulo (2022)425

argue that thinking about non-prominent features during decision-making increases the likelihood that426

these features will be recalled when evaluating options in subsequent instances.427

More revaluation for the chosen than the unchosen item428

We observed that the degree of revaluation was higher for the chosen item than for the unchosen item.429

This was revealed by a variant of the Reval algorithm in which we allowed both items to have different430
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updates. We speculate that this difference can be explained by the asymmetric distribution of attention431

between the chosen and unchosen items. It is known that the chosen item is looked at longer than the432

unchosen item (Krajbich et al., 2010). Further, CIPC is more likely for items that are remembered to433

have been chosen or unchosen (Salti et al., 2014). So one possibility is that the revaluation is larger for434

the chosen than for the unchosen item because participants spent more time looking at the chosen item435

and thus are more likely to remember it, leading to a larger change in value (Voigt et al., 2019).436

Another possibility derives from the constructive view of preferences and the potential role of attention437

in decision-making. It is often assumed that value-based decisions involve gathering evidence from438

different alternatives, and that more evidence is gathered from alternatives that are attended to for longer439

(Callaway et al., 2021; Li and Ma, 2021; Krajbich et al., 2010). In the ceDDM, the correlation in value for a440

given item decreases with the number of evidence samples collected from the item (Fig. 11B). Therefore,441

the more that attention is focused on a given item, the greater the difference between the item’s value442

before and after the decision. Because chosen items are attended to for longer than unchosen items443

(e.g., Krajbich et al., 2010), the chosen item should exhibit larger revaluation than the unchosen one,444

which is what we observed in the data (Fig. 8).445

Limitations of our study446

One limitation of our study is that we only examined tasks in which static values were elicited from447

explicit reports of the value of food items. It remains to be determined if other ways of eliciting subjective448

values (e.g., Jensen and Miller, 2010) would lead to similar results. We think so, as the analysis of trials449

with identical item pairs (Fig. 3) and the difference between forward and backward Reval (Fig. 7A) are450

inconsistent with the notion that values are static, regardless of their precise value. It also remains to be451

determined if our results will generalize to non-food items whose value is less sensitive to satiety and452

other dynamic bodily states. Perceptual decisions also exhibit sequential dependencies, and it remains453

to be explored whether these can be explained as a process of value construction, similar to what we454

propose here for the food-choice task (Gupta et al., 2024; Cho et al., 2002; Zylberberg et al., 2018;455

Abrahamyan et al., 2016).456

Another limitation of our study is that, in one of the datasets we analyzed (Sepulveda et al., 2020),457

applying Reval in the forward direction was no better than applying it in the backward direction (Fig. 10).458

We speculate that this failure is related to idiosyncrasies of the experimental design, in particular, the459

use of alternating blocks of trials with different instructions (select preferred vs. select non-preferred).460

More importantly, Reval applied in the backward direction led to a significant reduction in deviance461

relative to that obtained using the static values (Fig. 7B). This reduction was also observed in the ceDDM,462

suggesting that the effect may be explained by changes in valuation during deliberation. However,463

we cannot discard a contribution from other, non-dynamic changes in valuation between the rating464

and choice phase including contextual effects (Lichtenstein and Slovic, 2006), stochastic variability in465

explicit value reporting (Polanía et al., 2019), and the limited range of numerical scales used to report466

value.467

Finally, we emphasize that the ceDDM should be interpreted as a proof-of-principle model used to468

illustrate how stochastic fluctuations in item desirability can explain many of our results. We chose to469

model value changes following an MCMC process. However, other stochastic processes or other ways of470

introducing sequential dependencies (e.g., variability in the starting point of evidence accumulation) may471

also explain the behavioral observations. Furthermore, there likely are other ways to induce changes in472

the value of items other than through past decisions. For example, attentional manipulations or other473

experiences (e.g., actual food consumption) may change one’s preference for an item. The current474

version of the ceDDM does not allow for these influences on value, but we see no fundamental limitation475

to incorporating them in future instantiations of the model.476

Concluding remarks477

Our research contributes to a growing body of work exploring the impact of memory on decision-making478

and preference formation (Biderman et al., 2020), and in particular to the CIPC. It has been suggested479

that the retrieval of an item’s value during decision-making renders it susceptible to modification, leading480

to a revaluation that influences subsequent valuations through a process that has a neural correlate in the481

hippocampus (Luettgau et al., 2020). The link between memorability and preference is also supported482
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by experiments in which the presentation of an item coincides with an unrelated rapid motor response483

that increases subsequent preference for the item (Botvinik-Nezer et al., 2021) and by experiments484

demonstrating that people prefer items to which they have previously been exposed (Zajonc, 1968). As485

in these studies, ours also highlights the role of memory in revaluation. Due to the associative nature486

of memory, successive evidence samples are likely to be dependent (Rhodes and Turvey, 2007). A487

compelling illustration of this effect was provided by Elias Costa and colleagues (Elias Costa et al.,488

