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Physiological and biochemical networks are highly complex, involving thousands of
nodes as well as a hierarchical structure. True network structure is also rarely known.
This presents major challenges for applying classical network theory to these networks.
However, complex systems generally share the property of having a diffuse or distributed
signal. Accordingly, we should predict that system state can be robustly estimated with
sparse sampling, and with limited knowledge of true network structure. In this review,
we summarize recent findings from several methodologies to estimate system state via
a limited sample of biomarkers, notably Mahalanobis distance, principal components
analysis, and cluster analysis. While statistically simple, these methods allow novel
characterizations of system state when applied judiciously. Broadly, system state can
often be estimated even from random samples of biomarkers. Furthermore, appropriate
methods can detect emergent underlying physiological structure from this sparse
data. We propose that approaches such as these are a powerful tool to understand
physiology, and could lead to a new understanding and mapping of the functional
implications of biological variation.

Keywords: network physiology, complex dynamic system, big data, alternative proteins, systems biology,
statistical distance

INTRODUCTION

Complex systems theorists have long viewed biological networks as one of the prime examples of
complex systems (Holland, 1992; Mobus and Kalton, 2014), but biologists themselves, with some
notable exceptions (e.g., Kitano, 2002; Tieri et al., 2010), have often been more reticent, preferring
to understand biological signaling pathways from a more linear and reductionist perspective. This is
starting to change, with systems biology gradually moving from simple inventories of large numbers
of molecules to network-based approaches [e.g., Ingenuity Pathway Analysis, Kyoto Encyclopedia
of Genes and Genomes (KEGG)-pathways, gene ontology (GO)-terms (Kanehisa and Goto, 2000;
Harris et al., 2004; Krämer et al., 2014)]. Indeed, this entire Research Topic, one of the largest in the
history of Frontiers Research Topics, is devoted to Network Physiology.

Indeed, drawing on insights from classical network theory (Albert and Barabási, 2002), over the
last ∼10 years, network physiology, and the related field of network medicine, have been making
great strides in bringing network thinking into the biomedical realm [Network medicine tends to
focus more on genetic and molecular networks (Barabási et al., 2011), while network physiology
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focuses more on the temporal coordination of physiological
function across systems, often at higher levels of organization,
such as organs and organ systems (Ivanov et al., 2016), though the
distinction is not always clear]. These methods are contributing
numerous insights, such as coordination of sleep cycles across
brain waves and muscle groups (Bashan et al., 2012) or
understanding motor neuron function in Caenorhabditis elegans
(Yan et al., 2017). Perhaps one of the most important insights
is simply the repeated validation that there is coordination
across biological networks, and thus that networks must be
studied as ensembles, not as pieces. For example, there is
now clear evidence that temporal dynamics of organ function
show clear coordination across organ systems (Bartsch et al.,
2015). Accompanying such insights come methods to quantify
these network dynamics, such as time delay stability (TDS)
and accompanying graphical methods (Bashan et al., 2012;
Bartsch et al., 2015). It doesn’t require much thinking about the
principles of evolution, optimization, and organismal function to
understand why this is expected; the surprise is that physiology
existed for so long without looking for this coordination, or
without considering the higher-order perspective that it implies.
For the purposes of this review, an additional key insight is that
this coordination leads to a limited number of largely discrete
states of the larger system, with multiple subsystems changing
together in abrupt and coordinated fashion (Bashan et al., 2012;
Bartsch et al., 2014, 2015). For example, multiple organ systems
change together at transitions between sleep stages (Bartsch et al.,
2015). Similar principles apply at other hierarchical levels of
biology, for example in β-cell regulation in response to glucose
(Podobnik et al., 2020). This leads to the important conclusion
that there are biological attractor states, discrete states toward
which physiology/biology converges, and between which it shifts.

Nonetheless, there are still major challenges in applying
classical network theory to many aspects of biological networks.
Classical network theory is based on the ability to map
networks relatively exhaustively in order to estimate properties
such as connectedness, modularity, etc. (Strogatz, 2001;
Barabási, 2016), but biological networks imply multiple levels of
organization, interactions of different types of structure (physical,
informational, etc.), and networks that, on the molecular level,
are still very poorly mapped. Additional approaches are thus
needed for when our sparse understanding of network structure
limits the applications of classical approaches. Here, we briefly
discuss the structure of organisms from a complex systems
perspective and how much we do and don’t know about their
underlying networks. There are obviously a daunting variety of
organisms and many levels of organization within them; we try
to stay at a general level to enunciate principles that will apply to
studies of any biological systems at the organism level or lower
that are composed of networks, whether they be biochemical
networks within cells or networks of tissues or brain regions.
We then argue that, despite an imperfect knowledge of the
finest-scale details, there is a coherence to biological states that
suggests that we should be able to measure organismal state even
with highly imperfect knowledge of the underlying networks.
We use this framework to review a number of methods to infer
organismal state via sparse sampling of networks, and to suggest

future avenues for further development of such methods. Our
previous research in aging leads us to use examples primarily
from this field, but the conclusions are much more general.

