
Corradi et al. Robot. Biomim.  (2017) 4:2 
DOI 10.1186/s40638-017-0058-2

RESEARCH 

Object recognition combining vision 
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Abstract 

This paper explores ways of combining vision and touch for the purpose of object recognition. In particular, it focuses 
on scenarios when there are few tactile training samples (as these are usually costly to obtain) and when vision is 
artificially impaired. Whilst machine vision is a widely studied field, and machine touch has received some attention 
recently, the fusion of both modalities remains a relatively unexplored area. It has been suggested that, in the human 
brain, there exist shared multi-sensorial representations of objects. This provides robustness when one or more senses 
are absent or unreliable. Modern robotics systems can benefit from multi-sensorial input, in particular in contexts 
where one or more of the sensors perform poorly. In this paper, a recently proposed tactile recognition model was 
extended by integrating a simple vision system in three different ways: vector concatenation (vision feature vector 
and tactile feature vector), object label posterior averaging and object label posterior product. A comparison is drawn 
in terms of overall accuracy of recognition and in terms of how quickly (number of training samples) learning occurs. 
The conclusions reached are: (1) the most accurate system is “posterior product”, (2) multi-modal recognition has 
higher accuracy to either modality alone if all visual and tactile training data are pooled together, and (3) in the case 
of visual impairment, multi-modal recognition “learns faster”, i.e. requires fewer training samples to achieve the same 
accuracy as either other modality.
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Background
It seems evident that the presence of multiple sensors, 
capable of capturing complementary information about 
the environment, is a desirable feature of modern robots 
[11, 18]. Indeed, there are indications that humans use 
similar mechanisms to process sensory information 
from vision and touch and that memories are multi-
sensorial in nature [19, 20, 38]. In the field of machine 
vision, object recognition has been so well understood 
that, in some cases, artificial systems have surpassed 
human accuracy [13]. Machine touch has also received a 
great deal of attention recently. Whilst most commonly 
focused on texture recognition [9, 15, 21, 33], substan-
tial efforts have been made to design object recognition 
systems using touch [26, 27, 34]. The question of how 
these modalities are to be used in conjunction remains, 

however, largely unanswered. Early attempts involved 
building geometric models of objects [3]. More recently, 
the field has received a lot more attention, consistently 
showing that sensor fusion outperforms either modality 
alone [12, 14, 18, 40]. Only Kim et al. [18] and Yang et al. 
[40] specifically consider object recognition with a direct 
fusion of touch and vision, and this is done with grasp-
ing approaches. In this paper, a complete sensor fusion 
model is proposed for vision and touch, demonstrating 
its potential in object recognition with a small number 
of training samples. Unlike the aforementioned studies, 
which use grasping, a single-touch approach is used here, 
using a biologically inspired tactile “finger” (see Fig. 1). In 
particular, for the cases where both modalities perform 
poorly independently (e.g. when vision is impaired), ben-
efits are highlighted. It is also shown that, under certain 
conditions, the multi-modal systems are “faster learn-
ers” than vision and touch, i.e. they require fewer training 
samples to achieve comparable accuracy.

Open Access

*Correspondence:  t.m.corradi@bath.ac.uk 
Department of Mechanical Engineering, University of Bath, Claverton 
Down, Bath BA27AY, UK

http://orcid.org/0000-0002-0571-1026
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40638-017-0058-2&domain=pdf


Page 2 of 10Corradi et al. Robot. Biomim.  (2017) 4:2 

Related work
Tactile object recognition
Kappassov et al. [16] distinguish between three types of 
tactile object recognition approaches: texture recogni-
tion, object identification (by which they mean using 
multiple tactile data types, such as temperature, pres-
sure, to identify objects based on their physical proper-
ties) and pattern recognition. This work falls within the 
last category. Most tactile recognition systems are based 
on recognition from grasping, i.e. using robotic hands or 
grippers equipped with multiple tactile sensors, where, 
often, the position of the fingers (proprioception) is also 
used as input. For example, using Self-Organising Maps 
and neural nets for household object recognition [27], 
using Gaussian kernels to attain online learning of new 
objects [34], hierarchical feature learning (including 
temporal information) for object recognition [26] and 
multi-finger joint space sparse coding [22], all of which 
obtain near perfect accuracy. Recognition from grasp-
ing, however, requires the ability to grasp the object, 
whose identity is yet unknown, a non-trivial task. Alter-
natively, it is possible to recognise the object by means 
of individual contacts with a single tactile sensor. Some 
approaches involve volumetric reconstruction [1, 10] 

