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Abstract: Neuropathic pain is a challenging complaint for patients and clinicians since there are
no effective agents available to get satisfactory outcomes even though the pharmacological agents
target reasonable pathophysiological mechanisms. This may indicate that other aspects in these
mechanisms should be unveiled to comprehend the pathogenesis of neuropathic pain and thus find
more effective treatments. Therefore, in the present study, several mechanisms are chosen to be
reconsidered in the pathophysiology of neuropathic pain from a quantum mechanical perspective.
The mathematical model of the ions quantum tunneling model is used to provide quantum aspects in
the pathophysiology of neuropathic pain. Three major pathophysiological mechanisms are revisited in
the context of the quantum tunneling model. These include: (1) the depolarized membrane potential
of neurons; (2) the cross-talk or the ephaptic coupling between the neurons; and (3) the spontaneous
neuronal activity and the emergence of ectopic action potentials. We will show mathematically that
the quantum tunneling model can predict the occurrence of neuronal membrane depolarization
attributed to the quantum tunneling current of sodium ions. Moreover, the probability of inducing an
ectopic action potential in the axons of neurons will be calculated and will be shown to be significant
and influential. These ectopic action potentials are generated due to the formation of quantum
synapses which are assumed to be the mechanism behind the ephaptic transmission. Furthermore,
the spontaneous neuronal activity and the emergence of ectopic action potentials independently
from any adjacent stimulated neurons are predicted to occur according to the quantum tunneling
model. All these quantum mechanical aspects contribute to the overall hyperexcitability of the
neurons and to the pathogenesis of neuropathic pain. Additionally, providing a new perspective in
the pathophysiology of neuropathic pain may improve our understanding of how the neuropathic
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pain is generated and maintained and may offer new effective agents that can improve the overall
clinical outcomes of the patients.

Keywords: neuropathic pain; quantum tunneling; ion channels; quantum biology; quantum medicine;
quantum conductance; depolarization; ephaptic coupling

1. Introduction

Neuropathic pain is a challenging entity in clinical practice for both patients and clini-
cians [1]. Many pathologies are involved in the pathogenesis of neuropathic pain. These
pathologies can be classified into central and peripheral categories. The central category
involves the brain and the spinal cord such as cerebrovascular disease, neurodegenerative
diseases such multiple sclerosis and Parkinson disease, spinal cord injury, syringomyelia,
and transverse myelitis [1]. The peripheral category involves diabetes, infection (Herpes
Zoster), nerve compression, nerve trauma, autoimmune diseases, cancer and its related
chemotherapy and inherited channelopathies [1]. Furthermore, there are many complex
pathophysiological mechanisms that generate neuropathic pain, which leave this disease
with difficult management and control [1–13]. These mechanisms include neuronal mem-
brane depolarization, the spontaneous firing of the neurons, and the neuronal ephaptic
coupling [1–13]. The membrane depolarization that has been observed in the injured
neurons can explain the hyperexcitability because in this case the neurons can reach the
threshold of action potential more easily [2–5]. Moreover, the spontaneous firing of injured
neurons and the emergence of ectopic action potentials are key features in the patho-
physiology of neuropathic pain [1,6–9]. Another important aspect that contributes to the
maintenance of neuropathic pain is the ephaptic interactions between injured fibers because
this type of transmission implies the communication of neurons without the requirement
of the usual chemical and electrical synapses [10–13].

Quantum biology is a new emerging and promising field that exploits the principles
of quantum mechanics such as quantum tunneling, quantum entanglement, and many
others to understand and delineate poorly understood actions, processes, and events in the
biological systems [14]. Recently, the authors of this review [15] focused on the potential
capability of quantum biology to cause a significant improvement in the clinical outcomes
of several challenging diseases.

