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Abstract: Complex regional pain syndrome type I (CRPS-I) is a chronic painful condition. We
investigated whether manual therapy (MT), in a chronic post-ischemia pain (CPIP) model, is capable of
reducing pain behavior and oxidative stress. Male Swiss mice were subjected to ischemia-reperfusion
(IR) to mimic CRPS-I. Animals received ankle joint mobilization 48h after the IR procedure, and
response to mechanical stimuli was evaluated. For biochemical analyses, mitochondrial function as
well as oxidative stress thiobarbituric acid reactive substances (TBARS), protein carbonyls, antioxidant
enzymes superoxide dismutase (SOD) and catalase (CAT) levels were determined. IR induced
mechanical hyperalgesia which was subsequently reduced by acute MT treatment. The concentrations
of oxidative stress parameters were increased following IR with MT treatment preventing these
increases in malondialdehyde (MDA) and carbonyls protein. IR diminished the levels of SOD and
CAT activity and MT treatment prevented this decrease in CAT but not in SOD activity. IR also
diminished mitochondrial complex activity, and MT treatment was ineffective in preventing this
decrease. In conclusion, repeated sessions of MT resulted in antihyperalgesic effects mediated, at
least partially, through the prevention of an increase of MDA and protein carbonyls levels and an
improvement in the antioxidant defense system.
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1. Introduction

Complex regional pain syndrome type I (CRPS-I) is a chronic painful condition that frequently
develops after a deep tissue injury, such as a fracture or sprain, without nerve injury. CPRS-I is
clinically characterized by a variety of sensory disturbances including allodynia, hyperalgesia, edema,
vasomotor/sudomotor deregulation, skin and underlying tissue trophism modification. Symptoms
typically begin in the distal part of the affected limb and spread to the unaffected or opposite limb [1–7].

The pathophysiology of this syndrome remains unclear, however inflammatory and neural
mechanisms have been suggested as potential contributors. Both peripheral and central mechanisms
are thought to play a prominent role; however, evidence exists indicating that oxidative stress (OS)
also plays an important role [5–7]. Individuals with CRPS-I suffer from alterations in central and
peripheral nervous system processing leading to decreased pain pressure threshold and increased
temporal summation of pain [8]. These physiological changes most likely involve OS changes, which
are known to be an important mechanism following tissue injury and hypoxia [9,10].

A rodent model of chronic post-ischemia pain (CPIP) was developed by Coderre et al. [1]
which mimics much of the clinical symptomatology associated with CRPS-I. This model was first
developed in rats [1] and later adapted for mice [11]. It produces ischemia followed by reperfusion,
and its initial phase is characterized by hyperemia and edema that produces micro vascular injury,
deep tissue inflammation, muscle nociceptor activation and ectopic activation of afferent sensory
axons via an inflammatory cascade and endoneural ischemia [1]. Reactive oxygen species (ROS) are
known to play a predominate role in the inflammatory event cascade created by prolonged hindlimb
ischemia-reperfusion (IR) [1,12,13] resulting in the production of oxidants, superoxide, hydroxyl
radicals and hydrogen peroxide among others. Assuming that the generation of free radicals is partially
responsible for CRPS-I in CPIP, Coderre et al. [1] demonstrated that two free radical eliminators
reduced signs of mechanical allodynia emphasizing the importance of oxidants in the maintenance of
CRPS-I neuropathic pain symptoms. Furthermore, the presence of OS in patients with CRPS-I patients
has been indirectly confirmed thereby strengthening the rationale for clinical use of antioxidants and
free radical scavengers to treat and/or prevent CRPS type I [14,15].