2009). Participants were asked to report the first word that came to mind when presented with a word489

generated by another participant, which was then shown to yet another participant. The resulting chain490

resembled Lévy flights in semantic space, characterized by mostly short transitions to nearby words491

and occasional large jumps. Similar dynamic processes have been used to describe eye movements492

during visual search (Bella-Fernández et al., 2021) and the movement of animals during reward foraging493

(Brown et al., 2007; Hills et al., 2015). It is intriguing to consider that a similar process may describe how494

decision-makers search their memory for evidence that bears on a decision.495

Methods496

Food choice task497

A total of 30 participants completed the snack task, which consisted of a rating and a choice phase. The498

experimental procedures were approved by the Institutional Review Board (IRB) at Columbia University,499

and participants provided signed informed consent before participating in the study. The data were500

previously published in Bakkour et al. (2019).501

Rating Phase. Participants were shown a series of snack items in a randomized order on a computer502

screen. They indicated their willingness to pay (WTP) by using the computer mouse to move a cursor503

along an analog scale ranging from $0 to $3 at the bottom of the screen. The process was self-paced, and504

each snack item was presented one at a time. After completing the ratings for all 60 items, participants505

were given the opportunity to revise their ratings. The 60 items were re-displayed in random order, with506

the original bids displayed below each item. Participants either chose to keep their original bid by clicking507

"NO" or to revise the bid by clicking "YES," which re-displayed the analog scale for bid adjustment. We508

take the final WTP that is reported for each item as the corresponding explicit value (s-value).509

Choice phase. From the 60 rated items, 150 unique pairs were formed, ensuring variation in Δ𝑣𝑠. Each510

of the 60 items was included in five different pairs. The 60 item pairs were presented twice, resulting in511

a total of 210 trials per participant. Item pairs were presented in random order, with one item on each512

side of a central fixation cross. Participants were instructed to select their preferred food item and were513

informed that they would receive their chosen food from a randomly selected trial to consume at the514

end of the experiment. The task took place in an MRI scanner. Participants indicated their choice on515

each trial by pressing one of two buttons on an MRI-compatible button box. They had up to 3 seconds to516

make their choice. Once a choice was made, the chosen item was highlighted for 500 ms. Trials were517

separated by an inter-trial interval (ITI) drawn from a truncated exponential distribution with a minimum518

ITI of 1 and a maximum ITI of 12 seconds. The resulting distribution of ITIs across trials had a true mean519

of 3.05 seconds and a standard deviation of 2.0 seconds.520

Data analysis521

Association between the s-values, choice and RT. We used the following logistic regression model522

to evaluate the association between the s-values and the probability of choosing the item on the523

right:524

logit[𝑝right] =
𝑁subj
∑

𝑖=1
𝛽0,𝑖𝐼i + 𝛽1Δ𝑣𝑠 , (2)

where 𝐼i is an indicator variable that takes the value 1 if the trial was completed by subject 𝑖 and 0525

otherwise. We used a t-test to evaluate the hypothesis that the corresponding regression coefficient is526

zero, using the standard error of the estimated regression coefficient.527

Similarly, we used a linear regression model to test the influence ofΔ𝑣𝑠 on response times:528

RT =
𝑁subj
∑

𝑖=1
𝛽0,𝑖𝐼i + 𝛽1 ||Δ𝑣𝑠|| + 𝛽2Σ𝑣𝑠 , (3)
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where | ⋅ | denotes absolute value and Σ𝑣𝑠 is the sum of the value of the two items presented on each529

trial. The last term was included to account for the potential influence of value sum on response time530

(Smith and Krajbich, 2019).531

Predicting choices in cynosure trials. We used two logistic regression models to predict the choice532

in each trial using observations from the other trials. We refer to the trial under consideration as the533

cynosure trial (Fig. 2). One model uses the explicitly reported values:534

logit[𝑝right] = 𝛽0 + 𝛽1Δ𝑣𝑠 , (4)

while the other model uses the choices made on other trials:535

logit[𝑝right] = 𝛽0 +
𝑁items
∑

𝑖=1
𝛽𝑖𝑓 (𝑖) , (5)

where536

𝑓 (𝑖) =

⎧

⎪

⎨

⎪

⎩

1 if item 𝑖 is on the right

−1 if item 𝑖 is on the left

0 otherwise

(6)