In the present study, we aim to revisit the previous three major mechanisms of the
pathophysiology of neuropathic pain from a quantum mechanical perspective. This aim
is accomplished by utilizing the model of ions quantum tunneling through the closed
gates of voltage-gated channels. This quantum model has been proposed before and used
in different contexts to explain several physiological and pathophysiological actions and
processes [16–20]. This quantum model is based on one of the major consequences of
quantum mechanics, which is quantum tunneling. The quantum tunneling describes the
ability of quantum particles such as electrons, protons, atoms, and ions to pass through
a barrier whose energy is higher than the energy of the particle. Classically, this particle
cannot pass through this barrier because it does not have enough energy to overcome it.
This wired quantum behavior is attributed to the wave nature of the particle when it is
described according to the principles of quantum mechanics. Hence, this phenomenon can
be applied on the voltage-gated channels since they possess a closed gate which can be
illustrated as a potential barrier that blocks the permeations of ions. In this case, ions can
be described as quantum particles and the closed gate as the barrier that has higher energy
than the ions. Accordingly, the quantum tunneling model predicts that closed channels
have a quantum permeability or quantum conductance mediated via quantum tunneling.
This quantum model showed the potential ability to provide reasonable and comprehensive
explanations for several physiological and pathological conditions. For example, the model
could explain how the myelin sheath can increase the spatiotemporal fidelity of action
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potential signals by eliminating the quantum tunneling of potassium ions [19]. Furthermore,
it could provide a comprehensive understanding of the pathophysiology of referred pain
and phantom limb pain based on the mathematical modeling of quantum tunneling of
ions [18,20]. Our motivation behind using the quantum tunneling model for neuropathic
pain is to improve the unsatisfactory clinical outcomes of using the currently available
medications [21], hence providing a new perspective may provide the opportunity to
produce more effective medications to get more satisfactory clinical outcomes. Another
motivation is the ability of the quantum tunneling model to provide a more comprehensive
and reasonable explanation for the electrophysiological features observed in the neurons of
the neuropathic pain, especially as some of these features cannot be fully understood by
the classical methods or do not have a clear mechanistic basis [1–13,21,22]. The quantum
mechanical aspects presented in this study will provide new mechanisms not discussed
before to explain the hyperexcitability of the injured neurons such as the quantum tunneling-
induced membrane depolarization, give consistent and reasonable explanations for elusive
pathophysiological events such as ephaptic interactions between neurons by proposing the
idea of quantum synapses, and show that the quantum tunneling of ions can play a more
significant role than the pure thermal mechanism to generate spontaneous ectopic action
potentials by applying the idea of thermally-assisted quantum tunneling.

2. The Mathematical Model
2.1. The Quantum Tunneling of Ions and the Quantum Conductance

In the present study, the mathematical model of ions quantum tunneling will be
applied to investigate the quantum aspects of the pathogenesis of neuropathic pain. It
will be applied on the voltage-gated sodium channels, which are strongly involved in the
pathophysiology of neuropathic pain [8,9] to explain how membrane depolarization is
induced from a quantum mechanical point of view and to show that neurons can trigger a
spontaneous ectopic action potential. Additionally, the quantum tunneling model will be
applied on the voltage-gated potassium channels to propose the idea of quantum synapses
between neurons. The voltage-gated channels possess an intracellular hydrophobic closed
gate that seals off the permeation of ions [23–26]. Accordingly, this closed gate functions
as an energy barrier that blocks the passage of ions. In this case, the quantum tunneling
phenomenon is applicable and it is useful to investigate the properties of ion passage when
the gate is closed.

The symmetric Eckart potential will be used in this study to scrutinize the quantum tun-
neling probability of ions through the closed gate of voltage-gated channels. The symmetric
Eckart potential can be mathematically represented by the following function [27–29]:

U(x) =
G

cosh2( x
L )

(1)

where U(x) is the energy barrier of the closed gate, G is the barrier height of the closed gate,
x is the position of the ion in the gate, and L is the ‘gate length’ at which U(L) = 0.42G.

The graphical representation of the symmetric Eckart potential can be found in Figure 1.
We chose the symmetric Eckart potential to estimate the tunneling probability of

ions through the closed gates because the experimental observations of the energy bar-
rier of the hydrophobic gate based on the potential mean forces (PMF) of ions [30–34]
reveals a similar pattern as in Figure 1. Moreover, there is no concrete mathematical
equation that can describe how the energy barrier changes with respect to the ion’s po-
sition because what we have from the literature with respect to the energy barrier of the
closed gate is an experimental measurement without a clear mathematical framework.
Therefore, the symmetric Eckart potential can mimic and approximate the barrier shapes
obtained experimentally.
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Figure 1. (a) A schematic representation of the symmetric Eckart potential. (b) Real plotting of the 
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Figure 1. (a) A schematic representation of the symmetric Eckart potential. (b) Real plotting of the
symmetric Eckart potential at different values of gate length L.

Accordingly, the quantum tunneling probability through the symmetric Eckart poten-
tial can be calculated using the following equation [27,28,35]:

TQ = eαL(
√

G−
√

KE) (2)

where α = −
√

8π2m
} ; where m is the mass of the ion (mNa = 3.8 × 10−26 Kg and

mK = 6.5× 10−26 Kg), } is the reduced Planck constant (1.05× 10−34 Js), L is the length of
the gate at which U(L) = 0.42G, G is the barrier height of the closed gate, and KE is the
kinetic energy of the ion.
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There are extracellular and intracellular ions and they are different in terms of kinetic
energy KE [16,17] due the influence of the membrane potential. As the usual location of the
closed activation gate is at the intracellular end [23–25], then the extracellular ions will go
through the membrane potential, which is negative inside with regard to outside, acquiring
kinetic energy equal to qVm until reaching the intracellular closed gate, in addition to the
average thermal energy 1