Pain management in combination with strength and flexibility training along with manual soft
tissue techniques applied to the involved extremity have been the traditional clinical treatment of
CRPS [16–18]. In this sense, typical treatment strategies include desensitization therapy, manual therapy,
progressive exercise, and patient education [16–19]. Among conservative therapies, manual therapy
(i.e., joint mobilization) stands out as a possible therapeutic for the reduction of symptoms and signs of
CRPS-I since it is commonly used to treat a number of painful conditions [20]. Main clinical effects of
manual therapy include pain reduction, functional improvement and aspects of neurophysiological
modulation [21,22]. Manual therapy is commonly used to treat a variety of musculoskeletal conditions
as an adjunct treatment, but literature describing its use for managing CRPS is scarce. Clinical and
preclinical studies have provided a good rationale to test the effect of manual therapy (MT) on CRPS-I
and to determine the physiological contribution of oxidative stress. For example, in a clinical case
series of individuals experiencing bilateral lower extremity CRPS, application of MT to the lumbar
spine along with traditional conservative care resulted in meaningful clinical outcomes that were most
likely associated with the MT intervention [23]. Furthermore, Kolberg et al. [24] reported that joint
manipulation in humans increased catalase (CAT) activity in erythrocytes showing the antioxidative
effect of manual therapy intervention.

Our research group has demonstrated that activation of inhibitory neuroreceptors such as
adenosine A, opioid, cannabinoid 2 (CB2), peripheral/spinal and cannabinoid 1 (CB1) are involved in
analgesic effects of MT in mice [2,25,26]. Interestingly, these endogenous systems activated by MT
modulate oxidative stress. In rats, stress-activation of lipid peroxidation in plasma and liver tissue was
reduced by the injection of opioid peptides while at the same time increasing catalase activity [27].
In human monocytes/macrophages, it has been shown that during inflammation the CB1 receptor
is highly expressed and that its activation directly modulates inflammatory activity by means of
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production of ROS [28]. Moreover, the activation of the CB2 receptor may generate inhibitory signaling
that directly suppresses the production of ROS stimulated by the activation of the receptor CB1 [29]. In
addition, the adenosinergic system is known to modulate oxidative stress especially via activation of
the A1 receptor [30].

Although the neurophysiological effects of MT has been demonstrated in other animal pain
models, to date it has not been investigated in a CRPS-I model. The purpose of this study was
to determine if MT can indeed reduce pain behavior and oxidative stress by means of enzymatic
anti-oxidative system activation in a CRPS-I model. Thus, the results of the present study may serve
as a basis for future clinical trials aiming to evaluate the effects of MT on CRPS-I or other painful
conditions that have oxidative stress as the main pathophysiology. In addition, this study also shows
the possibility of beneficial effects in the association of MT with anti-oxidant therapies in the treatment
of chronic pain.

2. Materials and Methods

2.1. Animals

All experimental procedures were approved by the Ethics Committee of the University of Southern
Santa Catarina at Palhoça, Santa Catarina, Brazil (protocol number 15.034.3.07.IV) and performed in
accordance with the National Institute of Health Animal Care Guidelines (NIH publications number
80-23). Male Swiss mice (25–35 g) were obtained from the Biotério Central da Universidade Federal de
Santa Catarina (UFSC, Florianópolis, Santa Catarina, Brazil) and group housed at 22 ± 2 ◦C under a
12 h light/12 h dark cycle (lights on at 6 a.m.) with food and water ad libitum. Mice were habituated
to the testing environment for a minimum of 1 h before any experiments were conducted between
8 a.m. and noon [31]. Figure 1 shows the experimental timeline of IR injury, MT treatment and
tissue harvesting.
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Figure 1. Timeline of treatment and analyses. Ischemia-reperfusion (IR): Ischemia and reperfusion;
D: day; min: minutes; h: hour.

2.2. Animal Model CRPS-I

The animal model of CRPS-I was performed following experimental procedures described first
for rats and later adapted for mice [11], involving exposure to prolonged hindpaw IR. This model
uses an elastic O-ring (commonly used for orthodontic braces (Elástico Ligadura 000-1237, Uniden, SP,
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Brazil) with a 1.2-mm internal diameter placed around the right hindlimb just proximal to the ankle
joint thereby producing ischemia. During this procedure, mice were anesthetized with a bolus (7%,
0.6 mL/kg, i.p.) of chloral hydrate and 20% of the initial volume at the end of the first and second hour.
As previously established in rodent models, O-rings were left on the limb for 3 hours. All sham mice
were subjected to the same experimental procedures except that the O-ring was slightly cut so that it
only loosely surrounded the ankle so as to not occlude blood flow to the right hindpaw [32,33].