AN ORGANISM AS A COMPLEX
DYNAMIC SYSTEM

There can be little doubt that organisms are complex dynamic
systems, as they exhibit all the hallmarks of such systems:
they are composed of multiple elements which interact with
feedback (and also feedforward) mechanisms; the elements are
organized both hierarchically and modularly; and there are
clear emergent properties at the various hierarchical levels
which emerge from the underlying dynamics at adjacent
levels (e.g., Podobnik et al., 2017, 2020). These properties
are also shared by other key examples of complex dynamic
systems: economies, ecosystems, weather systems, societies,
traffic systems, etc. However, organisms—and, more broadly,
sub-organismal biological systems—exhibit some unique features
that are not shared by all complex dynamic systems:

1. They are highly optimized via natural selection (Kriete,
2013). While systems such as economies or ecosystems
may undergo weak selective pressure that affects their
evolution, biological systems have had billions of years to
become fine-tuned, with progress made in each generation
conserved and transmitted via the genetic code. Molecular
signaling pathways, for example, are much more fine-tuned
than economic regulatory policy.

2. Accordingly, they are goal-directed. Weather systems,
ecosystems, and most other complex dynamic systems
simply exist, without an effort to achieve anything.
Biological systems, however, have been fine-tuned for a
reason: to maximize organismal fitness (roughly speaking).
And in turn, for most of the biological machinery, this
equates to optimizing physiological/biological equilibrium
in the face of constant internal and environmental
variation (Cohen et al., 2012; Podobnik et al., 2017,
2020), as denoted by concepts such as homeostasis,
homeodynamics, robustness, and resilience (Ives, 1995;
Sterling, 2015; Ukraintseva et al., 2016). In other words,
biological systems are designed (though not in a theological
sense) to maintain organismal balance.

3. Biologically relevant information is conserved over long
timescales. The genetic code permits the conservation
of information across very long timescales—billions of
years. Many other complex dynamic systems do not really
conserve information at all, and those that do are either
much more recent (e.g., writing in economic systems, code
in computer systems), and/or the information is much less
precisely transmitted (cultural transmission).

4. Accordingly, biological systems are perhaps the most
complex systems that exist. The combination of natural
selection, very long timescales, goal-directedness, and
information conservation has permitted biological systems
to become what is likely the most structured complex
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system known. New levels and layers of biological
organization are constantly being discovered (see below).

It is this last point, perhaps, that explains why biologists
are so far behind other fields in adapting complex systems
thinking. There was simply too much information, and too
much structure, for classic complex systems methodologies to be
broadly useful. The advent of -omics and imaging technologies
and big-data capabilities are changing this now, but the challenge
remains that our basic knowledge of biological organization is
still rudimentary.

WHAT WE DO AND DON’T KNOW
ABOUT BIOLOGICAL ORGANIZATION

At least since the discovery of the structure of DNA, our
knowledge of biological organization has been increasing rapidly.
As this process has unfolded, there has been a repeated theme:
scientists at each stage fail to appreciate how much more detail
has yet to be uncovered. For example, new hormones—key
molecules for regulatory coordination—are regularly discovered,
such as hepcidin (Nemeth et al., 2003) and apelin (Vinel et al.,
2018). Perhaps the best example is the changes that have
occurred to biochemistry’s “central dogma” over the years. Once
it was established that DNA is transcribed into messenger RNA
(mRNA), and that mRNA is translated into proteins, this transfer
of information (genes—> mRNA—> protein) became known
as the “central dogma” (Crick, 1970). Proteins were considered
the key biological effectors. However, it was not long before
this dogma began to break down at a number of levels: reverse
transcriptases from viruses such as HIV can reverse the flow of
information (Spiegelman et al., 1971). Perhaps more importantly,
the central dogma radically underestimates the sophistication of
the information processing. A single gene can be spliced into
multiple mRNAs (Chow et al., 1979). Many new types of RNAs,
such as micro RNAs and snoRNAs, are being discovered, often
with key signaling roles (Scott and Ono, 2011).

Here, we will look in detail at the recent discovery of
“alternative proteins” (Brunet et al., 2020), a telling example of
how new layers of biological organization are constantly being
uncovered, and how each time they are, our understanding
as relates to the application of complex systems methods to
biology would need to be re-thought. Since the discovery of
alternative mRNA splicing in eukaryotes– i.e., that a single gene
could produce many mRNA isoforms—part of the revised central
dogma, implicit or explicit, has been that a mature mRNA (i.e.,
one that has already undergone all splicing and processing before
being translated into a protein) codes for one and only one
protein. A few exceptions had been detected, but they were
considered just that: exceptions. However, with the advent of
high-throughput technologies, it was recognized in the early
2010s that most mature mRNAs contained multiple start codons,
the series of three nucleotides in the mRNA that signals the
ribosome to start translation (Ingolia et al., 2011; Vanderperre
et al., 2013). As a result, it was possible that multiple proteins were
being translated from a single eukaryotic mRNA. By combining