2 KBT, while intracellular ions will hit the intracellular closed gate
having only the average thermal energy 1

2 KBT. See Figure 2.
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However, the quantum tunneling model can be applied on the closed gates, which 
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count for the different locations of the closed gate and its influence on the kinetic energy 
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Figure 2. The figure represents a schematic diagram of the closed voltage-gate channel in which the
closed gate, shown by the red color, is located at the intracellular end. The extracellular ion goes
through the membrane potential until hitting the closed gate, while the intracellular ion hits the
closed gate before going through the membrane potential.

However, the quantum tunneling model can be applied on the closed gates, which in-
clude the closed activation and closed inactivation gates. Moreover, the closed inactivation
gate can be located at sites other than the intracellular end [36–38]. Therefore, to account
for the different locations of the closed gate and its influence on the kinetic energy of the
extracellular ions, we will assign n values from 1 to 4. See Figure 3.
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Accordingly, the kinetic energies of the extracellular and intracellular ions, respectively, are:

KEe =
qVm

n
+

1
2

KBT (3)

KEi =
1
2

KBT (4)
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where q is the charge of the ion, Vm is the membrane potential, n is the location of the closed
gate, KB is the Boltzmann’s constant (1.38× 10−23 J/K), and T is the body temperature
(310 K).

Thus, the quantum tunneling probabilities of the extracellular and intracellular ions
are, respectively:

TQ(e) = eαL(
√

G−
√

qVm
n + 1

2 KBT) (5)

TQ(i) = eαL(
√

G−
√

1
2 KBT) (6)

Since there is a probabilistic passage through the closed gate via quantum tunneling,
then it is expected to observe a quantum conductance. Hence, the quantum unitary
conductance of the closed voltage-gated channels can be calculated using the following
equation [39–41]:

CQ =
q2

h
TQ (7)

where Cq is the quantum unitary conductance, q is the ion’s charge (1.6× 10−19 C), h is the
Planck constant (6.6× 10−34 Js), and TQ is the tunneling probability. The unit of quantum
unitary conductance will be Siemens (S).

Additionally, when there are certain numbers of ion channels in certain surface areas
of the biological membrane, the quantum membrane conductance can be calculated using
the following equation [42,43]:

MCQ = CQD (8)

where MCQ is the quantum membrane conductance and D is the channel density
(channels/cm2). The unit of quantum membrane conductance will be mS/cm2.

2.2. The Quantum Tunneling-Induced Membrane Depolarization and The Quantum
Tunneling Current

Eventually, to assess the influence of the quantum conductance on the resting mem-
brane potential, the Goldman–Hodgkin–Katz (GHK) equation is used.

The classical version of the GHK equation, which does not involve the quantum
conductance, is [42,43]:

[Na]e MCNa + [K]e MCK = e
−FVm

RT ([Na]i MCNa + [K]i MCK) (9)

where [Na]e = 142 mmol/L [42,43] is the extracellular sodium concentration, [K]e =
4 mmol/L [42,43] is the extracellular potassium concentration, [Na]i = 14 mmol/L [42,43]
is the intracellular sodium concentration, [K]i = 140 mmol/L [42,43] is the intracellular
potassium concentration, MCNa = 0.022 mS/cm2 [42,43] is the leaky membrane con-
ductance of sodium ions,MCK = 0.5 mS/cm2 [42,43] is the leaky membrane conduc-
tance of potassium ions, F is Faraday’s constant (96,485.33 C/mol), R is the gas constant
(8.31 J/Kmol), T is the body temperature (310 K), and Vm is the membrane potential.
If the previous values are substituted in Equation (9), the membrane potential will be
Vm = 0.07 V.

On the other hand, to investigate the influence of quantum tunneling of ions and their
quantum conductance on membrane potential, the quantum version of the GHK equation
will be used [44]:

[Na]e MCNa + [K]e MCK + [ion]e MCQ(ion)e = e
−FVm

RT ([Na]i MCNa + [K]i MCK + [ion]i MCQ(ion)i) (10)

where [ion]e is the extracellular concentration of the ion on which the quantum tunnel-
ing model is applied, [ion]i is its intracellular concentration, MCQ(ion)e is the quantum
membrane conductance of the extracellular ion, and MCQ(ion)i is the quantum membrane
conductance of the intracellular ion.
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Furthermore, an important aspect will be covered in this paper, which is the unitary
quantum tunneling current. It can be calculated using the following equation:

IT−channel = IT−e − IT−i (11)

where IT−channel is the unitary quantum tunneling current of channel, IT−e is the extracel-
lular tunneling current, and IT−i is the intracellular tunneling current. The intracellular
tunneling current can be neglected since the tunneling probability of intracellular ions
is small if it is compared with that of extracellular ions and if Equations (5) and (6) are
substituted with the same values. Hence, it can be said that the major source of the quantum
unitary current is the quantum tunneling of the extracellular ions. See Figure 4.
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be triggered to transmit an action potential. However, this type of transmission does not 
have a clear mechanism because the voltage changes that are induced by neuronal firing 
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Figure 4. (a) The quantum tunneling of the extracellular ion through the closed gate. (b) The
quantum tunneling of the intracellular ion. The quantum tunneling of the extracellular sodium ion
has higher probability if it is compared with the quantum tunneling of the intracellular sodium ion.
This is represented by the higher wave amplitude of the extracellular ion after tunneling through
the closed gate, while the intracellular sodium ion has lower wave amplitude. The discrepancy
between the extracellular and intracellular ions in tunneling probability is due to the difference in the
kinetic energy. The extracellular ions have higher kinetic energy, which is represented by the shorter
wavelength and the intracellular ions have lower kinetic energy, which is represented by the longer
wavelength. (c) As a result, there will be a net inward quantum tunneling current of ions that has the
tendency to depolarize the membrane potential.

Therefore, the quantum unitary tunneling current of the closed channel can be ex-
pressed by the following equation:

IT−channel =
q2Vm

h
eαL(

√
G−

√
qVm

n + 1
2 KBT) (12)

The unit of quantum tunneling current is Ampere (A).
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2.3. The Formation of Quantum Synapses between The Axons as a Mechanism for
Ephaptic Coupling

The second aspect that will be investigated in the context of the quantum tunnel-
ing model is the ephaptic transmission. This type of transmission has been observed,
which implies interactions between the axons of the neurons without chemical or electrical
synapses [10–12,45–47]. Thus, if one neuron fires, then an adjacent unstimulated neuron
will be triggered to transmit an action potential. However, this type of transmission does
not have a clear mechanism because the voltage changes that are induced by neuronal firing
are too small to trigger an action potential [45,47]. However, when this type of transmission
is investigated by the quantum tunneling model, it can explain the ephaptic coupling with-
out the requirement of large changes in the membrane potential or even the requirement of
large changes in the extracellular potassium concentration. This quantum aspect has been
utilized before to explain the pathophysiology of phantom limb pain and tinnitus [20,35].
The idea is based on the ability of potassium ions, which exit to the extracellular fluid
during action potentials, to tunnel through the closed channels in the membrane of the
neighboring unstimulated neurons.

The basic idea behind the formation of a “quantum synapse” between axons is that
when an action potential is transmitted through a neuron, there will be a probability
that this stimulated neuron will induce an ectopic action potential (EAP) in an adjacent
unstimulated neuron. This ectopic action potential induction is achieved via the quantum
tunneling of potassium ions through the closed potassium channels, which are exposed
upon demyelination after being covered by the myelin sheath [48–51]. This implies that the
formation of quantum synapses is enhanced among unmyelinated or demyelinated neurons
because more potassium channels are available for quantum tunneling of potassium ions. If
an ectopic action potential is induced, then it is expected to detect both orthodromic action
potential (OAP) propagation and antidromic action potential (AAP) propagation [11,52,53].
See Figure 5.
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or the quantum synapse. (a): the quantum tunneling of potassium ions through the closed channels in
the membrane of adjacent unstimulated neuron. (b): the generation of ectopic action potentials (EAPs).
(c): antidromic action potential (AAP) and orthodromic action potential (OAP) are generated.
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While the action potential is being generated, there will be an increase in the extra-
cellular potassium concentration. We assume that there are 1.37× 106 potassium ions
per 314 µm2 of the neuronal membrane (4.36× 103 ions/µm2) [18,43], which exit during
an action potential. Furthermore, a neuron with a length L = 100 µm and axonal radius
r = 0.5 µm can yield a surface area of 314 µm2 and an intracellular neuronal volume of
78.5 µm3 (assuming that the neuron has the shape of a cylinder). Therefore, the extracel-
lular volume that potassium ions diffuse into can be estimated to be 52.6 µm3 (assuming
the ratio between the extracellular and intracellular volumes is 0.67 [43,54]). Accord-
ingly, the increase in the extracellular potassium concentration can be calculated using the
following equation:

[K]AP =
NAP

NAVE
(13)

where [K]AP is the magnitude of the increase in the extracellular potassium concentration
during the action potential, NAP is the number of potassium ions that exit to the extracellular
compartment per unit surface area and per action potential, NA is Avogadro’s number, and
VE is the volume of the extracellular compartment where potassium ions exit to.

