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Alternaria alternata is a ubiquitous fungus and a major allergen associated with the
development of asthma. Inhalation of intact spores is the primary cause of human
exposure to fungal allergen. However, allergen-rich cultured fungal filtrates are
oftentimes used in the current models of fungal sensitization that do not fully reflect
real-life exposures. Thus, establishing novel spore exposure models is imperative. In this
study, we established novel fungal exposure models of both adult and neonate to live
spores. We examined pathophysiological changes in the spore models as compared to
the non-exposure controls and also to the conventional filtrate models. While both
Alternaria filtrate- and spore-exposed adult BALB/c mice developed elevated airway
hyperresponsiveness (AHR), filtrates induced a greater IgE mediated response and higher
broncholavage eosinophils than spores. In contrast, the mice exposed to Alternaria
spores had higher numbers of neutrophils. Both exposures induced comparable levels
of lung tissue inflammation and mucous cell metaplasia (MCM). In the neonatal model,
exposure to Alternaria spores resulted in a significant increase of AHR in both adult and
neonatal mice. Increased levels of IgE in both neonatal and adult mice exposed to spores
was associated with increased eosinophilia in the treatment groups. Adult demonstrated
increased numbers of lymphocytes that was paralleled by increased IgG1 production.
Both adults and neonates demonstrated similarly increased eosinophilia, IgE, tissue
inflammation and MCM.
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INTRODUCTION

The prevalence of asthma has significantly increased in United States and in other industrialized
countries (Sunyer et al., 1999). The prelude of asthma development is usually a repeated
environmental allergen exposure and sensitization leading to type 2 immune response (or T2IR)
(Nelson et al., 1999; Busse and Mitchell, 2007). T2IR refers to both innate and adaptive arms of the
immunity that is developed mainly for the defense against parasitic infection, and characterized by
participating cells (e.g. CD4+ TH2 cells, ILC2s, eosinophils, basophils, mast cells, alternatively
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activated macrophages), antibodies (e.g., the IgE antibody
subclass) and cytokines (e.g. IL-4, IL-13, thymic stromal
lymphopoietin (TSLP), IL-25 and IL-33) (Wynn, 2015).
Asthma is a T2IR-mediated disease characterized by lower
airway chronic inflammation, MCM, and AHR (Lambrecht
and Hammad, 2015).

Fungal exposure has long been recognized as a significant risk
factor for asthma. Being the major components of indoor molds,
fungal sensitization during the first 2 years of life was found to be
associated with an increased risk of developing asthma in the
meta-analysis of 8 birth cohorts in Europe. (Tischer et al., 2011)
The prevalence of fungal sensitization in general asthmatics is
28% on average (as high as 48%) (Agarwal, 2011). Fungal asthma
is oftentimes poorly managed with frequent exacerbations and
hospitalizations (Denning et al., 2006; Denning et al., 2014;
Sharpe et al., 2015; Masaki et al., 2017). “Severe Asthma with
Fungal Sensitization” or SAFS has been coined for a type of
severe asthma with the sensitization to Alternaria, Aspergillus,
Cladosporium or Penicillium (Denning et al., 2006).

Studies from our and other groups have demonstrated that
Alternaria sensitization was associated with asthma development
(Peat et al., 1993; Halonen et al., 1997; Katz et al., 1999; Dowaisan
et al., 2007; Ezeamuzie et al., 2000; Salo et al., 2006), and
sometimes severe or even fatal asthma (Downs et al., 2001;
Bush and Prochnau, 2004). Furthermore, efforts to reduce
indoor Alternaria exposure by extensive cleaning have been
proven impossible as demonstrated in the HEAL study
(Grimsley et al., 2012). In addition to the classical CD4+ T-
helper 2 (TH2) cells in Alternaria sensitization, Alt filtrate, the
fungal secretome, was reported to induce ILC2 expansion,
subsequent production of IL-5/IL-13 and eosinophilia,
depending on IL-33-ST2 signaling (Bartemes et al., 2012).
Additionally, acute Alternaria exposure can cause asthma
exacerbation, independent of Alternaria sensitization (Tham
et al., 2017). Because of its strong link to asthmagenic T2IRs at
both innate and adaptive arms, Alternaria exposure can be a
good surrogate model to study fungal asthma.

