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Abstract: Anticancer effects of L-ascorbic acid (Vitamin C, L-AA) have been reported in various
types of cancers. L-AA intake reduces breast cancer recurrence and mortality; however, the role of
L-AA in the treatment of breast cancer remains poorly understood. In this study, we investigated
the effect and mechanism action of L-AA on breast cancer growth. L-AA inhibited the growth
of breast cancer cells by inducing apoptotic cell death at the evaluated treatment concentrations
without affecting normal cells. Moreover, L-AA induces autophagosome formation via regulation of
mammalian target of rapamycin (mTOR), Beclin1, and autophagy-related genes (ATGs) and increased
autophagic flux. Notably, we observed that L-AA increased p62/SQSTM1 (sequestosome 1) protein
levels. Accumulation of p62 protein in cancer cells in response to stress has been reported, but its
role in cancer regulation remains controversial. Here, we demonstrated that L-AA-induced p62
accumulation is related to L-AA-induced breast cancer growth inhibition. Furthermore, L-AA induced
endoplasmic reticulum (ER) stress via the IRE–JNK–CHOP (inositol-requiring endonuclease–c-Jun
N-terminal kinase–C/EBP homologous protein) signaling pathways, which increased the nuclear
levels of p62/SQSTM1. These findings provide evidence that L-AA-induced ER stress could be crucial
for p62 accumulation-dependent cell death, and L-AA can be useful in breast cancer treatment.
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1. Introduction

L-ascorbic acid (Vitamin C, L-AA) is an essential micronutrient that functions as a cofactor
in various enzymatic reactions [1,2]. It is a known anti-oxidant [3] and is necessary for collagen
formation [4], absorption and metabolism of metal ions such as iron and copper [5], and synthesis
of neurotransmitters [6]. As L-AA plays an important role in human physiology, research on the
relationship between L-AA and disease is still ongoing. L-AA has been effective in the treatment of
oral diseases [7], cardiovascular diseases [8], iron deficiency anemia [9], diabetes [10], age-related eye
disease [11], Alzheimer’s disease [12], and viral infections [13]. Moreover, L-AA inhibits the growth and
metastasis of various types of cancers, including melanoma [14], breast cancer [15], gastric cancer [16],
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colorectal cancer [17], pancreatic cancer [18], and leukemia [19]. Many studies have reported that
the L-AA concentration in the plasma of cancer patients (10~30 µM) is lower than that of healthy
controls (50~100 µM) [20–24]. In adults, the recommended daily dose of L-AA is about 75–90 mg
in USA [25], but administration of high-dose L-AA (8 g/day) is known to be effective in preventing
common cold [26]. However, high-dose L-AA is controversial as a chemotherapeutic agent in patients
with cancer [27]. Several previous studies have reported that administration of a daily dose of 10 g
L-AA has a beneficial effect in patients with cancer [28–31], while some have reported no overall
relationship with L-AA intake [32–34]. Regarding this controversy, several reports have noted that the
administration route of high-dose of L-AA (oral or intravenous injection) is crucial [35]. Intravenous
injections of L-AA are maintained at high level in the blood [36,37]. Based on this, it has been reported
that L-AA is more effective in intravenous injection than in oral administration in cancer [38]. Therefore,
well-designed clinical studies and more basic investigations are needed to validate L-AA as an effective
treatment for patients with cancer.

On the other hand, endoplasmic reticulum (ER) stress is reportedly associated with the pathogenesis
of various diseases such as, neurodegenerative diseases, inflammatory diseases, metabolic diseases,
stroke, heart diseases, pulmonary fibrosis, and cancers [39–42]. When ER stress occurs, the unfolded
protein response (UPR) is induced to protect cells from the issue of protein folding in the ER through the
activation of the intracellular signaling pathway [43]. Therefore, the regulation of ER stress and UPR
has been widely used as a therapeutic target for various diseases. If severe and prolonged ER stress
is maintained in cancer, ER stress-mediated UPR induces the death mechanism of cancer cells [44].
Accordingly, ER stress inducers are favored as potential anticancer agents [45–47].

Breast cancer is the most common cancer among women, with the second-highest mortality rate
after lung cancer [48]. Therefore, to treat patients with breast cancer, it is essential to uncover drugs
that have superior efficacy with fewer side effects. Many epidemiological studies have reported that
L-AA intake reduces breast cancer recurrence and mortality [49–54]. However, there is still a lack of
understanding regarding the role of L-AA in the treatment of breast cancer. In this study, we investigated
the effect of L-AA on the growth of breast cancer cells through ER stress-mediated pathways.

2. Materials and Methods

2.1. Material

L-AA and hydrogen peroxide (H2O2) were purchased from Sigma-Aldrich (St. Louis, MO, USA).