the presence of start and stop codons in the mRNA sequences,
it was predicted that the average mature mRNA might code
for 7.8 proteins, with some mature mRNAs coding for as many
as 89 (Open Prot database v1.6: Brunet et al., 2019), leading
to the possibility that the proteome was many-fold larger than
previously thought. Indeed, subsequent experiments have shown
that many of the so-called “alternative proteins”—proteins that
are coded by a mature mRNA, other than the “reference protein”
that was canonically expected—are indeed produced by cells.
They have been detected by mass spectrometry and by ribosomal
profiling, are often highly conserved evolutionarily, and in some
cases they have been shown to have crucial roles in biological
processes and diseases, often working in tandem with other
proteins produced by the same mRNA (Samandi et al., 2017;
Chen et al., 2020). Hence, in contrast to the general belief that
polycistronic mRNAs are restricted to prokaryotes, an ever-
increasing fraction of mRNAs in eukaryotes are known to encode
at least two different proteins.

Not all alternative proteins predicted by mRNA sequences
have been shown to be translated or to have important biological
roles, and there is currently substantial uncertainty as to how
many of the alternative proteins will prove biologically important,
but the number would certainly appear to be in the thousands,
if not much higher. Indeed, the line between “biologically
important” and “translational noise” may not be so clear: many
alternative proteins likely arise via mutations generating random
start codons, but the proteins so-generated may have some
biological activity. If that activity is strongly harmful, natural
selection should quickly eliminate the mutation, but if the novel
protein, due to biochemical stochasticity, is anywhere close to
neutral, there may exist a long period where it is produced
in small quantities and subject to gradual selection toward
a beneficial role, even if it does not play a core regulatory
function. There is thus substantial potential for alternative
proteins to play broad but hard-to-pinpoint regulatory roles, even
beyond the substantial number that are in the process of being
identified as key players.

Among those alternative proteins that are emerging as having
clear functions, recent work is permitting us to understand how
they integrate into biological networks. Briefly, data generated
by high throughput mass spectrometry (MS) experiments have
been re-analyzed with the inclusion of alternative proteins in
the library used at the spectra-peptides matching step (Leblanc
et al., 2020). When these data result from separate purification
of multiple tagged proteins followed by MS analysis it is possible
to confidently identify alternative proteins in a network of
protein physical interactions. Interestingly, a surprising number
appear to have roles linking what otherwise appear to be
separate modules, or as hubs (Figure 1). In other words, the
structure of the regulatory network, including important higher-
order network properties, could completely change with or
without the inclusion of the alternative proteins. Indeed, the
addition of alternative protein IP_688845 in the interactome
of the ELP6 protein may yield insight surrounding its recent
association with tumorigenesis and migration of melanoma cells
(Close et al., 2012; Figure 1Aii). The re-analysis shows that the
novel interactor bridges this member of the elongation complex
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FIGURE 1 | (A) Subnetworks of alternative proteins identified in the most comprehensive human protein-protein interaction network (Leblanc et al., 2020). Direct
neighbors and neighbors of neighbors (here called second neighborhood) are shown around alternative proteins encoded by genes of “non-coding” biotypes
revealing previously unknown physical interaction network structure. Alternative protein IP_672618 relates regions otherwise not connected (i). The authors speculate
that the bridging role of IP_688853 between ELP6 and other proteins could yield insight into the mechanism of tumorigenesis recently associated with this gene. Bait
proteins are reference (annotated) proteins expressed with a tag for purification from which prey proteins are identified. “IP_” protein accessions refer to OpenProt
1.6 unique identifiers for alternative proteins. (B) Second neighborhoods of two reference proteins extracted from the same network with (right) and without (left)
alternative proteins. Inclusion of an alternative protein from the dual coding gene BEND4 reveals the addition of a hub around the protein ZCCHC7 (i). Addition of two
alternative proteins in the second neighborhood of ILK increases the betweenness centrality of the ILK-RSU1-PARVA clique (ii).

to protein clusters which include S100A9, recently identified
as biomarker up-regulated in metastatic melanomas (Wagner
et al., 2019) and TSPAN33, a protein which modulates cell
adhesion and migration through its effect on plasma membrane
mechanical properties (Navarro-Hernandez et al., 2020). Several
hypotheses could be explored with this larger subnetwork as a
starting point. While it is not yet proven whether these changes
in our understanding of network structure are expected to
lead to changes in the predicted functional dynamics, there is
every reason to expect that this would be the case. In similarly
generated data, alternative proteins have even been observed in
the interaction network of viral proteins in Zika virus infected
human cells (Leblanc and Brunet, 2020).

The changes in biological paradigm implied by the existence
of a broad range of functional or semi-functional alternative
proteins should have been expected. Why would occasional
mutations not have produced additional start codons? Why
would those additional proteins not have been translated? And
why would natural selection not have then subsequently acted
on them, leading in all likelihood to the sharing of a mature
mRNA as a way to improve coding efficiency of the genome and
coordination of related regulatory functions? We would argue
that this example is a clear microcosm of how the combination

of stochasticity, biological information conservation, and billions
of years of natural selection has added multiple layers to the
structure of biological organization.