Fungal filtrate extract or filtrate model is to expose mice with
allergen-rich fungal secretions, and it is a robust allergen model
that has been widely used. However, the effect caused by intact
fungal spore, a common human exposure to fungal species (Baxi
et al., 2016), is lacking in this model. An average person exposing
to a large number of fungal spores each day, up to 50,000 spores
per cubic meter of air during the fungal season (Pashley et al.,
2012). The previous attempt to establish a fungal asthma model
using Alternaria spore inhalation alone has failed because of
cachexia (Denis et al., 2007). Thus, to study this important fungal
allergen, we seek to establish a fungal asthma model by exposing
mice to Alternaria spores via an inhalational route.
METHODS

Fungal Spores and Filtrates
Alternaria alternata (ATCC 66981) spores were produced on V8
agar (V8A: 200 ml V8 juice, 2 g CaCO3, 15 g agar in one liter
H20) incubated at room temperature for a week under regular
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
room lighting (12/12 hrs light/dark). Spores were collected in
HBSS by gentle agitation and quantified on a hemacytometer.
The Lyophilized mass of Alternaria filtrates (GREER, Lenoir,
NC) was dissolved in HBSS (Hank’s Balanced Salt Solution) to
make a 100X stock solution.

Mice Exposures
The animal protocol was approved by the Institutional Animal
Care and Use Committee (IACUC) at the University of Arizona.
5-week old adult BALB/c mice were briefly anesthetized with 3%
isofluorane and intranasally administered with Alternaria spores
(105) in a 100 µl HBSS, 10 µg filtrates or the same volume of
HBSS (the solvent of the spores or filtrates) weekly for total 6
weeks. For the experiments with neonates, 5-week old adults and
1-week neonatal BALB/c mice were placed under isoflurane and
intranasally administered Alternaria spores or HBSS weekly for a
period of 6 weeks. The adult dose was kept constant as described
above. The pups were weighed and were given a weight-
proportioned reduced dose and volume. 8-10 animals were
used for each group.

Airway Hyperresponsiveness (AHR)
Mice were inhalationally challenged with different doses of
methacholine. AHR was measured by the FlexiVent® system
(SCIREQ, Montreal, Canada). Peak resistance values at each dose
were plotted against the corresponding methacholine dose.

Bronchoalveolar Lavage (BAL), Differential
Cell Count and Cytokine Measurement
Lungs were instilled twice with 1mL HBSS to collect BAL. The
cells in the BAL were cytocentrifuged, air-dried, stained with
HEMA 3 stain set (Thermo Scientific, Gilbert, AZ) and the
number of macrophages, neutrophils, eosinophils, and
lymphocytes were then counted in a blinded manner using
light microscopy by at least two researchers to ensure an
objective evaluation. Differential cell counts (macrophage,
neutrophil, eosinophil, lymphocyte) were presented as the
number of each cell type. IL-13 or IL-17 in the BAL was
measured by ELISA kits from R&D Systems (Minneapolis, MN).

Serology
Blood was collected from the femoral artery and allowed to clot
at ambient temperature (19-24°C). Serum was separated by
centrifugation and total immunoglobins (IgE, IgG1) were
measuring using ELISA kits (BD Pharmingen, CA) according
to manufacturers instructions.

Lung Histology
Lungs were fixed, sectioned and stained at the Pathology Services
Laboratory, University Animal Care. Slides were stained for
inflammatory cells (H&E stain) and goblet cells (PAS stain).
Pathology scores and analysis were performed by Dr. Besselsen
(DVM, PhD) at the University animal service core.