Based on our previous example, we can substitute the parameters NAP = 1.37× 106

potassium ions (corresponding to 314 µm2), VE = 52.6 µm3, and NA = 6.02× 1023 mol−1

into Equation (13) to get [K]AP = 4.3× 10−2 mmol/L. We provide this example to make
it easier to follow the subsequent numerical results and to facilitate understanding of the
concept of a quantum synapse between axons.

When potassium ions exit to the extracellular compartment, the average number of
potassium ions NK that can hit a single closed channel in the membrane of an adjacent
unstimulated neuron can be calculated using the following equation:

NK =
NAP

D
(14)

where D is the channel density and NAP is the number of potassium ions that exit through
a specific surface area of the neuronal membrane. When Equation (14) is applied, it is
important to make sure that the surface area unit in the quantities of NAP and D is the same.
According to our previous example, when NAP = 4.36× 103 ions/µm2 (which corresponds
to NAP = 1.37× 106 ions/314 µm2) and D = 102 channels/µm2 [42,43] (which corresponds
to D = 1010 channels/cm2), NK = 44 ions, which is the number of potassium ions that hit a
single closed channel. Thus, the number of potassium ions NK corresponds to the change
in the extracellular potassium concentration of 4.3× 10−2 mmol/L. As the change in the
extracellular potassium concentration increases, the average number of potassium ions
hitting the channel increases.

If this minute concentration is substituted in Equation (9), there will be almost no
change in the membrane potential of the neurons. However, we will reveal that the idea
of the quantum synapse permits for this minor change in potassium concentration to
depolarize the membrane and induce an ectopic action potential. This is a unique feature
of the quantum synapse that makes it distinct from the classical electrical communication
between neurons. Next, we will calculate the threshold value of quantum tunneling TQ(Thr)
that gives a threshold value of quantum conductance that can depolarize the membrane to
the threshold value of potential Vm(Thr), inducing an ectopic action potential. The Vm(Thr)
will be assumed to be 55 mV.

The following equation can be used to obtain a relationship between TQ(Thr) and
[K]AP:

MCNa[Na]e + MCK[K]e + [K]AP MCQ−K(e) = e
−FVm(Thr)

RT (MCNa[Na]i + MCK[K]i) (15)

For the sake of simplicity, we will assume that one channel of the total channels in
1 µm2 is enough to depolarize the membrane potential to the threshold value. Therefore,
D = 108 channels/cm2 (which corresponds to 1 channel/µm2) will be substituted in
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Equation (15). Accordingly, by substituting the values of concentrations and conductance
in Equation (15), the relationship between TQ(Thr) and [K]AP can be obtained:

TQ(Thr) =
9.82× 10−7

[K]AP
(16)

Substituting Equation (13) in Equation (16):

TQ(Thr) =
9.82× 10−7NAVE

NAP
(17)

Substituting NA = 6.02× 1023 mol−1 and VE = 52.6 µm3, then:

TQ(Thr) =
31.1
NAP

(18)

where NAP is the number of potassium ions that exit from a surface area of 314 µm2, which
corresponds to VE = 52.6 µm3, per action potential.

Substituting Equation (14) in Equation (18):

TQ(Thr) =
31.1

314NKD
=

9.9× 10−2

NKD
(19)

where D is the channels density (channels/µm2).
Equations (16)–(19) will help us to investigate how the threshold value of quantum

tunneling of potassium ions changes with respect to the potassium concentration, number
of potassium ions that exit from a specific surface area of neurons, and the number of
potassium ions hitting a single closed channel, respectively.

If [K]AP = 4.3× 10−2 mmol/L is substituted into Equation (16), then the threshold
value of quantum tunneling TQ(Thr) = 2.24× 10−5. This means that if at least one channel
in a surface area of 1 µm2 is required to induce an action potential, then at least a fraction
of 2.24× 10−5 from the total potassium ions hitting the channel must tunnel through the
closed gate to depolarize the membrane potential sufficiently to induce an ectopic action
potential. As was explained before, this change in membrane potential corresponds to
around 44 potassium ions, which hit a single closed channel. Then, if at least one potassium
ion from the total 44 potassium ions tunnels through the closed gate, then the minimum
tunneling fraction will be 1

44 = 2.27× 10−2. If this minimum fraction is compared with
TQ(Thr) = 2.24× 10−5, which represents the minimum tunneling fraction required to induce
an action potential from at least one channel in 1 µm2, it is clear that the process of tunneling
can induce an ectopic action potential since 2.27× 10−2 > 2.24× 10−5. Therefore, we aim to
calculate the probability of reaching this significant fraction of tunneling based on the actual
tunneling probability, as shown in Equation (5). Since the action potential is propagated
through the neuron, there will be many chances available for potassium ions to tunnel
through the closed channels in the membrane of unstimulated unmyelinated/demyelinated
neurons. This implies that along the surface area available for potassium ion tunneling,
there will be a probability that at least one potassium ion from the total number hitting a
channel (e.g., 44 ions here) will succeed to tunnel and trigger an ectopic action potential.