2.2. Cell Lines and Cell Cultures

HCC-38 and SKBR3 breast cancer cells were purchased from the Korean Cell Line Bank (KCLB,
Seoul, Korea). HCC-38 and SKBR3 cells were maintained in the Roswell Park Memorial Institute (RPMI)
1640-medium with 10% fetal bovine serum (FBS) and 1% antibiotics. African green monkey kidney
(Vero) and rat intestinal epithelial (RIE) cells (kindly provided by Dr. Seong Gyu Ko at Kyung Hee
University, Seoul, Korea) were cultured in Dulbecco’s modified Eagle medium (DMEM) supplemented
with 10% FBS and 1% antibiotics at 37 °C in a humidified atmosphere under 5% CO2.

2.3. Trypan Blue Assay

Vero, RIE, HCC-38, and SKBR3 cells were seeded onto 60 mm plates for 24 h. Cells were treated
with L-AA (50, 100, and 200 µM) for 48 h and then harvested using trypsin-EDTA. After the cells were
harvested and suspended with phosphate-buffered saline (PBS), the cell suspension was mixed with
0.4% trypan blue solution (1:1) and incubated for 2 min. Viable (trypan blue dye-excluding) and dead
(trypan blue dye-including) cells were counted using a hemocytometer chamber under the microscope.
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2.4. Colony Formation Assay

HCC-38 and SKBR3 cells were seeded in 12-well plates at a density of 500 cells/well for 24 h,
and then treated with L-AA (50, 100, and 200 µM). Every 3 days, the medium was replaced with fresh
medium containing L-AA. After a 14 day treatment, the medium was discarded, and cell colonies were
stained with crystal violet (0.1% in 20% methanol) for 2 h. After the colonies were washed with PBS,
images were obtained to record the results. Crystal violet was extracted using 33% acetic acid and
quantified by measuring the absorbance at 570 nm using the microplate reader (Bio Tek Instrument
Inc., Winooski, VT, USA).

2.5. Reactive Oxygen Species (ROS) Measurement

HCC-38 and SKBR3 cells were seeded onto 60 mm plates for 24 h. The cells were treated with L-AA
(50, 100, and 200 µM) for 24 h and then treated with 10 µM of 2′-7′-dichlorodihydrofluorescein diacetate
(H2DCF-DA, Molecular Probes, Eugene, OR, USA) for another 1 h. The cells were harvested using
trypsin-EDTA and centrifuged at 1000 rpm for 5 min and analyzed by LSRFortessa flow cytometry.

2.6. Apoptosis Analysis Assay

HCC-38 and SKBR3 cells were seeded onto 60 mm plates for 24 h and treated with L-AA (50, 100,
and 200 µM) for 48 h. The cells were collected using trypsin-EDTA and centrifuged at 1000 rpm for
5 min. After discarding the cell medium, cells were suspended in the binding buffer (BD Bioscience,
San Jose, CA, USA) and stained with annexin V-fluorescein isothiocyanate (FITC) in the dark for 15 min,
followed by the 7-aminoactinomycin D (7AAD) reaction for 15 min. Annexin V and 7AAD-stained
cells were detected using LSRFortessa flow cytometry (BD Bioscience, San Jose, CA, USA).

2.7. Western Blotting

HCC-38 and SKBR3 cells were seeded onto 60 mm plates and maintained for 24 h. Cells were
treated with L-AA (200 µM) for various time points (0–6 or 24 h) and harvested. Whole-cell lysates
were prepared using the PRO-PREP protein extraction solution (iNtRON Biotechnology, Seoul, Korea).
Protein concentrations were measured using the Bio-Rad Protein assay dye (Bio-Rad, Hercules, CA,
USA) according to the manufacturer’s instructions. An equal amount of protein of total lysate was
subjected to 8%–12% sodium dodecyl sulfate-polyacrylamide gel electrophoresis and transferred onto
polyvinylidene difluoride membranes. The membranes were blocked with 5% nonfat dry milk for 1 h
and incubated with the relevant primary antibodies overnight at 4 °C. The following are the primary
antibodies: anti-caspase-12, C/EBP homologous protein (CHOP), and p62/SQSTM1 (sequestosome 1)
antibodies were purchased from Abcam (Cambridge, MA, USA); anti-ATF4 (activating transcription
factor 4), -elF2α (eukaryotic initiation factor 2α), -p-elF2α, and -p-IRE1αwere obtained from GeneTex
Inc. (Irvine, CA, USA); anti-β-actin and -Bcl2 (B-cell lymphoma 2) were purchased from Santa Cruz
Biotechnology (Santa, CA, USA); anti-p-PERK was purchased from MyBioSource (San Diego, CA, USA);
anti-ATG3, -ATG7, -Beclin1, -Bip, - IRE1α, - LC3I/II, -PERK, -p-JNK, and -p-mTOR were obtained from
Cell Signaling (Danvers, MA, USA). After washing, the membranes were incubated with horseradish
peroxidase-labeled anti-rabbit IgG or -mouse IgG secondary antibodies at room temperature for
1 h. Immunoreactive protein was exposed to X-ray films using West-zolTM Plus reagents (iNtRON
Biotechnology, Seoul, Korea).