For this model, we included an L2 regularization with 𝜆 = 0.5. Both models were fit independently for537

each participant. We only included trials with the first appearance of each item pair (i.e., we did not538

include the repeated trials) so that the choice prediction for the cynosure trial is not influenced by the539

choice made in the paired trial containing the same items as in the cynosure trial.540

Association between d-values and choice. We tested the association between d-values and choice with541

a logistic regression model fit to the choices. We included separate regressors for Δ𝑣𝑑 and Δ𝑣𝑠:542

logit[𝑝right] = 𝛽0 + 𝛽𝑠Δ𝑣𝑠 + 𝛽𝑑Δ𝑣𝑑 (7)

The model was fit separately for each participant. Figure 5–Figure Supplement 1 shows the regression543

coefficients associated with Δ𝑣𝑠 and Δ𝑣𝑑 .544

Choice and response time functions. When plotting the psychometric and chronometric functions545

(e.g., Fig. 1C-D), we binned trials depending on the value of Δ𝑣𝑠 (or Δ𝑣𝑑). The bins are defined by546

the following edges: { −∞,-1.5,-0.75,-0.375,-0.1875,-0.0625, 0.0625,0.1875,0.375,0.75,1.5,∞ }. We547

averaged the choice or RT for the trials (grouped across participants) within each bin and plotted them548

aligned to the mean Δ𝑣𝑥 of each bin.549

Match probability. We used logistic regression to determine if the probability of giving the same550

response to the pair of trials with identical stimuli depended on the number of trials in between (Fig. 3).551

The model is:552

logit[𝑝𝑚𝑎𝑡𝑐ℎ] =
𝑁subj
∑

𝑖=1
𝛽0,𝑖𝐼i +

𝑁subj
∑

𝑖=1
𝛽1,𝑖𝐼i|Δ𝑣𝑠| + 𝛽2

(

T2𝑛𝑑 − T1𝑠𝑡
)

(8)

where 𝑝𝑚𝑎𝑡𝑐ℎ is the probability of choosing the same item on both occasions, 𝐼i is an indicator variable553

that takes a value of 1 if the pair of trials correspond to subject 𝑖, and zero otherwise, and 𝑇1𝑠𝑡 and 𝑇2𝑛𝑑554

are the trial number of the first and second occurrences of the same pair, respectively. We used a t-test555

to evaluate the hypothesis that 𝛽2 = 0 (i.e., that the separation between trials with identical stimuli had no556

effect on 𝑝match.557

Drift-diffusion model558

We fit the choice and RT data with a drift-diffusion model. It assumes that the decision variable, 𝑥,559

is given by the accumulation of signal and noise, where the signal is a function of the difference in560

value between the items, Δ𝑣, and the noise is equal to
√

𝑑𝑡, where 𝑑𝑡 is the time step, such that the561

accumulated noise after 1 second of unbounded accumulation, the variance of the accumulated noise is562

equal to 1. The decision variable follows the difference equation,563

𝑥𝑡+1 = 𝑥𝑡 + 𝜅 𝑑𝑡 (𝜇+𝜇0) +
√

𝑑𝑡 𝜂𝑡 , (9)
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where 𝜂𝑡 is sampled from a normal distribution with a mean 0 and variance 1, 𝜅 is a signal-noise parameter,564

𝜇 is the drift rate and 𝜇0 is a bias coefficient that is included to account for potential asymmetries between565

right and left choices.566

We assume that the drift rate is a (potentially nonlinear) function of Δ𝑣𝑥. We parameterize this relationship567

as a power law, so that568

𝜇 = sign(Δ𝑣𝑥)|Δ𝑣𝑥|𝛾 , (10)

where sign is the sign operation, || indicates absolute value, and 𝛾 is a fit parameter.569

The decision terminates when the accumulated evidence reaches an upper bound, signaling a rightward570

choice, or a lower bound, signaling a leftward choice. The bound is assumed to collapse over time. It is571

constant until time 𝑑, and then it collapses at rate 𝑎:572

𝐵(𝑡) = ±

{

𝐵0 if 𝑡 < 𝑑
𝐵0exp−𝑎(𝑡−𝑑) otherwise.