Statistical Analysis
All values are given as the Means ± SEM. Statistics were
evaluated with GraphPad software (San Diego, CA).
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Multivariate comparisons were made using ANOVA with
Bonferroni’s multiple-comparison posttest. Differences with
p<0.05 were considered statistically significant.
RESULTS

An Adult Model of Asthma With
Fungal Sensitization
To mimic a real-life human exposure, we exposed mice with live
spores of Alternaria. We compared this new model with the
commonly used filtrate model. As asthma is a chronic disease, we
opted for the long-term exposure. Additionally, we relied entirely
on airway exposure to spores or filtrates as this is the dominant
route of exposure in a real life. In a previous study, chronic
instillation of Alternaria spores was found to induce cachexia,
therefore was stopped after 5 weeks (Denis et al., 2007). In the
present study, we tried 6-week exposure and found no weight
loss or other outright morbidity (data not shown). Instead, AHR,
a hallmark of asthma, was elevated in mice exposed to both
Alternaria filtrate and spores when compared to controls.
Interestingly, the differences between filtrate and spore model
were not statistically significant (Figure 1), suggesting our spore
model demonstrated same level of AHR increase as the
commonly used filtrate model.

Then, we wanted to investigate other pathophysiological changes
in the spore model as compared to the filtrate model. By a
differential cell count on BAL, we found that lung inflammation
was increased in mice exposed to either spores or filtrates but the
type of inflammatory response was different. Spore exposure
moderately enhanced macrophage number, but filtrate did not
(Figure 2A). Spore exposure resulted in a greater neutrophilic
inflammation (Figure 2C), while filtrate exposure caused a higher
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
eosinophilic (Figure 2B) and lymphocytic inflammatory response
(Figure 2D). Thus, despite the observation that both exposures
induced comparable AHR, underlying inflammatory mechanisms
were likely different. Nonetheless, both models demonstrated
eosinophilic inflammation indicating an asthma related TH2
response. Furthermore, we tested serum antibody responses.
Indeed, serum IgE was significantly increased in both models, and
the filtrate model had a much greater IgE response as compared
to the spore model (Figure 2E). This observation was consistent
with the BAL eosinophil counts. Thus, the filtrate exposure
appeared to induce a much stronger TH2 response than the spore
exposure. We also tested IgG response, a TH1 marker for an
antifungal defense. IgG1 was elevated in both models, and again
filtrates induced higher IgG1 than spores (Figure 2F). But the
magnitude of difference for IgG1 (~2.5 fold) was not as great as IgE
(~6.8 fold). Interestingly, while spore exposure induced a strong
production of both IL-13 (Figure 2G) and IL-17 (Figure 2H) in the
BAL, filtrates treatment only induced IL-13 (Figure 2I), but not IL-
17 (Figure 2J). Thus, although the filtrate exposure may induce a
strong TH1 and TH2 immunological responses, only spores could
induce a robust TH17 response.

We further examined the tissue histology in these two models.
H&E scores (Figure 3A) and example figures (Figure 3B),
indicating tissue inflammation, were identical in both models,
suggesting a similar level of lung inflammation despite the
difference of infiltrated inflammatory cells (Figure 2). Mucous cell
metaplasia (MCM), another hallmark of asthma indicating lung
remodeling, was measured by a PAS staining. The level of MCM
was identical following exposure to filtrates or spores
(Figures 3C, D).

An Asthma Model of Early-Life
Fungal Exposure
Childhood asthma can be difficult to treat, and it is also strongly
associated with sensitization to the Alternaria. Thus, we decided
to develop a mouse model with exposures starting at 7 days of
age. As shown in Figure 4, exposure to Alternaria spores resulted
in a significant increase of AHR in both adult and neonatal mice
throughout the acetylcholine dose range. However, there was no
significant difference between spore treated adults and neonates
(Figure 4).

Then, we examined airway inflammatory responses by a
differential cell count. Spore exposure induced a moderate
elevation of macrophages (Figure 5A), but a significant
increase of both neutrophils (Figure 5C) and eosinophils
(Figure 5B) in both adults and neonates at almost identical
magnitudes. Interestingly, adults had more lymphocytes than
neonates in BAL (Figure 5D). We further tested serum antibody
responses. The increased levels of IgE were observed in both
neonatal and adult mice exposed to spores (Figure 5E). IgE in
neonates had a trend of increase as compared with adults, but it
was not statistically significant. In contrast, serum IgG1 in adults
was much higher than in neonates (Figure 5F), which was
paralleled with an increase in lymphocytes in adults (Figure
5D). This observation is consistent with the notion that adults
usually generate a stronger IgG based immunity than neonates
FIGURE 1 | Alternaria-induced AHR. Mice were exposed to Alternaria
filtrates, spores, or HBSS controls. Peak resistance after methacholine
challenge was presented as Mean ± SEM, n = 8/group. *P < 0.05.
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FIGURE 2 | BAL cell counts and serology in the filtrate or spore model. Data represents mean ± SEM, n = 8-10/group. *P < 0.05. (A–D) Differential cell counts.
Different cell types in BAL samples were counted from these mice and presented as the total cell number. (E, F) Serological testing for total serum IgE and IgG1.
(G, H) BAL IL-13 and IL-17 in the mice treated with spores. (I, J) BAL IL-13 and IL-17 in the mice treated with filtrates.
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(Adkins et al., 2004; Levy, 2007). Interestingly, IgE responses in
both groups appeared to be similar, suggesting that both can
develop comparable allergic responses.