such as point-clouds or voxel space representation. 
Accuracy in these studies reaches 80% in some cases for 
45 objects and only 10 touches, but 3D models of the 
objects are required in advance. Furthermore, there are 
technical challenges with scaling point-could and voxel 
representations. This paper focuses on this particular 
scope: single-touch (non-grasping) object recognition. 
Schneider et al. [32] performed two-fingered grasps on a 
set of household objects, using a gripper equipped with 
tactile array sensors. From the resulting tactile images, 
a bag-of-tactile features approach was implemented to 
achieve over 84% accuracy in recognition. Their work 
uses information about the object relative position to the 
gripper. Pezzementi et al. [30] apply a predefined explora-
tion routine with a single finger contact, to learn object 
models based on histograms of features (thus being the 
closest in data collection methodology to the work pre-
sented in this paper). Real object testing is limited to a 
set of 5 objects, achieving in excess of 90% accuracy for 
their best performing method. Recently, it was shown 
that single-touch object recognition is possible even with 
a low-resolution sensor [7]. Here, that model is extended 
to account for visual information, comparing three differ-
ent approaches to such multi-modal integration.

Visuo‑tactile integration
Early attempts at integrating vision and touch were con-
ducted by Allen [3], using geometric models of objects 
and touch to complement unseen parts and again to 
estimate the parameters of a kinematic model for hand–
object interactions [4]. Later, neural nets were used 
to fuse visual data and pressure data, showing that this 
sensor fusion was faster at learning and more accurate 
than either modality alone [18]. Recent work included 
fusion of RGB-D data and tactile data using an invariant 
extended Kalman filter to discover and refine 3D models 
of unseen objects [14]. It has been shown that fusion of 
vision and touch can be used to recognise the content 
of squeezed bottles [12], where the fusion of modalities 
outperforms either modality alone. Recently, Sun et  al. 
[37] showed that sensing objects using vision and touch 
independently helps in identifications of suitable grasp-
ing plans. Visuo-tactile integration has also benefited the 
field of surface classification [36], where the variety of 
textures and patterns create difficulties for either modal-
ity alone. Most closely related to this paper are the works 
of Yang et  al. [40] and of Liu et  al. [23]. In [40], visuo-
tactile integration shows great promise, demonstrating 
an improvement in accuracy using a simple weighted 
k-nearest-neighbour classifier to adjudicate a class label 
given vectors representing the tactile and visual input, 
obtaining a higher accuracy when both are combined 
rather than either used alone. Liu et  al. [23] provide a 

Fig. 1  Tactile data are collected autonomously by the tactile sensor 
developed in [7], mounted on a KUKA KR-650
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visuo-tactile fusion model (using grasping) involving an 
innovative sparse coding algorithm for object instance 
recognition in a set of 18 objects, with similar results. 
This work is particularly impressive, as the sparse ker-
nel encoding is robust to the inherently weak pairing 
between tactile and visual data. The work presented in 
this paper contributes in four key aspects: (a) tactile 
data are collected with single touches (no grasping, no 
grippers) and the poses of the sensor and the object are 
ignored (no spatial information is used), (b) visual and 
tactile models developed are probabilistic, (c) the main 
fusion model presented is both simple and grounded, and 
(d) an analysis of arbitrarily impaired visual data is pre-
sented with a novel focus (learning efficiency).