(11)

Collapsing bounds are needed to explain why choices that are consistent with the value ratings are573

usually faster than inconsistent choices for the same Δ𝑣𝑥.574

The response time is the sum of the the decision time, given by the time taken by the diffusing particle to575

reach of the bounds, and a non-decision time which is assumed to be normally distributed with mean 𝜇𝑛𝑑576

and standard deviation 𝜎𝑛𝑑 .577

The model has 8 parameters: {𝜅, 𝐵0, 𝑎, 𝑑, 𝛾, 𝜇0, 𝜇𝑛𝑑 , 𝜎𝑛𝑑}. The standard deviation of the non-decision times578

(𝜎𝑛𝑑) was fixed to 0.05 s. For the fits shown in Fig. 1C-D and Fig. 5A, we fit the model to grouped data from579

all participants. For the analysis of variance explained (Fig. 5) and model comparison (Figure 5–Figure580

Supplement 2), we fit the model separately for each participant. The model was fit to maximize the log581

of the likelihood of the parameters given the single-trial choice and RT:582

log L(parameters) =
𝑛trials
∑

𝑖=1
log

(

𝑝
(

choice(𝑖),RT(𝑖)
|Δ𝑣(𝑖), parameters

))

. (12)

We evaluate the likelihood by numerically solving the Fokker-Planck (FP) equation that described the583

dynamics of the drift-diffusion process, using the Chang-Cooper fully-implicit method (Chang and Cooper,584

1970; Kiani and Shadlen, 2009; Zylberberg et al., 2016). For computational considerations, we bin585

the values of Δ𝑣𝑥 to multiples of $0.1. From the numerical solution of the FP equation, we obtain the586

distribution of decision times, which is convolved with the truncated Gaussian distribution of non-decision587

latencies. The truncation ensures that the non-decision times are non-negative, which could otherwise588

occur during the optimization process for large values of 𝜎𝑛𝑑 . The parameter search was performed589

using the Bayesian Adaptive Direct Search (BADS) algorithm (Acerbi and Ma, 2017).590

Revaluation algorithm591

The Reval algorithm was applied to each participant independently. The values are initialized to those592

reported during the ratings phase. They are then revised, based on the outcome of each trial, in the593

order of the experiment. The value of the chosen item is increased by 𝛿 and the value of the unchosen594

item is decreased by the same amount. The revaluation affects future decisions in which the same item595

is presented.596

We searched for the value of 𝛿∗ that minimizes the deviance of the logistic regression model specified by597

Eq. 1. The model’s deviance is given by:598

DEV =
𝑁tr
∑

𝑖=1
2 loge

(

1
𝑐𝑖

)

(13)

where the sum is over trials and 𝑐𝑖 is the probability assigned to the choice on trial 𝑖 obtained from the599

best-fitting logistic regression model.600

We complemented this iterative algorithm with a second approach that estimates 𝛿∗ using the history601

of choices preceding each trial. Nearly identical 𝛿 values are derived using a single logistic regression602
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model in which the binary choice made on each trial depends on the number of times each of the two603

items was selected and rejected on previous trials. The model is:604

logit[𝑝right] =
𝑁subj
∑

𝑖=1
𝛽0,𝑖𝐼𝑖 +

𝑁subj
∑

𝑖=1
𝛽1,𝑖𝐼𝑖Δ𝑣𝑠 +

𝑁subj
∑

𝑖=1
𝛽2,𝑖𝐼𝑖Δ𝑐ℎ (14)

where, as before, 𝐼𝑖 is an indicator variable that takes a value of 1 if the trial was completed by subject605

𝑖 and 0 otherwise. The key variable is Δ𝑐ℎ. It depends on the number of past trials in which the item606

presented on the right in the current trial was chosen (𝑛rightch ) and not chosen (𝑛right¬ch ), and similarly, the607

number of past trials in which the item presented on the left in the current trial was chosen (𝑛lef tch ) and not608

chosen (𝑛lef t¬ch):609

Δ𝑐ℎ = 𝑛rightch − 𝑛right¬ch + 𝑛lef t¬ch − 𝑛lef tch . (15)

The variable Δ𝑐ℎ represents the influence of past choices. The signs in Eq. 15 are such that a positive610

(negative) value of Δ𝑐ℎ indicates a bias toward the right (left) item. To obtain the 𝛿∗ in units equivalent to611

those derived with Reval, we need to divide the regression coefficient 𝛽2,𝑖 by the sensitivity coefficient 𝛽1,𝑖,612

separately for each subject 𝑖. As can be seen in Figure 5–Figure Supplement 3, the values obtained613

with this method are almost identical to those obtained with the Reval algorithm.614