We further examined the tissue histology in adults and
neonates. H&E scores (Figure 6A) and example figures
(Figure 6B) were identical between adults and neonates,
suggesting a similar level of lung tissue inflammation. MCM,
measured by PAS staining, was significantly increased in both
adults and neonates following exposure to spores (Figures 6C, D).
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
But there was no difference between adults and neonates,
suggesting that Alternaria spores induced the same level of lung
remodeling in these two groups.
DISCUSSION

Mouse models of asthma are by far the most popular tool for
asthma research. Nowadays, mice have become an ideal species
for disease research because of the deep understanding of their
genetics (Dietrich et al., 1996), the easy manipulation using gene-
targeting technology (Elias et al., 2003) and the vast inventory of
commercial mouse colonies. In general, mouse models of asthma
have been developed by repeated sensitization with a number of
established allergens such as ovalbumin (OVA) (Zosky et al.,
2004), house dust mite (HDM) extract (Johnson et al., 2004),
cockroach antigens (Lundy et al., 2003), and ragweed extracts
(Fan and Jamal Mustafa, 2006). The OVA model or its many
different variants is by far the most common model for asthma
research. However, OVA is not a natural allergen for human
asthma. Although other models indeed involve realistic human
allergens (e.g. HMD, cockroach, or ragweed), they rely on
artificial allergen-rich extracts that may not reflect real-life
human exposures. Another limitation of these models is the
difficulty to control batch effects of different preparations due to
the lack of reliable internal standard of these complex mixtures.

Fungal exposure is universal from both indoor and outdoor
environment and the prevalence of fungal sensitization in asthma is
very high. The major form of fungal exposure is the inhalation of
fungal spores (Pashley et al., 2012; Baxi et al., 2016). As spores can
be grown in vitro and be titrated accurately, spore inhalation
provides a unique model to study allergen sensitization in a
A B

DC

FIGURE 3 | Histological analyses of the filtrate or spore model. *p < 0.05, n = 8. (A) H&E scores. (B) Example H&E images. (C) PAS scores. (D) Example PAS images.
FIGURE 4 | Alternaria spore-induced AHR in adults or neonates. Adult mice or
neonates were exposed to spores or HBSS controls. Peak resistance after
methacholine challenge was presented as Mean ± SEM, n = 8/group. *P < 0.05.
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natural condition, which none of the other models of allergen
sensitization are able to mimic. However, filtrates (or filtrate
extracts) are still main-stay allergens used in fungal asthma
models, likely due to the commercially available materials at
Greer Laboratory Inc. (Lenoir, NC). For four SAFS fungi
(Denning et al., 2006), spore inhalation models of Aspergillus
(Nayak et al., 2018) and Cladosporium (Denis et al., 2007) have
been established. However, a previous attempt to establish an
Alternaria spore model via a chronic inhalational exposure failed
because of cachexia (Denis et al., 2007). In the present study,
however, we did not observe any cachexia. Mice were given 105

spores weekly that is in line with the dose of other spore inhalational
model (Denis et al., 2007; Nayak et al., 2018), and they looked
healthy and were also fertile. The cause of this discrepancy is not
known, but we did use a different source of Alternaria alternata
from the other study. A high level of TNFa production was
speculated to be the cause of cachexia in the other study (Denis
et al., 2007). It will be interesting to examine if our spores stimulate
low or none TNFa production in the animal. Nonetheless, our mice
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
remained healthy after a 6-week exposure and demonstrated several
hallmark phenotypes of allergic asthma.