We have clearly not reached the bottom yet, and even once
(if?) we do identify all the molecular players, a full functional
mapping of their interactions, including the weak non-primary
relationships, is certainly still well in the future. Moreover,
network structure itself may not be a fixed property of an
organism. Recent developments have shown that the structure
of protein-protein interaction (PPI) networks correlates with cell
type (Huttlin et al., 2020). In this study, the authors of the BioPlex
network have constructed PPI networks of two different cell
types using the method described above and observed largely the
same proteins engaged in different interactions. In other words,
rewiring of PPI networks correlated with system state, adding
another major challenge and level of complexity in our ability to
infer biological network structure.

In turn, this lack of ability to fully map biochemical networks
could be an important barrier for our ability to apply key tools
from complex systems theory—notably network theory/graph
theory—to these networks. Of course, we do not mean to
imply that network theory has no applications in biology.
Indeed, there will be clear applications in the simplest systems
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(Nijhout et al., 2017), or when emergent phenomena are clear
enough to create higher-order networks that can be mapped
(Bashan et al., 2012). But while the ability to predict and control
nematode behavior through a network of 40 neurons is on the
one hand an excellent and impressive demonstration of the
power of network theory (Yan et al., 2017), it is also a humbling
demonstration of how much more would be required to achieve
similar prediction/control of human behavior, particularly when
the number of neurons and their connection structure is not fixed
from one individual to another.

In short, we argue that most models of biological networks
are—and, for the foreseeable future, are likely to remain—sparsely
sampled systems, systems in which the nodes and their edges
are insufficiently known or sampled to robustly and directly
characterize network-level properties. In such systems, insights
will need to come not through exhaustive data, but through
judicious use of methods to extract the relevant signals despite
the sparseness of the data. This is true despite the advent of
massive -omics, and despite the data processing tools that are
being developed to manage that information.

DATA TOOLS FOR SPARSELY SAMPLED
NETWORKS

While the above situation might sound pessimistic with regard
to our potential to make progress in understanding biology, it
is anything but. In fact, the same system properties that make
biology so complex and hard to map also make it potentially
more tractable as a complex system with the right analytical
tools. It is the goal-directedness of biological systems that
gives their components teleological functions: hearts are for
pumping blood through the circulatory system, B-cells are for
generating the antibodies in the adaptive immune response, and
ribosomes are for translating mRNA into proteins (teleological
is used here in the sense that purposeful behavior of systems
can arise from purposeless evolution via natural selection, a
shorthand that allows reduction of otherwise intractable, purely
descriptive, mechanistic models). There is no equivalent set
of functions in, say, an ecological network: what are flower-
pollinator relationships, or plankton communities in marine
ecosystems, “for”? And indeed, rightly or wrongly, for centuries
biologists have relied on this kind of teleological understanding
of biological components without a second thought.

More generally, we can conceive of most biological regulation
as adjusting the condition of the organism to maintain broad-
sense homeostasis. This regulation can occur across two types
of dimension: discrete and continuous (Figure 2). For example,
migratory birds arriving for the breeding season go through a
discrete transition to a breeding state (Jacobs and Wingfield,
2000; Williams, 2012). This involves not just changes to sex
hormones and gonad size, but also changes in immune function,
diet, metabolism, and likely a host of other aspects of physiology
that have not been studied extensively. We can thus conceive
of breeding vs. non-breeding state as two “attractor states” of
the system, in complex systems terminology. Small changes in
physiology within a state are generally not sufficient to make the

organism jump from one “attractor basin” to the other—only
the right, and sufficient, stimulus can affect the change. Other
discrete states could include sleeping vs. wakefulness, an immune
system fighting acute infection, or the dauer stage of C. elegans.

Continuous variation occurs along a gradient. The chronic
low-grade inflammatory response characteristic of mammalian
aging is a good example (Franceschi et al., 2000), as is
hunger, or the metabolic changes that accompany continuously
increasing levels of exercise intensity. Both continuous and
discrete processes are reflected in multiple, connected aspects
of biology. Biological changes rarely happen in a vacuum, but
involve coordination across multiple components that need to
take into account what other parts of the system are doing (Csete
and Doyle, 2004). And this is the property of biological systems
that opens them up to tractability: the coherence of the overall
system state. A biological system is, at any moment, in a state that
reflects all the discrete and continuous dimensions of which it is
composed: for example, a bird might be breeding, experiencing
an acute infection of type X, under conditions of abundant food,
while resting, etc. We do not yet have a complete enumeration
of all these dimensions for any organism, and perhaps not
even for any biological component. And these dimensions may
not be additive: the presence of one state may preclude or
modify others, and many of the biochemical components that
help determine states are in fact shared. For example, the
inflammatory molecule C-reactive protein (CRP) is involved in
both acute infections, and in low-grade chronic inflammation
associated with aging. CRP level is thus not a simple measure
of either of these processes, but must be integrated with other
information to give information about either (Bandeen-Roche
et al., 2009; Morrisette-Thomas et al., 2014).