2.8. Immunocytochemistry

HCC-38 cells were seeded in 6-well plates with cover-glasses for 24 h, and then treated with
L-AA (200 µM) for 6 h. The cells were fixed with 4% paraformaldehyde for 10 min and washed with
PBS three times. For permeabilization, the cells were incubated with 0.5% Triton X-100 for 7 min and
washed. The cells were blocked with blocking buffer (10% FBS and 1% bovine serum albumin in 0.1%
Tween-20 buffer) for 2 h, and then stained with anti-p62/SQSTM1 primary antibody (1 µg/mL) and
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anti-Alexa Fluor-594 antibody (Invitrogen, Carlsbad, CA, USA 1:200) for 1 h at room temperature in the
dark. After washing, the cells were mounted with 4′,6-diamidino-2-phenylindole (DAPI)-contained
VECTASHIELD mounting medium (Vector Laboratories, Burlingame, CA, USA). Images were acquired
using a confocal microscope (FV10i, Olympus, Melville, NY, USA).

2.9. Surface DR5 Expression Analysis

HCC-38 cells were seeded onto 60 mm plates and treated with L-AA (50, 100, and 200 µM) for 24 h.
The cells were treated with trypsin-EDTA and centrifuged at 1000 rpm for 5 min. After washing with
PBS, the cells were incubated with anti-death receptor 5 (DR5) primary antibody (Abcam, Cambridge,
MA, USA, 1:100) in blocking buffer (2% FBS in PBS) for 30 min on ice. The cells were washed and
stained with anti-Alexa Fluor-488 secondary antibody (Invitrogen, Carlsbad, CA, 1:1000) or rabbit IgG
monoclonal isotype control (Abcam, Cambridge, MA, USA) in the dark for 30 min on ice. DR5-positive
cells were detected using LSRFortessa flow cytometry (BD Bioscience, San Jose, CA, USA).

2.10. Transfection

For CHOP or p62 transient knockdown, HCC-38 cells were seeded onto 6-well plates and
transfected with siRNA (Bioneer, Daejeon, Korea) using the Lipofectamine reagent (Invitrogen,
Carlsbad, CA, USA) according to the manufacturer’s instruction. After the transfected cells were
treated with L-AA (200 µM) for 6 h, western blotting, the trypan blue assay, colony formation assay,
and immunocytochemical experiments were performed.

2.11. Inhibitor Treatment

HCC-38 cells were seeded and pre-treated with ER stress inhibitors (4µ8C: inositol-requiring
endonuclease 1α (IRE1α) inhibitor, 10 µM; SP600125: c-Jun N-terminal kinase (JNK) inhibitor, 1 µM;
GSK2606414: PKR-like ER kinase (PERK) inhibitor, 10 µM; Salubrinal: elF2α inhibitor, 10 µM) for 1 h,
and then treated with L-AA (200 µM) for 6 h. Thereafter, trypan blue assay, western blotting, and
immunocytochemical experiments were performed. SP600125, 4µ8C, GSK2606414, and Salubrinal
were purchased from Calbiochem (Cambridge, MA, USA).

2.12. Statistical Analysis

Results are shown as means ± standard deviation (SD) from three independent experiments.
A p-value less than 0.05 in the two-tailed Student’s t-test was considered significant.

3. Results

3.1. L-AA Induces Apoptosis of Breast Cancer Cells

Breast cancer (HCC38 and SKBR3) and normal cells (Vero and RIE) were treated with L-AA at
various concentrations (50, 100, and 200 µM) for 48 h. The viability of Vero and RIE cells was not
affected, whereas the viability of breast cancer cells was reduced by L-AA treatment (Figure 1B).
To confirm the long-term effect of L-AA treatment, we performed colony formation experiments.
When HCC38 and SKBR3 were treated with L-AA for 14 days, L-AA decreased colony formation in
a dose-dependent manner when compared with that in the control group (Figure 1C). To determine
whether L-AA suppresses cell viability by inducing apoptosis, we performed annexin V and 7AAD
staining. L-AA increased the percentage of annexin V-positive apoptotic cells (Figure 1D). These results
suggest that L-AA suppresses the growth of breast cancer cells by inducing apoptotic cell death.
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Figure 1. L-ascorbic acid (L-AA) inhibits breast cancer growth. (A) The chemical structure of L-AA. 
(B) Normal cells (Vero and rat intestinal epithelium (RIE)) and breast cancer cells (HCC38 and SKBR3) 
were treated with various concentrations of L-AA (50, 100, and 200 μM) for 48 h and then stained 
with trypan blue. Viable and dead cells were counted. (C) Breast cancer cells were treated with L-AA 
(50, 100, and 200 μM) every 3 days. After the 14 day treatment, cell colonies were stained with crystal 
violet. Crystal violet stained cells were extracted using 33% acetic acid and quantified by measuring 
absorbance at 570 nm on the microplate reader. (D) Breast cancer cells were treated with L-AA (50, 
100, and 200 μM) for 48 h and then stained with annexin V-FITC and 7AAD in the binding buffer at 
room temperature in the dark. Stained cells were detected by LSRFortessa flow cytometry. The graph 
shows the sum of annexin V-FITC alone-positive cells (early apoptotic cells) and annexin V-FITC and 
7AAD double positive cells (late apoptotic cells) from whole stained cells. Data are shown as the mean 
of three independent experiments, and the error bars represent standard deviation (SD). * p < 0.05 and 
*** p < 0.001 versus the control group. 