Tactile and visual models
Tactile model
The tactile sensor used here was first introduced in [6]. It 
comprises a camera inside a 3D-printed ABS enclosure, 
filming the shading pattern resulting from the deforma-
tion of an internally illuminated silicone rubber mem-
brane, as it makes contact with an object (see Fig. 2). An 
extensive comparison of encodings and classifiers to best 
process the output of this sensor for shape and object 
recognition were covered in recent work [6, 7]. The 
algorithm devised in that work involves computing the 
Zernike moments [41] of a given normalised image (as 

read by the camera), and using PCA for dimensionality 
reduction. Zernike moments are obtained by computing 
the modulus of the inner product of Zernike polynomi-
als (evaluated on a unit disc) with a given tactile image’s 
intensity values (Fig.  3 shows a few sample Zernike 

Fig. 2  The new tactile sensor design (left) first reported in [6]. The main body is 3D printed in ABS. The tip is a 1 mm thick silicone rubber hemi-
sphere. At the base (not visible) there is a USB eSecure web-cam with 8 LEDs illuminating the inside of the silicone hemisphere. As the tip makes 
contact with an object, it deforms resulting in a specific shading pattern (right). Schematics and part details openly available at: https://github.com/
Exhor/bathtip

Fig. 3  Three examples of Zernike polynomials (using Noll’s indices 
[29]) evaluated over a unit disc, depicted as modulus (left) and phase 
(right)

https://github.com/Exhor/bathtip
https://github.com/Exhor/bathtip
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polynomials). Using Zernike moments bears some imme-
diate advantages: they provide a direct way of encoding 
images whose domain is the unit disc and they can pro-
vide rotational invariance [17] , which is ideal consider-
ing how the sensor works. Furthermore, they had already 
been used for basic visual shape recognition [39]. For 
more details, and comparisons to other encodings, see 
[7].

Each object is therefore represented by n vectors of size 
d, each containing the first d principal components of the 
Zernike–PCA descriptor of a tactile image captured dur-
ing training. These n vectors are stored. A d-dimensional 
Gaussian is centred at each one of these vectors, with 
covariance matrix obtained from the complete training 
data set. The normalised sum of all these gaussians is 
the p.d.f. of the likelihood model, i.e. the model assigns 
a probability of observing a certain Zernike–PCA vector, 
for any given object: P(tactile_vector|object_label).

Formally, let the training set of vectors be called 
Xc = {Xc,i, i = 1, . . . , n}, where Xi is the Zernike–PCA 
moment vector the ith tactile image of object c, which 
was observed n times during training.

Let W be the covariance matrix of Xc.1 Let 
t = {tj , j = 1, . . . ,m} be the sequence of Zernike–PCA 
moments (where the PCA reduction is performed using 
the dimensionality reduction matrix obtained from the 
training data), where tj represents the Zernike–PCA 
moments of the jth tactile image of the object being 
sensed, and whose label is being preducted. Then, the 
likelihood of tj for a given object label C is modelled as:

where

where d is the dimensionality of the feature vector. 
Assuming subsequent observations of the object are 
independent, and applying Bayes’ Rule, the probability 
of each object label, C, given the set of observations t, is 
given by:

1  In practice, this is very close to being the diagonal matrix of variances, 
since Xc is the scores matrix resulting from PCA.

P(tj|C) =
1

nC

nC
∑

i=1

N (ti|XC ,i,W )

N (ti|XC ,i,W ) =
e−

1
2 (tj−XC ,i)

TW−1(tj−XC ,i)

√

�W�(2π)d

(1)P(C|t) = α

m
∏

j=1

P(tj|C)P(C)

where α is a normalising constant, and P(C) can be esti-
mated from the number of times each object is observed 
during training, which, in all cases covered here, forms a 
uniform prior distribution. Therefore, for touch-only rec-
ognition, object label inference is:

Visual model
The visual model is a simple bag-of-words model, using 
SURF [5] as features. K-means is used on the SURF 
descriptors of a pre-training data set of unrelated images, 
for the purpose of dictionary creation. Each SURF feature 
descriptor of each object image is assigned a label (word), 
the closest k-means centre to it. Each image is thereaf-
ter represented by the histogram of these labels (words). 
During training, a one-vs-all r.b.f.–kernel support vector 
machine (SVM) is used on the normalised histograms 
corresponding to each object. During testing, a single 
visual image is used. The image’s histogram is presented 
to all the SVMs, and a posterior distribution over object 
labels is computed using Platt scaling [31]. Specifically, let 
s(v) be the score given by the SVM corresponding to label 
C to the visual histogram v of an object’s image. Then the 
probability of label C is estimated as:

where A and B are two constants estimated by maximis-
ing the log likelihood of the training data (for details, see 
[31]). The predicted label for vision only is therefore:

Visuo‑tactile integration models
Whilst attempting to integrate various modalities, recent 
work has focused on either deep learning and other neu-
ral approaches [28, 35, 42], probabilistic [24] or direct 
vector concatenation [40]. The first group has advantages 
in their ability to recognise relationship between input 
data at various levels of abstraction. However, they do 
require more data, which is a limitation in tactile robot-
ics. In this paper, three approaches are compared, sum-
marised in Fig. 4, and described below.

Posterior product
A straightforward approach to predicting an object label 
is to pick the label, C, that maximises the likelihood of 
observed data P(v, t|C). Assuming conditional independ-
ence, P(v, t|C) = P(v|C)P(t|C). Further assuming a uni-
form prior over class labels, applying Bayes’ Rule and 
noting that P(v) and P(t) do not depend on C, means that 
maximising the product P(v|C)P(t|C) over C is equivalent 

(2)Ctouch = argmin
C

P(C|t)

(3)P(C|v) =
1

1+ exp(As(v)+ B)

(4)Cvision = argmin
C

P(C|v)
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to maximising P(C|v)P(C|t) over C. Therefore, the pre-
dicted label can be computed by:

where P(C|t) and P(C|v) are the probabilities that the 
object being sensed has label C, given the tactile and the 
visual sensed data, respectively, as defined in Eqs. (1) and 
(3). The assumption of independence in the above model 
is a simplification, since both vision and touch depend on 
the geometry of the object.

Vector concatenation
Similar to the work of Yang et al. [40], the second model 
presented directly concatenates the feature vectors for 
vision and touch and then label prediction is done by just 
finding the nearest neighbour in the training data set. 
Nearest neighbour classification is known to be problem-
atic in high-dimensional data [2]; therefore, following the 
recommendations of Aggarwal et al. [2], the L0.1 distance 
metric is chosen. Thus, the label predicted is that for whom 
the distance to its closest training vectors is smallest. Let 
vC is the nearest neighbour to a test image’s histogram v of 
label C. Let tC ,1, tC ,2, . . . , tC ,p be the nearest tactile training 

(5)Cprod = argmin
C

{P(C|t)P(C|v)}

vectors of label C to the testing vectors t1, t2, . . . , tp. Then, 
the predicted label for vector concatenation is:

Weighted average of posteriors
A heuristic alternative is to consider the weighted average 
of posteriors, where the weight is set to the number of 
training samples for the modality. The rationale for such 
an approach is that the more experience (training sam-
ples) there is in a particular modality, the more it should 
influence a final decision. Thus, let trT and trV  denote the 
number of training samples for a given simulation; then 
the predicted label for posterior average, Cavg given the 
input data, is given by:

This approach would equate to vote counting, where both 
vision and touch cast votes for which class label should 
be chosen as most likely. The number of votes each casts 
being directly proportional to how many samples were 
used during their training.

Experiments and results
Training was conducted on images of 10 objects (see 
Fig.  5) collected manually and tactile readings of the 
same objects, performed autonomously by a robot (illus-
trated in Fig. 1). The centre of the object was assumed to 
be known; then, an angle of approach was chosen at ran-
dom. The robot approached pointing the sensor inwards 
towards the assumed centre of the object, until there was 

(6)Cconcat = argmin
C

|v − vC |L0.1 +
1

p

p
∑

j=1

|tj − tC ,j|L0.1

(7)Cavg = argmin
C

{trTP(c|t)+ trV P(c|v)}

Concatenate

Cprod = max { P(C|v)P(C|t) }

Cavg = max { trVP(C|v) + trT P(C|t) }

Cconcat

Photos Tactile
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Fig. 4  Three sensor fusion models for multi-modal recognition 
process

Fig. 5  The 10 household objects used
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a contact detected. A single image is retrieved from the 
sensor’s camera and stored, before the arm retracts out-
wards and the process starts over (for more details, see 
[7]). The position and orientation of the sensor are not 
used, only the tactile images.