Broadly speaking, we can summarize the situation as follows:
we have a set of biomarkers (taken here to mean any indicators
of biological state, but likely individual molecules in biological
networks), and we would like to make robust inferences about
the state of the organism/cell/other biological component (let’s
call it an organism for simplicity). On the one hand, we have
the threefold challenges of (1) imperfect knowledge of the states
the organism might be in, (2) imperfect knowledge of how the
biomarkers might interact with each other and/or overlap in
how they signal different states; and (3) a marked undersampling
of the relevant molecules (we assume). On the other hand, the
associations among the biomarkers should reflect the structure of
the underlying networks and the covariation in the biomarkers
this generates: the coherence of the system state. Below we
discuss several statistical approaches that can be used to extract
information from such ensembles of biomarkers representing
sparsely sampled networks.

Principal Components Analysis
Principal components analysis (PCA) is a data reduction
technique that reorganizes the information in a large set of
semi-redundant variables, permitting the user to extract a
(much) smaller number of variables that explain the bulk of
the variation in the original set. It is related to many other
methods, such as factor analysis and t-SNE (Van Der Maaten
and Hinton, 2008), that can obtain similar objectives through
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FIGURE 2 | Hypothetical example of continuous and discrete latent biological states measured with three proxy biomarkers. Color represents the latent continuous
state, and circles vs. triangles represent the discrete state. The proxy biomarkers x and y but not z are associated with the continuous state, and the proxy
biomarkers y and z but not x are associated with the discrete state.

slightly different approaches. Our discussion here applies equally
to all these methods.

While PCA is primarily considered or used as a way to
reduce the number of dimensions in a dataset, it is also a
powerful tool to understand those dimensions. For example,
application of PCA to epidemiological data on malaria in India
showed that seven indices could be effectively reduced to one,
not two, PC axes (Cohen et al., 2010). This meant that indices
showing the balance between the two main malaria species
and those showing the abundance were actually moving largely
in tandem, implying an ecological gradient dynamic in which
one species dominates when abundance is high, and another
dominates when abundance is low. Similarly, PCA analysis of
inflammatory markers in human cohort data has shown that a
single key axis describes much of the variation in a population
of largely older adults, and that pro- and anti-inflammatory
markers positively co-vary along this axis: chronic inflammation

is not characterized by high pro-inflammatory markers and
low anti-inflammatory markers, but by high levels of both,
an activation of the system in which the anti- markers chase
the pro- markers without ever really catching up (Bandeen-
Roche et al., 2009; Morrisette-Thomas et al., 2014; Varadhan
et al., 2014; Cohen et al., 2018a). Similarly, PCA applied to
standard clinical biomarkers has revealed a surprisingly stable
structure that integrates multiple physiological systems (Cohen
et al., 2015b). The first principal component is multi-systemic,
with high scores indicating anemia, low calcium, low protein
transport (e.g., albumin), and high chronic inflammation, and
was termed “integrated albunemia.” Integrated albunemia scores
increase with age and predict mortality risk and clinical frailty
but not chronic diseases. They are also elevated acutely during
hospitalizations, etc. The correlation structure among the main
implicated systems appears stable, such that integrated albunemia
is a more robustly measurable phenomenon than its component
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markers. For example, its correlation with age and disease is more
stable than that of the component markers. This appears to be a
good example of a continuously varying attractor state.

While PCA, when used appropriately, can be a powerful
tool to uncover structure in biological data, it needs to
be used with caution. In particular, it can be sensitive to
population composition, and structure can also vary depending
on conditions or population (Pigeon et al., 2013). For example,
application of PCA to 13 circulating biomarkers in wild
European starlings (Sturnus vulgaris) showed that the correlation
structure—and thus the axes one might extract—varied across
years and breeding season (Fowler et al., 2018). This is to
be expected: changes in food abundance, diet composition, or
parasite burden should be expected to vary across seasons and
years, and also to cause changes in which biomarkers correlate
with which. But if the correlation structure is unstable, how
can we extract axes? One answer is that partial correlation
structures can be extracted. For example, in bighorn sheep (Ovis
canadensis), milk composition varies across both years and across
individual mothers, and it was possible to extract a correlation
structure for each of these aspects using appropriate hierarchical
models (Renaud et al., 2019).