2.3. MT Treatment

MT treatment was performed as previously described [25]. Mice were lightly anesthetized with
1%–2% isoflurane and the experimenter’s hand stabilized the knee joint while the ankle joint was
flexed and extended to full amplitude, rhythmically with a movement frequency of approximately
40 cycles per minute. Movement frequency was performed with assistance of a metronome. Treated
animals received a total of 9 minutes of MT divided in 3 series of 3 minutes each with a 30 second
interval between series. Sham group animals were kept anesthetized for the same time period, with
the experimenter’s hands positioned on ankle joint but no movements were performed [2,26]. Animals
received daily treatments of 9-minute MT between the 2nd to 11th day after the IR procedure.

2.4. Mechanical Hyperalgesia

To assess mechanical hyperalgesia, mice were acclimatized to individual clear boxes (9× 7× 11 cm)
on an elevated wire mesh platform which allowed access to the ventral hindpaw surface, as previously
described [2,25]. Mechanical hyperalgesia was measured with right hindpaw stimulation in a series
of 10 non-consecutive applications using calibrated 0.4 g von Frey filaments (Stoelting, Chicago, IL,
USA) [26]. Results are reported as the percentage of response frequency. The time course analyses
of antihyperalgesic effects caused by MT was performed at the 2nd, 7th and 11th days after the IR
procedure, at 30, 60 and 90 minutes after MT treatment. In a separate set of experiments, mechanical
hyperalgesia was assessed every day following MT between the 2nd to 11th day after the IR procedure.

2.5. Sample Collection for Biochemical Analyses

In a separate set of experiments involving the collection of biological samples on the 2nd day
after IR, all animals were euthanized 30 min after MT treatment and right hindpaw muscle tissue
samples were surgically harvested. The tissues were weighed and homogenized in 10 volumes (1:10,
w/v) of ice-cold 0.1 M phosphate buffer (pH 7.4). To discard cell debris and nuclei, homogenates were
centrifuged at 750× g for 10 min at 4 ◦C. After discarding the pellet, aliquots of supernatants were
separated and used for determination of oxidative stress parameters.

2.6. Determination of Oxidative Stress and Antioxidant Enzymes Levels

Thiobarbituric acid reactive species (TBARS) formation was measured during an acid-heating
reaction [34]. Samples were heated for 15min in a boiling water bath, mixed with 1ml of trichloroacetic
acid (TCA) 10% and 1ml of thiobarbituric acid 0.67%. TBARS was determined by the absorbance at
535nm. Results are expressed as malondialdehyde (MDA) equivalents (nmol/mg protein).

Oxidative damage to proteins was measured by determining the carbonyl groups based on the
reaction with dinitrophenylhydrazine (DNPH) [35]. Precipitation of proteins were conducted by the
addition of 20% trichloroacetic acid and redissolved in DNPH with the absorbance read at 370 nm.
Results were reported as nmol of carbonyl content per mg of protein (nmol/mg protein).

Catalase (CAT) activity was measured by the rate of decrease in hydrogen peroxide absorbance at
240 nm [36]. Briefly, hindpaw tissue samples were sonicated in 50nmol/l phosphate buffer (pH 7.0),
and the resulting suspension was centrifuged at 3000 g for 10 min. The supernatant was used for the
enzyme assay. Results were reported as units per milligram of protein (U/mg protein).
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The activity of superoxide dismutase (SOD) was determined by measuring the inhibition of
adrenaline auto-oxidation spectrophotometrically at 480 nm [37] and was represented as units per
milligram of protein (U/mg protein).

Bovine albumin was used as a standard to normalize all biochemical measurements [38].

2.7. Mitochondrial Function Analyses

Nicotinamide adenine dinucleotide (NADH)-dependent ferricyanide reduction was used to
measure Complex I activity [39]. Samples were coupled with reagents 100mM potassium phosphate
buffer, 10 mM ferricyanide, 14 mM NADH and 2 mM rotenone, and analyzed at 420 nm by a
spectrophotometer with readings taken minute by minute for a total of 3 minutes.