To calculate the probability of the induction of an ectopic action potential in an adjacent
unstimulated neuron by another neuron carrying the signal of the action potential (AP),
the Bernoulli trials equation can be used as follows:

P(Z) =
N!PZ(1− P)N−Z

(N − Z)!Z!
(20)
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where Z is the number of trials that must be achieved successfully, N is the total number of
available trials, P is the probability of achieving a successful trial, and P(Z) is the probability
of obtaining Z number of successful trials. When Z = 0, then:

P(0) = (1− P)N (21)

Therefore, if an action potential is transmitted through a neuron and an increase in the
extracellular potassium ions happens, then the probability that at least one potassium ion
from the total number NK hitting a single closed channel will succeed and tunnel through
the closed gate can be calculated using the following equation:

P1 = 1− (1− TQ(K(e)))
NK (22)

where P1 is the probability of triggering an ectopic action potential by one channel via
quantum tunneling of at least one potassium ion and TQ(K(e)) is the quantum tunneling
probability of extracellular potassium ions delineated in Equation (5).

Furthermore, the probability that at least one closed channel from the total number of
channels Dµm2 in 1 µm2 is tunneled by at least one potassium ion can be calculated using
the following equation:

P2 = 1− (1− P1)
D

µm2 (23)

where P2 is the probability of triggering an action potential in a surface area of 1 µm2 via
quantum tunneling of at least one potassium ion through at least one closed channel.

Eventually, the probability of triggering an ectopic action potential in at least one area
of 1 µm2 from the total number of surface areas Nµm2 can be calculated by the following
equation:

P3 = 1− (1− P2)
N

µm2 (24)

where P3 is the probability of triggering an ectopic action potential in 1 µm2 from the total
number of surface areas Nµm2 . P3 represents the eventual probability of ectopic action
potential induction along the surface area available for the quantum tunneling of potassium
ions. The total number of surface areas of 1 µm2 can be calculated using the following
equation:

Nµm2 =
A

1µm2 (25)

where A is the surface area (in µm2) that has been demyelinated or it is actually unmyeli-
nated and is available for quantum tunneling through its exposed potassium channels. For
example, if A = 10−10 m2 = 100 µm2, then Nµm2 = 100. This means that there are 100 areas
available for the quantum tunneling of potassium ions to trigger an ectopic action potential.

P3 represents the probability of inducing an action potential in an unstimulated neuron
when it is exposed to a neuron carrying a single action potential. Hence, when a neuron is
exposed to λ number of neurons carrying κ number of action potentials, then the exposed
unstimulated neuron can become stimulated with ω number of induced action potentials:

ω = P3λκ (26)

2.4. The Quantum Tunneling-Induced Spontaneous Neuronal Firing

The third aspect is the spontaneous firing that is mediated by the quantum tunneling
of sodium ions. This aspect will be discussed and linked to the neuropathic pain. This idea
implies that under thermal fluctuations, the closed channels can get different amounts of
thermal energy in a probabilistic way. The unique feature here is that this thermal energy
is not intended to open the closed gate rather it is intended to reduce the barrier energy
of the closed gate transiently so that the quantum tunneling of sodium ions is augmented.
This thermally assisted quantum tunneling can result in a significant tunneling current of
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sodium ions that can depolarize the membrane potential to threshold of action potential
induction. See Figure 6.
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action potentials (EAPs). (c): antidromic action potential (AAP) and orthodromic action potential
(OAP) are generated.

Accordingly, the expectant value or the average value of quantum tunneling
probability due to the thermal fluctuations can be mathematically represented by the
following equation: 〈

TQ
〉
=

1
β

E≤G−KE∫
0

e
−E
β +αL(

√
G−E−

√
KE)dE (27)

where β = KBT, α = −
√

8π2m
} and E is the thermal assisting energy that can lower the

barrier energy of the closed gate.
As a result, the expectant or the average value of quantum membrane conductance

due to the thermal fluctuations:

〈
MCQ

〉
= δ

E≤G−KE∫
0

e
−E
β +αL(

√
G−E−

√
KE)dE (28)

where δ = Dq2

hβ . The unit of
〈

MCQ
〉

will be mS/cm2.
To assess the influence of the thermal fluctuations on the quantum tunneling-induced

spontaneous firing, the following equation can be used:

[Na]e MCNa + [K]e MCK + [ion]e
〈

MCQ(ion)e

〉
= e

−FVm
RT ([Na]i MCNa + [K]i MCK + [ion]i

〈
MCQ(ion)i

〉
) (29)

Furthermore, we aim to show the differences between the spontaneous firing induced
by the pure thermal fluctuations and the quantum tunneling-induced spontaneous firing.
Hence, the following equation can be used to assess the influence of the thermal fluctuations
on the classical opening of the closed channels and thus on the membrane potential:

[Na]e MCNa + [K]e MCK + [ion]e
DCopen(mS)

1 + e
G
β

= e
−FVm

RT ([Na]i MCNa + [K]i MCK + [ion]i
DCopen(mS)

1 + e
G
β

) (30)

where Copen(mS) is the conductance of single channel by the unit of mS when it is open,
which is within an order of magnitude 10−12 S [42,43].
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Equations (29) and (30) will be applied on voltage-gated sodium channels and their
corresponding sodium ions.

At the level of single voltage-gated channel, the classical spontaneous firing depends
on the transient opening of the closed channel and the switch between the open and the
closed states, while the quantum spontaneous firing depends on the persistent tunneling
current that is generated through the closed channel. See Figure 7.
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Figure 7. The figure represents a schematic diagram of ion passage through the ion channel according
to the classical and quantum tunneling models. (a) The classical model: when the barrier height
of the gate is higher than the kinetic energy of the ions, the gate is considered to be closed and the
permeation is blocked, while when the barrier height of the gate is lower than the kinetic energy of
the ion, the gate is considered to be open and the permeation is allowed. (b) The quantum tunneling
model: the ion can permeate via quantum tunneling through the gate even though its energy barrier
is higher than the kinetic energy of the ion.

3. Results

In the present study, we focused on two major pathological molecular events that
occur during the pathogenesis of neuropathic pain. The first event is that the barrier height
of the closed gate G drops due the pathological causes mentioned before because it has
been found that inflammation, trauma, and ischemia or any cause can affect the integrity
of the cellular membrane and can render these channels leaky [55–57]. This leakiness is
due to the drop in the energy barrier height of the closed gates indicated by the shift in
the activation and inactivation curves [55–57]. Moreover, it is argued that voltage-gated
sodium channels have a lower activation threshold [8,9], indicating that less energy is
required to activate them if they are compared with the normal ones [8,9]. Additionally,
the inflammatory mediators released during the pathogenesis of neuropathic pain such
as IL-1 beta sensitize and potentiate the voltage-gated channels, which explains their
pathological role [8,9,22,58,59]. All these arguments indicate reasonably that the barrier
height of the closed gate decreases in the pathological environment of neuropathic pain.
Hence, in the present study, we show the energy barrier G values at which the excitability
changes such as membrane depolarization, ephaptic coupling, and spontaneous activity.
The order of magnitude 10−20 J was used for the values of G, which is consistent with
the order of magnitude for the values used in the experimental studies that used the unit
kJ/mol = 0.17× 10−20 J or kcal/mol = 0.69× 10−20 J [30–34]. The second pathological event
is the demyelination which is seen in several causes of neuropathic pain [60–68]. These two
pathological events were applied within the quantum tunneling model to explain the three
major pathophysiological mechanisms.

Furthermore, the gate length L varies according to the number of hydrophobic residues
involved in forming the hydrophobic gate. For example, in [31,32] there are three hydropho-
bic residues and each pair is separated by another three residues; hence the whole path
is composed of nine residues. From these references [31,32], it can be estimated that
L = (5− 10)× 10−10 m. However, voltage-gated channels are sealed off by one hydropho-
bic residue from each of the four subunits [23–25]. Therefore, by a simple comparison, if
nine residue-paths yield L = (5− 10)× 10−10 m, then it is expected that one residue-path
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yields (0.55− 1)× 10−10 m. However, we included four setting values for the gate length
L in our investigation, which are L = 0.5× 10−10 m, L = 1× 10−10 m, L = 1.5× 10−10 m,
and L = 2× 10−10 m to cover wide range of possible values of L.

3.1. The Quantum Tunneling-Induced Membrane Depolarization and The Quantum
Tunneling Currents

According to Equation (10), sodium ions are expected to depolarize the membrane potential
of the neurons via quantum tunneling through the closed channels. See Figures 8 and 9.
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the barrier height of the closed gate under the influence of the quantum tunneling of sodium ions
through the closed gate of sodium channels. The relationship is investigated at different values of
gate length L and according to the setting values above the figure.
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The quantum tunneling-induced depolarization is generated due to the net inward
quantum tunneling current of sodium ions as presented mathematically in Equation (12).
To explore how the membrane potential affects the inward tunneling current, it will be
useful to investigate this relationship graphically. See Figure 10.
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We chose the following values for G: 1 × 10−20 J, 1.5 × 10−20 J and 2 × 10−20 J in
Figure 10 because the significant depolarization represented in Figures 8 and 9 begins to
occur at G values less than 2× 10−20 J. Hence, focusing on these values is more reasonable.