Correlated-evidence DDM615

The model assumes that at each moment during the decision-making process, the decision-maker can616

only access a noisy sample of the value of each item. These samples are normally distributed, with617

parameters such that their unbounded accumulation over one second is also normally distributed with a618

mean equal to 𝜅𝑣𝑠, where 𝑣𝑠 is the explicit value reported during the Ratings phase and 𝜅 is a measure619

of signal-to-noise, and a standard deviation equal to 1.620

Crucially, for each item, the noise in successive samples is correlated. To generate the correlated621

samples, we sample from a Markov chain using the Metropolis-Hastings algorithm (Chib and Greenberg,622

1995). The target distribution is the normally distributed value function described in the previous623

paragraph. The proposal density is also normally distributed. Its width determines the degree of624

correlation between consecutive samples. Typically, the correlation between successive samples is625

considered a limitation of the Metropolis-Hastings algorithm. Here, however, it allows us to generate626

correlated samples from a target distribution. The standard deviation of the proposal density is
√

𝑑𝑡∕𝜏.627

Higher values of 𝜏 result in a narrower proposal density, hence more strongly correlated samples. We628

sample from the same Markov chain across different trials in which the same item is presented, so that629

the last sample obtained about an item in a given trial is the initial state of the Markov chain the next630

time the item is presented.631

At each moment (𝑑𝑡 = 40𝑚𝑠), we sample one value for the left item and another for the right item,632

compute their difference (right minus left), and accumulate this difference until it crosses a threshold at633

+𝐵0, signaling a rightward choice, or at −𝐵0, signaling a leftward choice. The decision time is added to634

the non-decision time, 𝜇𝑛𝑑 , to obtain the response time.635

We fit the model to the data as follows. For each item, we simulate many Markov chains. In each trial,636

𝑖, we take samples from each chain until the accumulation of these samples reaches one of the two637

decision thresholds. Then we calculate the likelihood (𝐿) of obtaining the choice and the RT displayed638

by the participant on that trial as:639

𝐿(choicei,RTi) =
1
𝑁

𝑁
∑

𝑗=1
𝐿𝑗(choicei,RTi)

𝐿𝑗(choicei,RTi) = 𝟙𝑖,𝑗  (RTi|RT
(j)
i , 𝜎nd)

(16)

where 𝑁 = 1, 000 is the number of Markov chains, 𝟙 is an indicator function that takes the value 1 if the640

choice made on chain 𝑗 is the same as the choice made by the participant on trial 𝑖 and 0 otherwise,641

 (𝑥|𝑦, 𝑧) is the normal probability density function with mean 𝑦 and standard deviation 𝑧 evaluated at 𝑥,642

and 𝜎𝑛𝑑 is a parameter fit to the data.643

When an item is presented again in a future trial, the initial state of each Markov chain depends on644

the state it was in the last time the item was presented. The initial state of each chain is obtained by645
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sampling 1,000 values (one per chain) from the distribution given by the final state of each chain. The646

sampling is weighted by the value of 𝐿𝑗 of each chain (Eq. 16), so that chains that better explained the647

choice and RT in the last trial are more likely to be sampled from in future trials.648

The model has 5 parameters per participant: {𝜅, 𝐵0, 𝜏, 𝜇𝑛𝑑 , 𝜎𝑛𝑑}, which were fit to maximize the sum,649

across trials, of the log of 𝐿 using BADS (Acerbi and Ma, 2017).650

The correlations in Fig. 11B were generated using the best-fitting parameters for each participant to651

simulate 100,000 Markov chains. We generate Markov chain samples independently for the left and652

right items over a 1-second period. To illustrate noise correlations, the simulations assume that the653

static value of both the left and right items is zero. We then calculate the difference in dynamic value654

(𝑥) between the left and right items at each time (𝑡) and for each of the Markov chains (𝑖). Pearson’s655

correlation is computed between these differences at time zero, 𝑥𝑖(𝑡=0), and at time 𝑥𝑖(𝑡=𝜏), for different656

time lags 𝜏. Correlations were calculated independently for each participant. Each trace in Fig. 11B657

represents a different participant.658

fMRI analysis659

Acquisition. Imaging data were acquired on a 3T GE MR750 MRI scanner with a 32-channel head coil.660

Functional data were acquired using a T2∗-weighted echo planar imaging sequence (repetition time (TR)661

= 2 s, echo time (TE) = 22 ms, flip angle (FA) = 70◦, field of view (FOV) = 192 mm, acquisition matrix662

of 96 x 96). Forty oblique axial slices were acquired with a 2 mm in-plane resolution positioned along663

the anterior commissure-posterior commissure line and spaced 3 mm to achieve full brain coverage.664

Slices were acquired in an interleaved fashion. We acquired three runs of the food choice task, each665

composed of 70 trials. Each of the food choice task functional runs consisted of 212 volumes and lasted666