Fungal spores and filtrates represent very different components
of Alternaria. The filtrates are the secretome of the fungus and has
proteolytic activity and large amounts of allergens while the chitin
encased spores are the transmissible, viable element. Respiratory
exposure can occur with both. Despite comparable increases of
AHR, tissue inflammation and MCM, the underlying
immunological changes were different between the filtrate and
spore model. Eosinophilia and antibody responses (both IgE and
IgG1) were dominant in the filtrate model, while a mixed
inflammatory profile with both neutrophils and eosinophils were
present in the spore model. Neutrophilic inflammation has been a
hallmark of fungal asthma, and neutrophils are a major defender
against fungal exposure. Thus, the presence of a significant
number of neutrophils in BAL may reflect the real physiological
condition during fungal spore exposure. In contrast, the filtrate
model represents a robust (perhaps overwhelming) TH2 allergic
response that may be caused by a strong antigenicity of the
A B

D

E F

C

FIGURE 5 | BAL cell counts and serology in adults or neonates. Data represents mean ± SEM, n = 8-10/group. *P < 0.05. (A–D) Differential cell counts. Different
cell types in BAL samples were counted from these mice and presented as the total cells. (E, F) Serological testing for total serum IgE and IgG1.
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filtrates. Indeed, the IgG1 level was also higher in the filtrate
model. Another interesting finding is the lack of TH17 response in
the filtrate model. Our finding in the chronic model is consistent
with previous results from the acute filtrate exposure models. In
one study, TH17 responses were found to be induced only by the
co-exposure of bothAlternaria filtrate and house dust mite extract,
but not by each individual exposure (Snelgrove et al., 2014). In a
separate study, IL-17A was found to be induced only in the
absence of TH2 response but not in the normal condition
(Valladao et al., 2016). Taken together, TH17 pathway appears
to be missing in all filtrate exposure models. In contrast, the spore
model demonstrated a robust TH17 response, which was also
found to play an important role in antifungal defense (Werner
et al., 2009; Werner et al., 2011) and in an aspergillus induced
fungal asthma model (Murdock et al., 2012). Thus, although its
robust allergic responses have been useful to dissect T2IR, the
filtrate model may not be a good model for studying fungal
asthma, since it is lack of TH17 component, a key player to
drive steroid-resistant allergic airway inflammation that
differentiates fungal asthma (McKinley et al., 2008). Nonetheless,
the spore exposure model represents a novel and physiologically
relevant model for the study of Alternaria induced fungal asthma.

As asthma starts from childhood, we have established a
neonatal spore exposure model in this study. As compared to
the adult model, the neonatal model demonstrated a similar level
of allergy-related physiological responses (AHR, eosinophilia,
MCM and IgE), supporting the notion that exposing to
Alternaria spores causes asthma in both child and adult.
Interestingly, spores induced significantly higher numbers of
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
lymphocytes and levels of IgG1 in adults than in neonates.
Neonates generally demonstrate weakened TH1 immune
responses partially due to a biased TH2 response (Adkins et al.,
2004; Levy, 2007), which could be an explanation for lower
numbers of lymphocytes and IgG levels, but comparable levels of
eosinophils and IgE, in neonates as compared to adults.
Alternaria has been documented to cause severe fungal
diseases (Pastor and Guarro, 2008) in addition to allergic
asthma. Lower numbers of lymphocytes and low levels of IgG
may be an indicator of weak anti-fungal immunity. It is unclear if
infants are more prone to develop severe fungal disease when
exposing to Alternaria, which warrants further study in the
future. On the contrary, neonates who had an adult level of
TH2 response may have an increased risk to develop allergic
diseases such as asthma. Most strikingly, airway remodeling such
as MCM was observed at comparable levels in both neonates and
adults, raising the concern that neonatal exposure to fungal
aeroallergen might cause a long-term sequalae.

In summary, we have successfully developed two novel
models of fungal asthma by exposing either adult mice or
neonates to live Alternaria spores. They will be valuable tools
to dissect underlying pathogenic factors that contribute to adult
or childhood asthma.
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