The 2,6-diclorophenolindophenol (DCPIP) reduction was used to measure Complex II activity as
described by Fisher et al. [40]. The tissue sample was incubated for 20 minutes at 30 ◦C water bath with
62.5 mM potassium phosphate buffer, 250 mM sodium succinate and 0.5 mM DCPIP. After incubation,
100 mM sodium azide, 2 mM rotenone and 0.5 mM DCPIP were added and then minute by minute
spectrophotometric readings taken for a total of 5 minutes at 600 nm.

Complex IV activity was determined by calculating the absorbance reduction caused by reduced
cytochrome c oxidation as described by Rustin et al. [41]. In the incubation environment, 62.5 mM
potassium phosphate buffer, 125 mM lauryl maltoside was added and sample diluted with SETH
buffer (Sucrose, EDTA, Tris and Heparine) and 1% cytochrome c. Analyses were performed at 550 nm
by a spectrophotometer with readings taken minute by minute for 10 min. The results of mitochondrial
function were expressed in nmol/min by mg of protein.

2.8. Statistical Analysis

The Shapiro–Wilk test was used to evaluate the normality assumption of all behavioral
and biochemical data. All variables in the present study showed a normal distribution.
Differences among experimental groups were determined by one or two-way ANOVA followed by
Student–Newman–Keuls Multiple Comparison or Bonferroni post hoc test, respectively, as appropriate.
A value of p < 0.05 was considered to be statistically significant. All data are presented as mean
(standard deviation, SD).

3. Results

Figure 2 shows that mice hindpaw IR induced marked and long-lasting mechanical hyperalgesia,
as observed by the enhancement of the response frequency to the von Frey filament application in
comparison to sham mice (p = 0.001) (Figure 2A–E). We observed that the acute MT treatment (IR + MT
group) on the 2nd, 7th and 11th days after IR reduced mechanical hypersensitivity induced by IR.
Significant differences between groups (IR + Control vs IR + MT) were observed at 0.5 h (p = 0.001) and
1 h (p = 0.001) after MT (Figure 2A,C,E). Furthermore, the repeated daily MT treatments (2–7 or 7–11
days) decreased (p = 0.001) the mechanical hypersensitivity induced by IR when assessed 30 minutes
after MT (Figure 2B,D).
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Figure 2. Effect of manual therapy (MT) on mechanical hyperalgesia. Time course analysis at the 2nd
day (panel A). Daily treatment with 9-minute ankle joint mobilization between the 2nd to 6th day after
IR procedure (panel B). Time course analysis at 7th day (panel C). Daily treatment with 9-minutes of
MT between the 7th to 11th day after IR procedure (panel D). Time course analysis at 11th day (panel
E). Each point represents the mean of 8 animals and vertical lines show the SD. Statistical analyses
were performed by two-way ANOVA followed by Bonferroni test. The symbols denote a significant
difference of *** p < 0.001 when compared to IR + Sham MT group or ### p < 0.001 when compared to
Sham + Sham MT group. MT: Manual therapy, IR: Schemia and reperfusion.

Figure 3 shows that at the 2nd day after IR injury, the concentrations of MDA (Figure 3A, p = 0.02)
and protein carbonyls (Figure 3B, p = 0.01) in muscle paw tissue were increased compared to Sham
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and Sham + MT groups. MT significantly prevented MDA (Figure 3A, p = 0.03) and carbonyls protein
increase (Figure 3B, p = 0.03).Brain Sci. 2019, 9, x FOR PEER REVIEW 7 of 12 
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Figure 3. Evidence of the effects of MT on oxidative stress markers at the 2nd day after the IR procedure.
Panels show the preventive effect of MT on the increase of MDA (panel A) and carbonyl proteins (panel
B). Each point represents the mean of 8 animals and vertical lines show the SD. Statistical analyses
were performed by one-way ANOVA followed by Newman–Keuls Multiple Comparison Test. The
symbols denote a significant difference of * p < 0.05 when compared to IR + Sham MT group, # p < 0.05
or ## p < 0.001 when compared to Sham + Sham MT group. MT: Manual therapy, IR: Ischemia and
reperfusion, MDA: Malondialdehyde.