7 minutes. In addition to functional data, a single three-dimensional high-resolution (1 mm isotropic)667

T1-weighted full-brain image was acquired using a BRAVO pulse sequence for brain masking and image668

registration.669

Preprocessing. Raw DICOM files were converted into Nifti file format and organized in the Brain670

Imaging Data Structure (BIDS) using dcm2niix (Li et al., 2016). Results included in this manuscript come671

from preprocessing performed using fMRIPrep 22.1.1 (Esteban et al. (2018b); Esteban et al. (2018a);672

RRID:SCR_016216), which is based on Nipype 1.8.5 (Gorgolewski et al. (2011); Gorgolewski et al.673

(2018); RRID:SCR_002502).674

Anatomical data preprocessing. The T1-weighted (T1w) image was corrected for intensity non-675

uniformity (INU) with N4BiasFieldCorrection (Tustison et al., 2010), distributed with ANTs 2.3.3676

(Avants et al., 2008, RRID:SCR_004757), and used as T1w-reference throughout the workflow. The677

T1w-reference was then skull-stripped with a Nipype implementation of the antsBrainExtraction.sh678

workflow (from ANTs), using OASIS30ANTs as target template. Volume-based spatial normaliza-679

tion to one standard space (MNI152NLin2009cAsym) was performed through nonlinear registration680

with antsRegistration (ANTs 2.3.3), using brain-extracted versions of both T1w reference and the681

T1w template. The following template was selected for spatial normalization: ICBM 152 Nonlinear682

Asymmetrical template version 2009c [Fonov et al. (2009), RRID:SCR_008796; TemplateFlow ID:683

MNI152NLin2009cAsym].684

Functional data preprocessing. For each of the 3 BOLD runs per subject, the following preprocessing685

was performed. First, a reference volume and its skull-stripped version were generated using a custom686

methodology of fMRIPrep. Head-motion parameters with respect to the BOLD reference (transforma-687

tion matrices, and six corresponding rotation and translation parameters) are estimated before any688

spatiotemporal filtering using mcflirt (FSL 6.0.5.1:57b01774, Jenkinson et al., 2002). The BOLD689

time-series (including slice-timing correction when applied) were resampled onto their original, native690

space by applying the transforms to correct for head-motion. These resampled BOLD time-series will be691

referred to as preprocessed BOLD in original space, or just preprocessed BOLD. The BOLD reference692

was then co-registered to the T1w reference using mri_coreg (FreeSurfer) followed by flirt (FSL693

6.0.5.1:57b01774, Jenkinson and Smith, 2001) with the boundary-based registration (Greve and Fischl,694

2009) cost-function. Co-registration was configured with six degrees of freedom. Several confounding695

time-series were calculated based on the preprocessed BOLD: framewise displacement (FD) and696

DVARS. FD was computed using two formulations following Power (absolute sum of relative motions,697
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Power et al. (2014)) and Jenkinson (relative root mean square displacement between affines, Jenkinson698

et al. (2002)). FD and DVARS are calculated for each functional run, both using their implementations in699

Nipype (following the definitions by Power et al., 2014). The head-motion estimates calculated in the700

correction step were also placed within the corresponding confounds file. The confound time series were701

derived from head motion estimates (Satterthwaite et al., 2013). Frames that exceeded a threshold of702

0.5 mm FD or 1.5 standardized DVARS were annotated as motion outliers. The BOLD time-series were703

resampled into standard space, generating a preprocessed BOLD run in MNI152NLin2009cAsym space.704

First, a reference volume and its skull-stripped version were generated using a custom methodology705

of fMRIPrep. All resamplings can be performed with a single interpolation step by composing all the706

pertinent transformations (i.e. head-motion transform matrices, susceptibility distortion correction when707

available, and co-registrations to anatomical and output spaces). Gridded (volumetric) resamplings were708

performed using antsApplyTransforms (ANTs), configured with Lanczos interpolation to minimize the709

smoothing effects of other kernels (Lanczos, 1964).710

Many internal operations of fMRIPrep use Nilearn 0.9.1 (Abraham et al., 2014, RRID:SCR_001362),711

mostly within the functional processing workflow. For more details of the pipeline, see the section712

corresponding to workflows in fMRIPrep’s documentation.713

Analysis. We conducted a GLM analysis to look at BOLD activity related to d-values, s-values, and the714

difference between the two. We ran four separate models.715

Main fMRI Model included five regressors: (i) onsets for all valid trials, modeled with a duration equal to716