3.2. L-AA-Induced Apoptosis Is Not Correlated to the Intracellular ROS Generation 

Whether L-AA acts an anti-oxidant or pro-oxidant in cancer is still controversial [55–58]. We 
thus examined L-AA-induced ROS production. When HCC38 and SKBR3 breast cancer cells were 
treated with L-AA for 24 h, L-AA decreased ROS production in a dose-dependent manner when 
compared with that in the control group (Figure 2A). To determine whether the decrease of ROS 
production by L-AA is required for L-AA-induced breast cancer cell death, HCC38 and SKBR3 breast 
cancer cells were treated with hydrogen peroxide (H2O2), one of the pro-oxidants. The H2O2 treatment 

Figure 1. L-ascorbic acid (L-AA) inhibits breast cancer growth. (A) The chemical structure of L-AA.
(B) Normal cells (Vero and rat intestinal epithelium (RIE)) and breast cancer cells (HCC38 and SKBR3)
were treated with various concentrations of L-AA (50, 100, and 200 µM) for 48 h and then stained with
trypan blue. Viable and dead cells were counted. (C) Breast cancer cells were treated with L-AA (50,
100, and 200 µM) every 3 days. After the 14 day treatment, cell colonies were stained with crystal
violet. Crystal violet stained cells were extracted using 33% acetic acid and quantified by measuring
absorbance at 570 nm on the microplate reader. (D) Breast cancer cells were treated with L-AA (50, 100,
and 200 µM) for 48 h and then stained with annexin V-FITC and 7AAD in the binding buffer at room
temperature in the dark. Stained cells were detected by LSRFortessa flow cytometry. The graph shows
the sum of annexin V-FITC alone-positive cells (early apoptotic cells) and annexin V-FITC and 7AAD
double positive cells (late apoptotic cells) from whole stained cells. Data are shown as the mean of
three independent experiments, and the error bars represent standard deviation (SD). * p < 0.05 and
*** p < 0.001 versus the control group.

3.2. L-AA-Induced Apoptosis Is Not Correlated to the Intracellular ROS Generation

Whether L-AA acts an anti-oxidant or pro-oxidant in cancer is still controversial [55–58]. We thus
examined L-AA-induced ROS production. When HCC38 and SKBR3 breast cancer cells were treated
with L-AA for 24 h, L-AA decreased ROS production in a dose-dependent manner when compared with
that in the control group (Figure 2A). To determine whether the decrease of ROS production by L-AA is
required for L-AA-induced breast cancer cell death, HCC38 and SKBR3 breast cancer cells were treated
with hydrogen peroxide (H2O2), one of the pro-oxidants. The H2O2 treatment increased the ROS
production when compared with that in the control group, while the H2O2 treatment in combination
with L-AA attenuated the decrease of intracellular ROS levels by L-AA (Figure 2B). The H2O2 treatment
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in combination with L-AA increased apoptotic cell death and decreased cell viability when compared
with L-AA treatment alone in breast cancer cells (Figure 2C,D). H2O2 treatment alone reduced the
viability of breast cancer cells when compared with that in the control group, but it was not related to
apoptosis (Figure 2C,D). These results indicate that L-AA-induced apoptosis of breast cancer cells was
not correlated to the intracellular ROS generation.
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Figure 2. L-AA-induced apoptosis is not correlated to the intracellular reactive oxygen species (ROS)
generation. (A) Breast cancer cells (HCC38 and SKBR3) were treated with various concentrations
of L-AA (50, 100, and 200 µM) for 24 h and then treated with H2DCF-DA fluorescent dye for 1 h at
37 ◦C. ROS generation was measured by LSRFortessa flow cytometry. Graph shows the proportion of
H2DCF-DA-positive cells in the total cells. (B) Breast cancer cells were pre-treated with L-AA (200 µM)
for 1 h, followed by exposure to H2O2 (10 µM) for 24 h. ROS production was measured. (C,D) HCC38
and SKBR3 cells were pre-treated with L-AA (200 µM) followed by exposure to H2O2 (10 µM) for 48 h.
(C) Stained with annexin V-FITC and 7AAD and analyzed by LSRFortessa flow cytometry. The graph
shows the proportion of annexin V-FITC alone-positive cells (early apoptotic cells) and annexin V-FITC
and 7AAD double positive cells (late apoptotic cells) in whole stained cells. (D) Trypan blue assay was
performed. Data are shown as the mean of three independent experiments, and the error bars represent
standard deviation (SD). * p < 0.05, ** p < 0.01, and *** p < 0.001 were considered statistically significant.
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3.3. L-AA Induces Autophagosome Formation, While Increasing p62 Accumulation in the Nucleus