Figure 4 shows that IR injury diminishes the levels of SOD (Figure 4A, p = 0.03) and CAT (Figure 4B,
p = 0.02) activity in the animals’ paw tissue on day 2 following IR. MT treatment effectively prevented
the decrease in the activity of CAT (Figure 4B, p = 0.02), but not SOD (Figure 4A, p = 0.31) induced
by IR.
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Figure 4. Evidence of MT effects on anti-oxidant enzymes levels at the 2nd day after IR procedure.
Panel A shows that there was no significant difference on superoxide dismutase (SOD) activity, while
panel B shows a significant difference on CAT activity. Each point represents the mean of 8 animals
and vertical lines show the SD. Statistical analyses were performed by one-way ANOVA followed by
Newman–Keuls Multiple Comparison Test. The symbols denote a significant difference of * p < 0.05
when compared to IR + Sham MT group, # p < 0.05 when compared to Sham + Sham MT group. MT:
Manual therapy, IR: Ischemia and reperfusion, SOD: Superoxide dismutase, CAT: Catalase.

Figure 5 shows that IR injury diminishes Complex I (p = 0.001), II (p = 0.001) and IV activity
(p = 0.001) in the animal hindpaw tissue on day 2 following IR. However, MT treatment was ineffective
in preventing decreases in mitochondrial complex activity.
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Figure 5. Effects of MT on mitochondrial function at the 2nd day after IR procedure. Complex I
activity (A), Complex II activity (B) and complex IV activity (C) all panels show that IR reduces
mitochondrial function but ankle joint mobilization could not prevent the mitochondrial function
reduction. Each point represents the mean of 8 animals and vertical lines show the SD. Statistical
analyses were performed by One-way ANOVA followed by Newman–Keuls multiple comparison test.
The symbols denote a significant difference of # p < 0.05 or ### p < 0.001 when compared to Sham +

Sham MT group. MT: Manual therapy, IR: Ischemia and reperfusion.

4. Discussion

The results of this study show that MT produces analgesic and anti-oxidative effects in a murine
model of CRPS-I. Our findings further show that the MT reduced mechanical hyperalgesia in all days
evaluated, prevented the increase of TBARS and protein carbonyls concentrations, and prevented the
reduction of CAT activity, while not influencing SOD activity. No effects from MT were observed in
mitochondrial complex activity. The effect of MT has been demonstrated in multiple nerve injury
models, such as the sciatic nerve crush injury model [42], postoperative pain model, and plantar
incision surgery model [2], in which ankle joint mobilization produced an analgesic effect. The present
set of experiments demonstrated for the first time an analgesic effect of MT in a murine CRPS-I model.

While CRPS pathophysiology is not fully understood, oxidative events are thought to give rise
to primary afferent nociceptor sensitization which contributes to central sensitization. It has been
well documented that prolonged hindlimb IR produces a subsequent cascade of inflammatory events,
with pivotal roles being played by reactive oxygen species [12,13]. Ischemia-reperfusion results in
production of oxidants, superoxide, hydroxyl radicals hydrogen peroxide, among other ROS initiated
by the enzymes NADPH oxidase [43,44] or xanthine oxidase [45,46]. Coderre et al. [1] demonstrated
that free radical scavengers reduced CPIP symptoms thereby emphasizing the important role that
oxidants play in the maintenance of neuropathic pain-like symptoms in CRPS-I models [47]. Thus,
the observed anti-oxidative effects of MT may be associated with the analgesia induced by MT in this
current neuropathic pain model.

We observed that the IR procedure that induced mechanical hyperalgesia was maintained up to
the 11th day of evaluation and that acute MT treatment was able to reduce mechanical hyperalgesia for
1h after treatment. Repeated treatments did not show a cumulative effect, since after MT treatments an
increase in duration of analgesia was not observed. The specific analgesic mechanisms underlying
peripheral joint mobilization remain unclear, but activation of inhibitory neuroreceptors such as opioid,
cannabinoid 1(CB1) and 2 (CB2) receptors are all thought to play a role [2,25,26].