the average RT across all valid choices and participants; (ii) same onsets and duration as (i) modulated717

by RT demeaned across these trials within each run for each participant; (iii) same onsets and duration718

as (i) but modulated by the s-value of the chosen item demeaned across trials within each run for719

each participant; (iv) same onsets and duration as (i) but modulated by the d-value of the chosen item720

demeaned across these trials within each run for each participant; (v) onsets for missed trials. The map721

in Fig. 9 was generated using this model.722

fMRI Model of s-value only included four regressors; all but regressor (iv) in Main fMRI Model. The map723

in Figure 9–Figure Supplement 1 top was generated using this model.724

fMRI model of d-value only included four regressors; all but regressor (iii) in Main fMRI Model. The map725

in Figure 9–Figure Supplement 1 middle was generated using this model.726

fMRI model of d-value − s-value only included four regressors; regressors (i) and (ii) were the same as727

in Main fMRI Model, regressor (iii) had the same onsets and duration as (i) but modulated by (d-value −728

s-value) of the chosen item demeaned across trials within each run for each participant, and regressor729

(iv) included onsets for missed trials. The map in Figure 9–Figure Supplement 1 bottom was generated730

using this model.731

All four models included the six 𝑥, 𝑦, 𝑧 translation and rotation motion parameters, FD, DVARS, and732

motion outliers obtained from textitfmriprep (described above) as confound regressors of no interest. All733

regressors were entered at the first level of analysis, and all (except the added confound regressors)734

were convolved with a canonical double-gamma hemodynamic response function. The time derivative of735

each regressor (except the added confounding regressors) was included in the model. No orthogonaliza-736

tion between regressors was performed. Models were estimated separately for each participant and737

run.738

GLMs were estimated using FSL’s FMRI Expert Analysis Tool (FEAT). The first-level time-series GLM739

analysis was performed for each run per participant using FSL’s FILM. The first-level contrast images740

were then combined across runs per participant using fixed effects. The group-level analysis was741

performed using FMRIB’s Local Analysis of Mixed Effects (FLAME1) (Beckmann et al., 2003). Group-742

level maps were corrected to control the family-wise error rate using cluster-based Gaussian random743

field correction for multiple comparisons, with an uncorrected cluster-forming threshold of z=3.1 and744

corrected extent threshold of p < 0.05.745
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Supplemental information920

Cluster # Regions in cluster Cluster size p-value Peak Z x y z

1
R Parietal Operculum Cortex

58 0.00885 4.38 50.5 -29 29.5
R Planum Temporale

2 L Superior Parietal Lobule 53 0.0149 4.08 29.5 -42.5 56.5

3
R Frontal Pole

51 0.0184 4.28 -0.5 56.5 -9.5R Frontal Medial Cortex
L Frontal Medial Cortex

Table S1. Activation table for map in Fig. 9
The effect of d-value on BOLD in Main fMRI model. For each cluster, the list shows regions from the Harvard-Oxford
atlas that contained a peak activation of a subcluster, along with the peak p-value, the peak effect size, and the peak
X/Y/Z location for the cluster in MNI space.

s-value of chosen item
Cluster # Regions in cluster Cluster size p-value Peak Z x y z

1
R Lateral Occipital Cortex

903 4.6 × 10−23 4.79 40 -66.5 50.5
R Angular Gyrus

2

L Lateral Occipital Cortex

786 6.28 × 10−21 4.74 -45.5 -54.5 59.5
L Middle Temporal Gyrus
L Supramarginal Gyrus
L Angular Gyrus

3
R Precuneous Cortex

242 6.09 × 10−9 4.32 10 -75.5 41.5L Precuneous Cortex
R Lateral Occipital Cortex

4
R Inferior Temporal Gyrus

235 9.54 × 10−9 4.77 58 -56 -12.5
R Middle Temporal Gyrus

5 R Caudate 116 4.76 × 10−5 4.36 11.5 10 -3.5
6 L Caudate 111 7.18 × 10−5 4.13 -9.5 10 -0.5
7 R Precuneous Cortex 80 0.00107 4.1 11.5 -48.5 38.5

8
L Precuneous Cortex

71 0.00248 4.43 -14 -62 11.5
L Intracalcarine Cortex

9 L Cingulate Gyrus 49 0.023 3.7 -2 -44 38.5
10 R Middle Frontal Gyrus 43 0.0443 4.07 40 13 53.5

d-value of chosen item
Cluster # Regions in cluster Cluster size p-value Peak Z x y z