To identify the mechanism by which L-AA induces apoptosis, we examined autophagy.
Mammalian target of rapamycin (mTOR) and Beclin1 are two important molecules involved in
autophagy initiation and autophagosome formation [59]. Microtubule-associated protein 1A/1B-light
chain 3 (LC3)I is combined with phosphatidylethanolamine (PE) to form LC3II via autophagy-related
gene (ATG)-7 and −3 [60]. L-AA decreased mTOR phosphorylation in a time-dependent manner,
while the level of Beclin1 was increased (Figure 3A). Furthermore, L-AA increased the expression of
ATG-7 and ATG-3 (Figure 3A). L-AA also increased the expression of LC3II, which means that the
number of autophagosomes increased (Figure 3B). Sequestosome 1 (p62/SQSTM1) is inserted into
autophagosomes and degrades through the formation of an autolysosome fused with an autophagosome
and lysosome. Thus, p62 has been known as an another autophagy marker degraded by autophagy
induction [61]. However, we observed that p62 protein levels were increased by L-AA, although
autophagic flux increased (Figure 3B).

In contrast, recent studies have reported that p62 expression can be upregulated by stress
conditions, including oxidative stress, starvation, and accumulation of dysfunctional proteins [62–64].
Thus, we assessed whether L-AA could induce stress-mediated autophagy and p62 accumulation.
To investigate the role of p62 on L-AA-inhibited cell viability, HCC38 cells were transfected with p62
siRNA. As shown in Figure 3C,D, following L-AA treatment, p62 silencing significantly increased cell
viability when compared with the control siRNA-transfected cells. Recent reports suggest that DNA
damage-induced by the inhibition of DNA repair requires p62 accumulation in the nucleus, which is
associated with cell death [65,66]. As shown in Figure 3E, compared with control cells in which p62 is
in the cytoplasm, the level of p62 increased in the nucleus of L-AA-treated cells. This indicates that
L-AA induces stress-mediated autophagy and cell death via the accumulation of p62 in the nucleus.
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and treated with 200 μM of L-AA. (C) Western blotting was performed with anti-p62 and β-actin was 
used as the internal control. (D) Trypan blue assay was performed. (E) HCC-38 cells were treated with 
200 μM of L-AA for 6 h. Cells were stained with anti-p62 (1 μg/mL) and –AlexaFluor-594 secondary 
antibody (1:200). Images were obtained using the FV10i confocal microscope, using the 40× objective; 
the scale bar indicates 50 μm. When the experiment was performed, three or more fields were 
obtained for each group, and p62 puncta were counted and averaged. This process was repeated three 
times, and the mean value of three experiments was statistically processed. Data are shown as the 
mean of three independent experiments, and the error bars represent standard deviation (SD). ** p < 
0.01 and *** p < 0.001 were considered statistically significant. 

3.4. L-AA Induces ER Stress in Breast Cancer Cells 

A recent report indicates that ER stress is associated with the apoptotic pathway and p62 
accumulation [67,68]. To investigate whether L-AA induces ER stress, we evaluated the expression 
of ER stress markers including C/EBP homologous protein (CHOP) and cleaved caspase 12. Breast 
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cleaved caspase 12 expression. L-AA enhanced CHOP and cleaved caspase 12 levels in HCC38 and 

Figure 3. L-AA induces autophagosome formation, while L-AA increases p62 accumulation in the
nucleus. (A,B) Breast cancer cells were treated with L-AA (200 µM) for indicated hours (0–6 h) and
then western blotting was performed with anti-p-mTOR, -Beclin1, -ATG7, -ATG3, -LC3I/II, and -p62.
β-actin was used as the loading control. (C,D) HCC-38 cells were transfected with p62 siRNA and
treated with 200 µM of L-AA. (C) Western blotting was performed with anti-p62 and β-actin was used
as the internal control. (D) Trypan blue assay was performed. (E) HCC-38 cells were treated with
200 µM of L-AA for 6 h. Cells were stained with anti-p62 (1 µg/mL) and –AlexaFluor-594 secondary
antibody (1:200). Images were obtained using the FV10i confocal microscope, using the 40× objective;
the scale bar indicates 50 µm. When the experiment was performed, three or more fields were obtained
for each group, and p62 puncta were counted and averaged. This process was repeated three times,
and the mean value of three experiments was statistically processed. Data are shown as the mean of
three independent experiments, and the error bars represent standard deviation (SD). ** p < 0.01 and
*** p < 0.001 were considered statistically significant.