For some tests, vision was corrupted to produce 
“blotched” images to simulate visual impairment: images 
were covered by a small random number of randomly 
placed black circles occluding approximately 20% of the 
pixels. Images were resized to 300× 300 pixels and set to 
greyscale prior to processing. Some samples of unaltered 
and blotched images are depicted in Fig. 6.

Parameter estimation was performed on a validation 
subset of the data, and the following optimal parameters 
were obtained:

• • Number of principal components to retain in 
Zernike–PCA descriptors: 20

• • Optimal feature descriptor from amongst SIFT [25], 
SURF, HOG [8]: SURF

• • Size of the visual vocabulary for the SURF bag-of-
words model: 100

The remaining data set was repeatedly split into train-
ing and testing subsets; each such split is referred to 
as a “simulation” (all data are from real robot experi-
ments). The number of training samples varied in each 
simulation. During testing, visual posterior calculation 
is performed according to Eq. (3), with a single image. 
For tactile recognition, up to 30 tactile images were 
considered in sequence, to produce a tactile posterior 
calculation, as defined in Eq. (1). Notice that, at times, 
only a subset of the 30 tactile images was considered 
for testing. With these, Ctouch,Cvision,Cprod,Cconcat and 
Cavg were computed as defined in Eqs. (2)–(7). Each 
simulation will produce one prediction per visual pho-
tograph. Each photograph will be randomly paired with 
up to 30 tactile images from the same object. Accu-
racy is defined as the mean average proportion of cor-
rect label predictions over all simulations. Let d be the 
number of simulations, assume each simulation has nv 
testing photographs, and let yi,j be the predicted label 
for an object whose true label is xi,j, corresponding 
to the jth photograph of the ith simulation; then, the 
accuracy reported is

Fig. 6  Sample of visual full images (top row), blotched images (bottom row). Blotches are in effect black, but are depicted orange for visibility
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where the label prediction yi,j is performed according 
to Eqs. (2)–(7), and I is the indicator function.

Two experiments are reported. The first compared the 
accuracies of recognition of uni-modal and multi-modal 
approaches using all training data available. For the sec-
ond experiment, the total number of training samples 
(visual plus tactile) is fixed a priori.

Uni‑modal and multi‑modal recognition accuracy
For the first experiment, 60 visual and 60 tactile training 
samples were used. Each simulation represents a different 
training/testing data split. A total of 700 simulations were 
run. As there are 10 objects, the baseline (random) recog-
nition accuracy is 0.1.

During test time, for a given object, a single visual 
image was used for vision and a sequence of up to 15 tac-
tile images corresponding to that object were used for 
touch. Figure 7 shows mean accuracy as more and more 
tactile images were used at test time.

For the case of unaltered images (Fig. 7, bottom), vision 
achieved 0.86 accuracy. For a single tactile image, touch 
only attained 0.43, whilst all multi-modal approaches 
provide an improvement over vision alone (albeit small). 
As more touches are used at test time, tactile accuracy 
obviously improves. As the gap in performance between 

(8)Accuracy =
1

d

1

nv

d
∑

i=1

nv
∑

j=1

I{xi,j}(yi,j)

the modalities narrowed, the relative improvement of 
multi-modal approaches seemed more marked.

For the case of blotched images (Fig.  7, top), vision’s 
accuracy is much lower at 0.5. When only one touch was 
allowed at test time, the tactile accuracy was still 0.43, 
and the multi-modal approaches all showed a marked rel-
ative improvement. In this case, the accuracies of vision 
and touch started on a similar level, but touch evidently 
increased as more and more tactile images were used at 
test time. Even so, the multi-modal approaches showed 
an improvement over either modality in all cases.

In other words, the improvement in accuracy seemed 
smallest where the two modalities differed significantly in 
performance, and one dominated over the other. By con-
trast, when vision was impaired and few tactile images 
were allowed at test time, the improvement was most 
marked.