However, more generally, care should be used to apply
PCA and related methods with appropriate cross-population
validation to ensure that any findings are true reflections
of biological organization rather than artifacts of sampling,
population composition, or environmental heterogeneity (Cohen
et al., 2018b). In the case of the Fowler et al. (2018) study, no
meaningful axes could be extracted due to the strong changes in
correlation structure and the limited samples sizes in the relevant
subgroups to robustly estimate structure. In contrast, integrated
albunemia has been validated in multiple populations (Cohen
et al., 2015b) and even species (Wey et al., 2019). Likewise,
there have multiple validations of inflamm-aging as a continuous
process that can be identified by PCA and related methods
(Bandeen-Roche et al., 2009; Cohen et al., 2015b, 2018a). The
simplest test is to repeat the PCA in distinct populations or
population subsets, extract the loadings, and then cross-apply
them to the other populations to generate scores. This generates
multiple versions of the PCA scores as calibrated based on,
say, men, women, population 1, population 2, etc. A correlation
matrix or correlogram can then be used to assess how well the
same axis is extracted. In the case of integrated albunemia, for
example, these correlations are generally greater than 0.95, even
from populations on different continents. Further confirmation
can be obtained by ensuring that the interpretation of the axis
via its loadings is similar. Graphical approaches to this can be
found in Cohen et al. (2015b).

Statistical Distance
Statistical distances are ways of quantifying how different an
individual or group is from another individual or group, usually
across a series of variables. In the context of measuring biological
or physiological state, the principal application has been to
quantify how different an individual’s multivariate biomarker
state is from some reference state, often the population average
or some reference healthy state. This requires statistical distances

that can quantify a distance between an individual and a group.
The two main methods that do this are Euclidean distance and
Mahalanobis distance (De Maesschalck et al., 2000). Euclidean
distance does not take into account any correlations between the
biomarkers, and thus, if redundant markers are included, will
double-count that information. Mahalanobis distance assumes
multivariate normality, and then uses the inverse of the
correlation matrix to eliminate redundancies among highly
correlated variables. This has the effect of down-weighting
redundant variables.

Mahalanobis distance has, accordingly, been more widely
used to measure physiological state. To our knowledge, the
first application was to measure physiological declines prior
to death in fruit flies (Drosophila melanogaster) (Shahrestani
et al., 2012). It was subsequently and independently applied
to human biomarker data for similar purposes, and has also
been applied in wild animals, both with (Milot et al., 2014)
and without (Fowler et al., 2018) success. The assumption in
all these cases is that average state is close to optimal state,
and that individuals far from optimal are likely to be more
unhealthy. This assumption is related to theory suggesting that
homeostatic states are relatively homogeneous, whereas there
are numerous ways that homeostasis can be lost and thus a
diversity of ways to diverge from the norm (Cohen, 2016).
Accordingly, Mahalanobis distance has been proposed as a
measure of homeostatic or physiological dysregulation. This
proposition makes a number of predictions. First, Mahalanobis
distance should increase with age. Second, it should predict
a wide variety of adverse health outcomes after controlling
for age. Third, this signal should not depend strongly on any
single biomarker, implying that (a) the choice of biomarkers
to include is not crucial, and (b) the signal should increase
monotonically (but with diminishing marginal returns) as the
number of biomarkers is increased. All of these predictions
have now been confirmed by multiple studies (Cohen et al.,
2013, 2014, 2015a, 2018c; Arbeev et al., 2016; Dansereau et al.,
2019; Kraft et al., 2020; Liu, 2020). The third prediction is
particularly important from a complex systems perspective,
as it implies that the signal is diffuse or distributed in
the physiological networks, and thus robustly estimable from
subsamples of biomarkers even without detailed knowledge of
network structure. It does thus appear that Mahalanobis distance
is a valid metric of homeostatic dysregulation, though it certainly
involves substantial measurement error. However, an advantage
of the Mahalanobis distance approach is that it makes no prior
assumptions about “good” or “bad” levels of biomarkers, and
does not calibrate based on age or anything else (unless a specific
reference population is chosen). This makes it agnostic and
neutral for subsequent physiological inferences.

Mahalanobis distance can also be applied to particular
physiological systems by dividing biomarkers into groups based
on a priori knowledge. Indeed, a priori knowledge does a
reasonably good job of distinguishing systems with minimally
correlated dysregulation levels (Li et al., 2015). Net of age,
correlations among physiological systems measurable with
standard clinical human biomarkers are generally significant but
weak (r < 0.2), implying feedback effects among the systems.
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This led to the prediction that similar types of systems might
be identified in -omics data, notably DNA methylation, gene
expression, or proteomics. However, this has not yet been
proven, and indeed in gene expression data from human blood
samples, the opposite pattern emerged: most systems identified
via gene ontology did not show any significant correlations
with age, and those that did show correlations that replicated
across datasets were uniformly negative rather than positive
(Dufour et al., 2020). This might be indicative of these systems
losing responsiveness to stimuli with age, but that remains
speculation at this point.