3.4. L-AA Induces ER Stress in Breast Cancer Cells

A recent report indicates that ER stress is associated with the apoptotic pathway and p62
accumulation [67,68]. To investigate whether L-AA induces ER stress, we evaluated the expression of
ER stress markers including C/EBP homologous protein (CHOP) and cleaved caspase 12. Breast cancer
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cells were treated with L-AA and western blotting was performed to confirm the CHOP and cleaved
caspase 12 expression. L-AA enhanced CHOP and cleaved caspase 12 levels in HCC38 and SKBR3
cells (Figure 4A). Next, we examined the effect of L-AA on ER stress-related pathways regulating
CHOP, including inositol-requiring endonuclease 1 (IRE1α) and PKR-like ER kinase (PERK) signaling.
The two pathways including IRE–c-Jun N-terminal kinase (JNK) and PERK–eukaryotic initiation
factor 2 (elF2)-α are crucial for the transmission of ER-stress signals to CHOP in cancer [69,70].
L-AA induced the phosphorylation of IRE1α and JNK levels (Figure 4B). Moreover, L-AA increased
binding immunoglobulin protein (Bip), p-PERK, p-elF2α, and activating transcription factor 4 (ATF4),
indicating the activation of the PERK signaling pathway (Figure 4C). As a transcription factor,
CHOP regulates the expression of a variety of apoptosis-related genes, including B-cell lymphoma 2
(Bcl2) and DR5 [71,72]. L-AA decreased Bcl2 levels and increased membrane DR5 expression
(Figure 4D,E). Therefore, the results indicate that L-AA induces ER stress in breast cancer cells.
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Figure 4. L-AA increases endoplasmic reticulum (ER) stress in breast cancer cells. (A,D) HCC-38 or
SKBR3 cells were treated with 200 µM of L-AA for indicated hours, and then western blotting was
performed. β-actin was used as the loading control. (A) Expression levels of C/EBP homologous protein
(CHOP) and cleaved caspase 12. (B) Protein levels involved in ER stress associated inositol-requiring
endonuclease 1 (IRE1) signaling pathway. (C) Protein levels involved in ER stress-related PKR-like ER
kinase (PERK) signaling pathway. (D) B-cell lymphoma 2 (Bcl2) expression levels (E) HCC-38 cells
were treated with 200 µM of L-AA for 24 h and stained with anti-DR5 (death receptor 5) primary
antibody (1:100) and –AlexaFluor-488 secondary antibody (1:1000). DR5-positive cells were detected by
LSRFortessa flow cytometry. Data are shown as the mean of three independent experiments, and the
error bars represent standard deviation (SD). * p < 0.05 versus the control group.
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3.5. L-AA Inhibits Breast Cancer Growth via IRE1/JNK/CHOP Signaling

To confirm the role of the IRE–JNK and PERK–elF2α pathways in L-AA-induced cell death,
experiments using ER stress inhibitors were performed. We observed that GSK2606414 (PERK
inhibitor) or Salubrinal (elF2α inhibitor) in combination with L-AA did not restore growth inhibition
induced by L-AA (Figure 5A). Interestingly, 4µ8C (IRE1α inhibitor) + L-AA treatment or SP600125
(JNK inhibitor) + L-AA treatment increased cell viability when compared with L-AA treatment alone
(Figure 5A). None of the inhibitors affected cell viability (Figure 5A). In addition, L-AA increased the
cell viability and colony formation in CHOP-knockdown cells when compared with those in control
siRNA-treated cells (Figure 5B–D). However, cytotoxicity was observed only in CHOP-knockdown
cells (Figure 5C,D). Thus, our data suggest that L-AA inhibited the growth of breast cancer cells via
activation of the IRE signaling pathway.
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Figure 5. L-AA enhances IRE1– c-Jun N-terminal kinase (JNK)–CHOP-mediated cell death. (A) HCC-38
cells were pre-treated with ER stress inhibitors (10 µM of 4µ8C, 1 µM of SP600125, 10 µM of GSK2606414,
and 10 µM of Salubrinal) for 1 h, and then treated with L-AA (200 µM) for 48 h. Cell viability was
measured using the trypan blue assay. (B,D) HCC-38 cells were transfected with CHOP siRNA.
(B) CHOP siRNA-transfected cells were treated with 200 µM of L-AA for 6 h and then western blotting
was performed (C) CHOP siRNA-transfected cells were treated with 200 µM of L-AA for 48 h, followed
by the trypan blue assay (D) CHOP siRNA-transfected cells were treated with 200 µM of L-AA for
10 days, followed by the colony formation assay. Data are shown as the mean of three independent
experiments, and the error bars represent standard deviation (SD). *** p < 0.001 was considered
statistically significant.