1 L Precuneous Cortex 614 6.56 × 10−17 4.38 -11 -71 29.5

2
R Angular Gyrus

271 2.39 × 10−9 4.65 52 -56 14.5R Lateral Occipital Cortex
R Supramarginal Gyrus

3 L Lateral Occipital Cortex 252 7.44 ∗ 10−9 4.29 -41 -75.5 29.5

4

L Angular Gyrus

136 1.66 × 10−5 4.05 -57.5 -56 38.5
L Supramarginal Gyrus
L Lateral Occipital Cortex
L Supramarginal Gyrus

5
R Precuneous Cortex

115 8.27 × 10−5 4.09 11.5 -50 41.5
R Cingulate Gyrus

6
R Middle Temporal Gyrus

103 0.000216 4.47 55 -53 2.5R Inferior Temporal Gyrus
R Lateral Occipital Cortex

7 L Caudate 94 0.000455 4.46 -9.5 10 -0.5

8
L Paracingulate Gyrus

88 0.000758 4.13 -12.5 43 -6.5
L Frontal Pole

9
R Supramarginal Gyrus

72 0.00313 3.88 59.5 -45.5 41.5
R Angular Gyrus

10 L Middle Frontal Gyrus 50 0.0263 4 -29 13 53.5
11 R Caudate 45 0.0443 4.14 11.5 10 -3.5

(d-value − s-value) of chosen item
Cluster # Regions in cluster Cluster size p-value Peak Z x y z

1
Parietal Operculum Cortex

51 0.0182 4.48 50.5 -29 29.5
Planum Temporale

Table S2. Activation tables for maps in Figure 9–Figure Supplement 1
The effect of s-value on BOLD in fMRI Model of s-value only (top), the effect of d-value on BOLD in fMRI Model of
d-value only (middle), and the effect of (s-value − d-value) in fMRI model of d-value − s-value only (bottom). For
each cluster, the list shows regions from the Harvard-Oxford atlas that contained a peak activation of a subcluster,
along with the peak p-value, the peak effect size, and the peak X/Y/Z location for the cluster in MNI space.
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Figure 5–Figure supplement 1. Static and dynamic values competing to explain choice. We fit the
logistic regression model indicated in the figure separately for each participant, where Δ𝑣𝑠 and Δ𝑣𝑑 are
the difference in static and dynamic values for each trial, respectively. The ordinate show the regression
coefficient associated with Δ𝑣𝑠 and the abscissa show the regression coefficient associated with Δ𝑣𝑑 .
Each data point corresponds to a different participant. Error bars indicate the standard error of the
associated regression coefficient.
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Figure 5–Figure supplement 2. Comparison of DDM fits using static and dynamic values. (A) BIC
comparison between the DDM in which the drift rate depends on either Δ𝑣𝑑 or Δ𝑣𝑠. The comparison
favors the model that uses the dynamic values for all participants. (B) Same as A, but for choice and
response time data simulated from the DDM fit to the participants’ data using the static (i.e., explicitly
reported) values.
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Figure 5–Figure supplement 3. Similar 𝛿 values obtained by Reval and logistic regression.
Comparison of the 𝛿 values obtained by the Reval algorithm, and by an alternative approach that uses a
single logistic regression model, applied to each participant’s data, that takes into account the number of
times the items in the current trial were presented and either chosen or not chosen in previous trials
(Eq. 14). Each data point corresponds to one participant. The method lead to values of 𝛿 which are
almost identical to Reval.
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s-value of chosen item

d-value of chosen item

(d-value — s-value) of chosen item

Z=3.1 Z=3.6
Figure 9–Figure supplement 1. d-value, but to a lesser extent s-value and the difference between
the two, is reflected in BOLD activity in ventromedial prefrontal cortex. Brain-wide fMRI analyses
with whole-brain correction for multiple comparisons revealed 1) no significant correlation between
s-value and activity in the vmPFC, but a significant correlation with BOLD in the striatum and in the
precuneus when only s-value was included in the model (top), 2) a significant correlation between d-value
and BOLD in vmPFC, striatum, and precuneus in a model that only included d-value (middle), and 3)
no significant correlation between the difference between d-value and s-value in the vmPFC when only
this difference is included in the model. The statistical maps from these three independent models were
projected onto the cortical surface. Shown here are the medial view of the right and left hemispheres
of a semi-inflated surface of a template brain. The heatmap color bar ranges from z-stat = 3.1 to 3.6.
All maps were cluster corrected for familywise error rate at a whole-brain level with an uncorrected
cluster-forming threshold of z = 3.1 and corrected extent of p < 0.05. Full unthresholded maps can be
viewed here: https://identifiers.org/neurovault.collection:17498.
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