Cluster Analysis
While PCA and Mahalanobis distance are both good
measures of continuous processes, cluster analysis is more
appropriate for detecting discrete states. Like PCA and
Mahalanobis distance, many clustering algorithms are largely
agnostic/uncalibrated/unsupervised, generating clusters based
on similarities or differences in the data rather than an external
target. There are many clustering algorithms, each with strengths
and weaknesses, and a review is beyond the scope of this
article (Scheibler and Schneider, 1985; Budayan et al., 2009).
Hierarchical clustering, for example, has been profitably applied
to biomarker data (Sebastiani et al., 2017). In some sense,
clustering can be thought of as a discretized version of PCA, for
when the target process states are discrete rather than continuous.
A challenge here is that it is not always possible to know whether
the states/processes of interest are continuous or discrete a priori.
In fact, in some cases, the set of biomarkers in question may
capture both discrete and continuous processes (Figure 2).
When there is doubt, it may be advisable to try both methods,
with the objective of assessing the discreteness of the phenomena
in question. Because of measurement error, biologically discrete
processes may in fact appear overlapping, so the criterion for
use of cluster analysis should be the presence of clear, though
potentially overlapping, aggregates in multidimensional space.
Fuzzy clustering methods may be appropriate in such cases
(Budayan et al., 2009). Also, given that biological networks are
both weighted and directed, it may be relevant to apply clustering
methods specifically designed for such networks (Clemente and
Grassi, 2018; Barajas-Martínez et al., 2020).

A second challenge with cluster analysis is the diversity of
methods available. These methods often give discordant results,
identifying clusters that are not necessarily similar in their
composition from one method to the next. This is, to some extent,
to be expected. If we choose a group of 100 people and try to
cluster them based on similarity, our groups could look very
different if we base the similarity on demographics, on health
state, on music preferences, etc. There is no “true” way to cluster
the people. Even with the same set of variables, the way they
are weighted and treated should be expected to have an impact.
Nonetheless, if the clusters reflect true biologically discrete states,
we should expect a certain reproducibility across methods. In
this sense, cross-method validation of cluster analysis could
prove an important tool for identifying important biological
attractor states.

Statistical Network Inference
It is possible to combine analysis of correlation structure and
clustering methods to infer network structure. This has been done
both with general physiological biomarkers (Barajas-Martínez
et al., 2020), and with -omics data, for example using the
weighted gene coexpression network analysis (WGCNA, Zhang
and Horvath, 2005; Hariharan et al., 2014). The idea here is
that the correlation structure of variables reveals the network
structure, and in the context of high-dimensional -omics data
may also reveal discrete modules. We view this approach as
one with great potential, but also one that needs to be used
with caution. In particular, substantial work needs to be done
to assess the robustness of the estimation of network structure
to data stochasticity. The Cohen lab has unpublished analyses
on gene expression data in which WGCNA failed to produce
even minimally similar structures across different datasets;
this may be due to the difficulty correcting for batch effects
and how this impacts correlation structure, or to population
differences in correlation structure (Dufour et al., 2020). It is
well-known that correlation structures do change, across age
(Barajas-Martínez et al., 2020), across environment (Fowler
et al., 2018), and across cell type (Huttlin et al., 2020), among
others. Such instability of the basic network structure could be
problematic, but also could be the feature of interest (Fowler
et al., 2018; Barajas-Martínez et al., 2020). It is also worth
noting that such methods generally characterize the network
structure of a population, but do not permit direct evaluation of
an individual’s physiological state. If network structure is itself
malleable, network structure may simply be one more indicator
of the attractor state of the individual, in which case methods
that quantify individual state could serve as a proxy for network
structure after appropriate validation. This could open up many
potential research directions.

Machine Learning
PCA, Mahalanobis distance, and cluster analysis are relatively
neutral methods that make few assumptions about the data.
They do need to be used in biologically informed ways—for
example, choice of variables and appropriate cross-population
validation for PCA, and choice of reference population for
Mahalanobis distance—but beyond this they are largely agnostic,
or, in machine learning terms, unsupervised. In contrast, there
are a host of supervised machine learning methods that have
arisen in the last decades that permit the generation of precise
algorithms to predict targets. For example, chronological age
or measures of health status have been used to train random
forests and deep neural nets applied to clinical biomarkers (Putin
et al., 2016; Bello and Dumancas, 2017), and elastic nets or other
regression-linked approaches applied to DNA methylation data
and metabonomics data (Horvath, 2013; Hertel et al., 2016).
However, such methods present substantial challenges when
there is not a clear biological framework to link the biomarkers to
the prediction target (Hertel et al., 2019), a symptom of a much
more general challenge in artificial intelligence (Mitchell, 2020).
These techniques are thus undoubtedly powerful, but work best
when the biological nature of the prediction target is crystal clear,
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and are thus of limited interest in the context of this review. That
said, there are many applications of the newer machine learning
methodologies that can be applied in an unsupervised way for
the characterization of complex biological systems. They are too
numerous to enumerate here, as our objective is less an exhaustive
review than a demonstration of principle which we hope our
readers will take in new directions.