3.6. L-AA-Induced IRE Signaling Causes p62 Accumulation in the Nucleus

To further confirm whether the activation of the IRE/JNK/CHOP signal regulates L-AA-induced p62
expression and accumulation in the nucleus, inhibitor and knockdown experiments were performed.
Inhibitors of the IRE pathway, 4µ8C (IRE1α inhibitor) and SP600125 (JNK inhibitor), decreased
L-AA-induced p62 expression levels. The treatment with 4µ8C or SP600125 did not affect the p62
expression levels (Figure 6A). In HCC38 cells, knockdown of CHOP attenuated L-AA-increased p62
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levels when compared with the control siRNA + L-AA group (Figure 6B). Next, confocal experiments
were performed to confirm the localization of p62 using combination treatment with L-AA and IRE
signal inhibitors. L-AA alone increased the nuclear level of p62, while co-treatment with L-AA and
inhibitors (4µ8C and SP600125) attenuated L-AA-induced nuclear accumulation of p62 (Figure 6C).
Our findings suggest that inhibition of the IRE pathway suppresses the nuclear accumulation of p62
induced by L-AA in breast cancer cells.
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Figure 6. L-AA-induced IRE1–JNK–CHOP activation causes p62 accumulation in the nucleus.
(A) HCC-38 cells were pre-treated with IRE1 signaling pathway inhibitors such as 4µ8C (10 µM)
and SP600125 (1 µM) for 1 h and treated with L-AA (200 µM) for 6 h. Western blotting was performed
with anti-p62, andβ-actin was used as the internal control. (B) HCC-38 cells were transfected with CHOP
siRNA, treated with L-AA (200 µM) for 6 h, and then western blotting was performed. (C) HCC-38
cells were pre-treated with the IRE1 signal pathway inhibitors, such as 4µ8C (10 µM) and SP600125
(1 µM), and treated with L-AA (200 µM) for 6 h. Cells were stained with anti-p62 (1 µg/mL) and
–AlexaFluor-594 secondary antibody (1:200). Images were obtained using the FV10i confocal microscope,
using the 40× objective; the scale bar indicates 50 µm. Following the experiment, three or more fields
were obtained for each group, and p62 puncta were counted and averaged. This process was repeated
three times, and the mean value of three experiments was statistically processed. The following graph
shows the ratio of p62 puncta expressed in the cytosol and nucleus, based on 100% of total p62 puncta.
Data are shown as the mean of three independent experiments, and the error bars represent standard
deviation (SD). * p < 0.05 and ** p < 0.01 were considered statistically significant.
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4. Discussion

Although the anticancer effect of L-AA has been demonstrated in various experiments, it is still
controversial to administer L-AA in patients with cancer due to a lack of mechanism-based studies.
In the present study, we demonstrated that L-AA induced apoptotic death and ER stress in breast cancer
cells. Furthermore, we observed that L-AA increased the nuclear level of p62 via ER stress-mediated
IRE–JNK–CHOP signaling pathways.

L-AA acts as an anti-oxidant or as pro-oxidant in cancer, so it is still controversial [55–58].
Unlike some previous studies that ascorbate is oxidized in the medium and consequently ROS is
generated, our study showed that L-AA decreased intracellular ROS levels (Figure 2A). Furthermore,
when treated with H2O2 acting as a pro-oxidant, it was observed that the decrease of ROS by L-AA was
not correlated with apoptosis induction of breast cancer cells by L-AA (Figure 2C,D). The oxidative
state of L-AA is crucial to the anticancer effects of L-AA in many studies, but our study showed that the
anticancer effect of L-AA in breast cancer cells was independent of the oxidative state of L-AA. During
carcinogenesis, the accumulation of aberrant proteins in the ER by chromosomal rearrangements,
hypoxia, and environment factors induces ER stress [73–75]. Cells minimize ER stress by activating the
UPR system to protect themselves and maintain homeostasis during ER stress [43,44]. The UPR system
is mediated by IRE, PERK, and ATF6, which are located on the ER membrane and activated by ER
stress stimulation [76,77]. UPR increases the expression of chaperone proteins, improving the function
of ER in terms of protein synthesis and folding. Additionally, UPR decreases the amount of protein
that enters the ER or increases the degradation of unfolded proteins in the ER, thereby reducing the ER
burden and consequently suppressing ER stress [78,79]. Nevertheless, if the ER stress is not reduced
and the ER fails to restore its function, apoptosis is activated to remove damaged cells [79]. Therefore,
the mechanism of ER stress-mediated apoptosis could be utilized as a new therapeutic target for cancer
research. Various compounds regulating this mechanism are being studied and validated [47,80].
Transcription of the CHOP gene is extremely crucial in ER stress-mediated apoptosis, which is activated
by IRE1, PERK, and ATF6 [81,82]. ER stress-mediated apoptosis is less induced in CHOP-deficient
cells, whereas overexpression of the CHOP gene promotes apoptosis [83,84]. Furthermore, CHOP also
reduces Bcl2 and upregulates DR5, followed by the induction of the apoptosis pathway [62].

ER stress-mediated apoptosis can also be induced by IRE1-mediated JNK activity and caspase 12,
an ER stress-specific caspase located on the outer layer of the ER [79]. In this study, L-AA induced
the activation of two important signaling pathways in ER stress, IRE1–JNK and PERK–elF2α–ATF4
(Figure 4B,C). However, the PERK–elF2α–ATF4 pathway was not associated with the anticancer effect
of L-AA, and the inhibition of L-AA-mediated cell viability was only improved by IRE1–JNK signaling
(Figure 5A). In addition, L-AA increased the expression of ER stress-mediated apoptosis markers,
cleaved caspase 12 and CHOP, and the increased CHOP was crucial for L-AA-inhibited cell growth
(Figures 4A and 5B–D). Moreover, the expression of Bcl2 and DR5, which are important for apoptosis
induction controlled by CHOP transcriptional activity, was regulated by L-AA (Figure 4D,E). CHOP is
known to be a potential target for drug development in cancer [85]. Reportedly, resveratrol [86],
Polyphenon E® [87], gartanin [88], garcinol [89], and Clinacanthus nutans [90] exhibit anticancer effects
via CHOP regulation.