Learning efficiency: accuracy versus number of training 
samples
For the second experiment, the aim was to ascertain 
how efficient in terms of number of training samples 
the learning process was, with multi-modal representa-
tions, in comparison with each individual modality. The 
reasoning is that it may be considered “unfair” to com-
pare a vision-only system which used 60 training samples 
against a visuo-tactile system that used 120 (60 visual and 
60 touch). Instead, the total number of training samples 
was set to a fixed value and the accuracy for uni-modal 
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Fig. 7  Accuracy of recognition for 10 objects versus the number touches (tactile images) used at test time. Showing mean average over 700 simu-
lations for each graph. Comparison of three approaches to multi-modal recognition
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and multi-modal was computed. For example, when the 
number of training samples was set to 40, tactile-only 
and visual-only recognition was performed using 40 
training samples, but multi-modal recognition was per-
formed using 20 visual and 20 tactile, or 35 visual and 5 
tactile, or any other combination. This is different to all 
previous work encountered, where, when it comes to 
sensor fusion, all data from both modalities are typically 
used (such as in the first experiment).

At test time, a single image was used for vision, and a 
sequence of up to 30 tactile images for touch. Figure  8 
shows mean accuracy against total number of training 
samples. Following the findings in the first experiment, 
the reported number of tactile images used at test time 
was chosen so as to not allow either modality to domi-
nate. That is, when “blotched” images were considered 
(top three graphs), only a few tactile images were needed 
for this purpose; but, in the case of full images (bottom 
three graphs), vision was stronger, so more tactile images 
were needed to achieve a similar degree of accuracy.

Consider the case of “unaltered” images, the lower part 
of Fig. 8. When 5 touches are allowed at test time (bot-
tom left), vision is superior to touch. The accuracy of 
all multi-modal approaches fell short of vision’s, namely 

it provides no improvement in this context. Even when 
15 or 30 tactile images were used (bottom middle and 
bottom right), and there was no clear disparity in per-
formance between vision and touch, the multi-modal 
approaches are not more “efficient” than one of the 
modalities alone, i.e. they require the same or more total 
training samples to achieve similar accuracy.

Now consider the case of using “blotched” images at 
test time (Fig. 8, top). When at least 40 training samples 
were used, the product of posteriors approach (Cprod ) 
achieved higher accuracy than any other. As more 
touches were allowed at test time (top centre and right), 
the touch-only accuracy improved quickly, and the rela-
tive gain from multi-modal approaches declined, to the 
point that only Cprod was visibly superior for the case of 3 
touches at test time (top, right).

Conclusions and evaluation
A system was proposed for the purpose of visuo-tactile 
object recognition, by extending a recent tactile recog-
nition model [7] and integrating it with a simple visual 
model. Three alternatives were considered for such inte-
gration, Cconcat,Cavg and Cprod. Visuo-tactile approaches 
show considerable performance gains over either 
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graph. Comparison of the three approaches to multi-modal recognition. “Ntouches” stands for the number of tactile images used at test time
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individual modality for the purpose of object recognition. 
In particular, the proposed method of posterior prod-
uct outperforms both the weighted-average heuristic 
and the vector concatenation [40]. A novel comparison 
metric was proposed, fixing the total number of train-
ing samples a priori, so that, for example, a visuo-tactile 
approach using 30 visual and 30 touch training samples 
is compared to visual-only or tactile-only systems using 
60 training samples. Under this new metric, the superior-
ity of multi-modal approaches (and of posterior product 
in particular) was only found where vision was impaired 
artificially. It must be borne in mind that vision presents 
a remarkably high accuracy from very few training sam-
ples for unaltered images. Therefore, it is inherently more 
challenging to obtain improvements. This highlights a 
limitation of this metric, for there may be a fairer com-
parison. Even under such consideration, for “blotched” 
images, higher accuracy was obtained with N visual plus 
N tactile training samples, than 2N visual and than 2N 
tactile, for all models and values of N > 20. The arti-
ficially introduced visual impairment had the effect of 
overall lowering the accuracy of vision, and, where this 
was combined with lower accuracy from touch, the 
greatest improvement was obtained by the multi-modal 
approaches, in particular, by the product of posteriors, 
Cprod. Further work will explore the potential of these 
models for object class recognition and fine-grained rec-
ognition, using multiple instances of each class and thus 
the extension to a larger data set.
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