DISCUSSION

We have argued here that a complex systems perspective on
biological structure leads to reasons for both pessimism and
optimism in terms of our ability to measure important biological
states. On the pessimistic side, we are a long way from even
identifying all the key molecules in the relevant biological
networks, much less a full map of their pairwise interactions.
Furthermore, the complexity of the underlying networks (and
experience) both indicate that single biomarkers will often
be generally poor indicators of system state (Cohen et al.,
2018b). This is partly because the underlying networks are
generally structured to adjust multiple outputs as a function
of multiple inputs, requiring a regulatory network structure
that involves multiple intermediary pathways that balance the
potentially competing signals of the inputs, much as in a neural
network or autoencoder (Csete and Doyle, 2004; Cohen et al.,
2020). Because of this, it is rare that a single molecule has
a universal interpretation. For example, interleukin-6 (IL-6) is
widely considered the best marker of chronic inflammation.
However, there are different types of inflammation, and IL-
6 can even have anti-inflammatory roles in some contexts
(Bandeen-Roche et al., 2009). It is a decent marker on
average, but performs worse than multivariate approaches
designed to integrate across numerous inflammatory cytokines
(Cohen et al., 2018a).

On the optimistic side, the basic coherence of biological
function implies that key biological states should be measurable
with small ensembles of molecules, often arbitrarily chosen
within the sphere of general interest. Full knowledge of the
network is not needed to make progress. This assertion bears
some qualitative similarities to the field of compressed sensing
(Donoho, 2006), though we note that in that case there is
an assumption of “sparseness” in a technical sense (i.e., most
coefficients are zero), whereas we have referred to sparseness
not of coefficients, but of data, and in a more colloquial
sense. We thus do not believe, though cannot yet prove,
that there is no formal link between our assertions here and
compressed sensing.

Between the optimism and the pessimism lies the notion
of biological function, the teleological glue that holds together
most of our understanding of biology. Physical structures (e.g.,
tissue organization) and network structures (e.g., biochemical
pathways) are thought to have functions, in some cases patently
obvious, in some cases discovered through careful research,
but in many cases still obscure. The approaches outlined here
are examples of ways to elucidate network structures that
may have gone unremarked, and in particular to link such

structures to functions. For example, if cluster analysis of
single-cell gene expression reveals three stable yet heretofore
unremarked profiles of what was previously thought to be a
homogeneous cell type, there would be good reason to conduct
further research on these three types in order to elucidate their
respective roles.

In some sense, this assertion is completely unremarkable—
of course we would explore the functions of such cell types if
we found good evidence of distinctions, and cluster analysis is
hardly new—and yet it also opens the door to a new framework
for how we should explore biological variation. To date, we have
tried to fit biological variation into our notions of how biology is
organized, with varying degrees of success. For example, as noted
above, many machine learning approaches have been applied to
various kinds of data in an effort to quantify the aging process,
without questioning the assumption that there is an aging process
that could be measured. However, the existence of “aging” as
a biologically (as opposed to culturally) meaningful concept is
now being questioned (Cohen et al., 2020). Occasionally when
efforts to map data onto existing concepts fails, a new paradigm
emerges from the data, such as the alternative proteins discussed
above. But the judicious use of methods such as those described
here offers the potential for much more: a systematic and
data-driven exploration of the structure, and thus function, of
biological organization.

In short, we are proposing a broad effort to map biological
variability based on several principles:

(1) Analyses should be largely data-driven and conceptually
agnostic. We often do not understand the key structures,
states, and processes, and these may or may not map
well to the concepts and words we employ to describe
them. However, general biological knowledge should be
used to structure the analyses. Note that the annotations
underlying the data are reflections of our biological
conceptions and assumptions (Brunet et al., 2018), so there
is no perfectly agnostic approach.

(2) Replicable patterns in the data indicate key aspects of
biological organization.

(3) Identifying structures and patterns will point to function
(Han, 2008). And function, once determined, will give
meaning to the findings.

(4) Collect information on context. For example, information
on an organism’s sex, age, environment, etc. could prove
essential to uncovering the functional relevance of different
states.

Note that the approach we propose also avoids one of the
primary criticisms possible for a teleological or functional (as
opposed to mechanistic) understanding of biology: that our
conceptions of function are biased by cultural or other subjective
factors. In fact, a data-driven approach to identifying functional
biological units could help actively identify cases where subjective
factors have unduly influenced our understanding, while
simultaneously permitting us to harness the explanatory power of
natural selection as a force that shapes networks to achieve certain
functional objectives.

Frontiers in Physiology | www.frontiersin.org 9 February 2021 | Volume 12 | Article 624097

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-12-624097 February 4, 2021 Time: 15:23 # 10

Cohen et al. Physiological Metrics in Sparse Networks

The methods illustrated above—PCA, statistical distance,
and cluster analysis—are examples, not recommendations:
many others could be employed, and new ones will be
developed, particularly as we move toward integration of
multi-omics. The key point is that even standard, well-known
techniques can reveal hidden structures in biological data,
allowing the data to tell us a story that is often quite
different from what we expected. For a long time, biological
research has been largely hypothesis driven, an approach
that works well with smaller data scales and when every
variable is carefully chosen and laboriously measured. But in
the world of big data and -omics, we are faced with the
scale of our ignorance and the impossibility of generating
enough well-founded hypotheses. The approach we propose
here offers a way forward, a basic mapping of the landscape
of biological function through networks, on which future
hypotheses can be built.
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