ER stress induces processes related to cell survival and death, such as autophagy [91–93].
Autophagy is an important process for maintaining homeostasis in normal cells and it is a cellular
degradation pathway for the removal of damaged or superfluous proteins and organelles [94].
During autophagy, cytoplasmic materials are sequestered by the autophagosome, a double-membrane
structure, and fused with the lysosome for degradation [95]. Autophagy is valuable as a therapeutic
target for cancer treatment since it has been reported that it regulates initiation, growth, survival,
malignancy, and metastasis of cancer [96,97]. mTOR is a major negative regulator of autophagy and
is important in regulating the activity of kinases, including UNC-51-like kinase 1 (ULK1) [98,99].
Beclin1 induces autophagy by forming the Beclin1–class III phosphatidylinositol 3-kinase (Vps34)
complex. Additionally, the SH3 domain of Beclin1 binds to anti-apoptotic Bcl2 to regulate apoptosis [100].
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In our study, L-AA increased the initiation of autophagy and autophagosome formation, which are
regulated by the activation of mTOR and the increase of Beclin1, ATG-7, and -3 (Figure 3A). As a result,
the conversion of LC3II was enhanced by L-AA (Figure 3B). As a chaperone of ubiquitinated proteins
of the autophagosome, p62/SQSTM1, binds to LC3 of the autophagosome and is itself degraded by
autophagy [101].

However, we unexpectedly observed a significant increase in the p62 protein levels in breast
cancer cells treated with L-AA (Figure 3B). Additionally, knockdown of p62 expression attenuated
L-AA-inhibited cell viability (Figure 3D). Consistent with our results, several studies have shown
that autophagic cell death through p62 increasingly inhibits cancer growth in hepatocellular
carcinoma [68,102], leukemia [103], breast cancer [104], and pleural mesothelioma cells [105]. Moreover,
p62 upregulation has been observed when ER stress-mediated apoptosis occurred, which is related to
the ER stress-activated IRE1–JNK signaling pathway [68,105]. Our study also confirmed that L-AA
increased p62 levels through IRE–JNK–CHOP pathway (Figure 6A,B). Furthermore, recent studies have
shown that ER stress increases the accumulation of p62 by blocking autophagosome–lysosome fusion
and inhibiting lysosomal functions [106]. p62 is a nucleocytoplasmic shuttling protein, the nuclear
roles of which remains largely unknown. Recently, p62 accumulation in the nucleus has been reported
to induce DNA damage-associated cell death [65,66]. In addition, low nuclear p62 expression is related
to a high histologic grade, as well as poor overall and disease-specific survival in oral squamous cell
carcinoma [107]. In this study, L-AA increased nuclear p62, which correlated with the ER stress-mediated
IRE–JNK signaling pathway (Figures 3E and 6C).

Breast cancer is a heterogeneous disease and is classified into different subtypes depending on
the presence or absence of hormone receptors such as estrogen receptor (EsR), progesterone receptor
(PR), and human epidermal growth factor receptor 2 (HER2). Unlike other cancers, hormone therapy
and HER2-targeted therapy are possible depending on the characteristics and subtype of the patients
with breast cancer [108,109]. Because heterogeneity of breast cancer subtypes is the most common
cause of therapy failure, it is important to proceed with research or development of therapeutic agents
considering breast cancer subtypes [110]. On the other hand, the sensitivity of L-AA in breast cancer
cells is known to correlate with the expression of sodium-dependent vitamin C transporter-2 (SVCT-2),
which transports L-AA to cells [58]. SVCT-2 expression is revealed to be higher in EsR/PR-negative
than in EsR/PR-positive breast cancer patient tissues [58]. The SKBR3 cell line used in our study was
reported to have high SVCT-2 expression and high sensitivity to L-AA treatment as an ER/PR-negative
cell line [58]. HCC38 cells are also known as EsR/PR-negative breast cancer cell line [111], but the
expression of SVCT-2 in HCC38 cells has not been reported. The amount of ascorbate in cancer cells
which is dependent on the expression of SVCT-2, is crucial to the efficacy of L-AA in clinical and in vivo
studies. To further verify the efficacy of L-AA in breast cancer, we will investigate the expression and
regulatory mechanisms of SVCT-2 that determine the sensitivity of L-AA and conduct in vivo studies
using xenograft animal model in further research.

5. Conclusions

In conclusion, we observed that L-AA induces p62 accumulation in the nucleus through the
ER stress-mediated IRE1–JNK–CHOP pathway, thereby promoting cell death. Our study provides
scientific evidence regarding the applicability of L-AA treatment in breast cancer patients.
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