Possible explanations for the MT-related findings in the current study are the effects of the
neuroreceptors (opioid, cannabinoid and adenosine receptors) activated by the oxidative system. In
this context, it has been shown that the injection of opioid peptides in rats decrease the stress-induced
activation of lipid peroxidation in plasma and liver tissue as well as increase catalase activity [27].
Interestingly, it has been shown in human monocytes/macrophages that during inflammation the
CB1 receptor is highly expressed and that its activation directly modulates inflammatory activity by
means of production of ROS [28]. Conversely, CB2 receptor activation exerts an anti-inflammatory
response, such as inhibition of chemotactic movement in response to monocyte chemoattractant
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protein-1 (MCP-1) [48]. Moreover, the activation of CB2 receptor may generate inhibitory signaling
and directly suppress the production of ROS stimulated by the activation of the receptor CB1 [29].

Recently, our research group has shown that MT reduces post-operative pain in mice by activation
of the CB2, but not the CB1 receptor. That led us to believe that in the current study, the observed
oxidative stress reduction (MDA and protein carbonyls) is due to the inhibitory effect on the activation
of the CB2 receptor mediated by MT on the ROS production stimulated by the activation of the
CB1 receptor.

The adenosinergic system also has been shown to modulate oxidative stress especially on activation
of the A1 receptor. The antioxidant effect of an adenosine A1 receptor agonist cyclopentyladenosine
(CPA) was recently studied in a focal cerebral ischemia model. Changes in lipid peroxidation (LPO)
processes in the brain and blood tissue were demonstrated following ischemic brain injury. Changes in
the ratio between LPO and antioxidant protection were less pronounced after cyclopentyladenosine
treatment [30]. Current thought is that signaling activated by adenosine and/or other receptors (such as
opioid or bradykinin) converge on key targets like mitochondrial KATP channels or the mitochondrial
permeability transition pore (MPTP) [49–52]. The MPTP may be inhibited through control of protein
phosphorylation (together with effects of KATP opening), or by inhibition of cellular oxidative stress
and subsequent MPTP thiol modification [49,52]. Moreover, it has been shown that oxidative stress is
selectively modulated endogenously by the A1 receptor in ischemic hearts [52].

In parallel of this literature, Martins et al. [2] verified that MT reduces mechanical hyperalgesia
induced by plantar incision surgery and these effects were mediated by the activation of A1 receptors
activation. Therefore, we may consider the hypothesis that in the present study, endogenous adenosine
might have been secreted during MT which mediated analgesia and oxidative stress reduction. We
found that ankle joint mobilization significantly reduced oxidative damage in the hindpaw, potentially
suggesting a novel analgesic mechanism of MT by increased CAT activity in a CRPS-I model. These
findings corroborate the study of Kolberg et al. [24] in humans, where they also observed that joint
manipulation increased CAT activity in erythrocytes showing an anti-oxidative effect of manual therapy.
In contrast to our findings, they did not find changes in lipidic peroxidation concentrations. These
discrepancies may be explained by differences in the analyzed tissues/cells and/or the particular models
used. The results of the present study are important in the clinical setting, since MT (joint mobilization)
is widely used in the rehabilitation protocols of patients with chronic pain. In this sense, our findings
suggest that MT may be used to treat CRPS-1 in humans, since it has an anti-oxidant effect. In addition,
these results support the need for future clinical trials that associate MT with anti-oxidant therapies for
the effective treatment of CRPS-I.

Limitations

This study did not evaluate the effect of MT on oxidative stress at other (non-peripheral) pain
modulation sites such as the spinal cord, brainstem or sensory cortex which would allow a broader
understanding of the effects of MT on CRPS-I. This study also did not analyze the oxidative stress
parameters in the blood of mice, which would be interesting to investigate in a clinical setting. Future
studies are needed to improve our understanding regarding the association between oxidative stress
and the antihyperalgesic effects caused by MT and to establish the precise neurobiological systems
underlying this effect of MT on oxidative stress parameters.

5. Conclusions

In summary, current results extended previous findings and demonstrated that daily sessions
of MT presented antihyperalgesic effects mediated, at least in part, through (1) prevention of
TBARS and protein carbonyls increase in peripheral (hindpaw) tissue and, (2) improvement of the
antioxidant defense system (increase of CAT, but not SOD activity). MT did not change the analyzed
mitochondrial complex activity. Together, these new findings contribute to a better understanding
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of the neurobiological mechanisms responsible for the therapeutic effect of MT, as well as provide
additional support for its use as adjunctive treatment of CRPS-I.
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