3.2. The Quantum Ephaptic Coupling or ‘Quantum Synapse’

As we explained before, the quantum synapse is formed when the potassium ions
of the minute concentration tunnel pass through the closed potassium channels in the
membrane of adjacent neurons. These potassium ions can reach the threshold value of
quantum tunneling probability that is required to induce an ectopic action potential. The
relationship between the number of potassium ions and the threshold value of quantum
tunneling probability is mathematically represented in Figure 11.
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According to the mathematical framework provided for the quantum synapse, it is
clear that the quantum tunneling model predicts the probability of inducing an ectopic
action potential. To assess the significance of such a probability, the relationship between
the probability of inducing an ectopic action potential (EAP) and the barrier height of the
closed channel is investigated at different setting values. See Figures 12 and 13.
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If a neuron is exposed to 10 stimulated neurons and each one carries 10 action poten-
tials per second and assuming that the probability of EAP induction is 0.1, then by applying
Equation (26), it is expected that the unstimulated neuron will transmit ectopic action
potentials with a frequency of 10× 10× 0.1 = 10 ectopic action potentials per second.
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3.3. The Quantum Tunneling-Induced Spontaneous Neuronal Firing

The quantum tunneling-induced spontaneous firing is based on the idea that the
thermal environment can provide energy to the closed gate to reduce its barrier height
without opening it. Such reduction can enhance the quantum tunneling of sodium ions
and result in a spontaneous depolarization and spontaneous firing.

Based on Equations (27)–(29), the quantum tunneling model predicts the ability of
neurons to spontaneously fire and trigger ectopic action potentials via the thermally assisted
quantum tunneling of sodium ions. To assess whether this mechanism can yield the
generation of ectopic action potentials, see Figure 14.
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Figure 14. The figure represents the relationship between the membrane potential and the tunneling-
assisted thermal energy E that lowers the barrier height of the closed gate, and thus augments the
quantum tunneling. The relationship is investigated at different values of G and according to the
setting values above the figure. The unit of G in the legend is 10−20 J.

The Vm(initial) that is above Figure 14 represents the initial membrane potential that
contributes to the kinetic energy of sodium ion KE when Equation (29) is applied to
investigate the quantum tunneling-induced spontaneous firing.

Based on Equation (30), the relationship between the classical opening of sodium
channels and the resting membrane potential can be evaluated to explore the effect of the
pure thermal mechanism on the neuronal spontaneous firing. See Figure 15.
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4. Discussion
4.1. Elaboration of The Ion Quantum Tunneling Model in The Context of Neuropathic Pain

The present study aimed to revisit the pathophysiological mechanisms of neuropathic
pain in the context of quantum mechanics particularly by using the model of ions quantum
tunneling. Three major aspects that will be reconsidered are: (1) the depolarized membrane
potential of the neurons; (2) the ephaptic transmission between neurons; and (3) the
spontaneous neuronal firing. The quantum tunneling model views the gate of voltage-
gated channels as an energy barrier that blocks ion permeation. Moreover, it allows for ions
to tunnel through the closed gate, which has a barrier height larger than the kinetic energy
of the ion, via a quantum tunneling event. The results indicate that the extracellular cations
such as sodium and potassium ions have higher quantum tunneling probability if they are
compared with the intracellular cations. This is attributed to the higher kinetic energy of
the extracellular cations. It has been shown previously that sodium and potassium ions
were not able to affect the membrane potential at normal physiological parameters [16].
However, under certain pathological conditions, the quantum tunneling of ions is enhanced
to the degree that it can change the membrane potential [17–20].

The quantum tunneling model predicts the ability of sodium ions to depolarize the
membrane potential of neurons under the influence of the pathological effects of the
neuropathic pain on the barrier height of the closed gate. When the barrier height of
the closed gate drops, the quantum tunneling is augmented and is able to depolarize the
membrane potential, which is indicated in Figures 8 and 9. The degree of depolarization is
modulated by the length of the gate L and the location of the gate n. The quantum tunneling-
induced membrane depolarization is generated due to the net inward tunneling current of
sodium ions as it represented in Figure 10. Moreover, the quantum tunneling current has
unique features that make it distinctive from the classical current that is generated through
an open channel. These features include: (1) The tunneling current does not require the
opening of the closed gate to be generated. It requires the drop in the barrier height of
the closed gate but without the full drop that makes the energy barrier of the gate less
than the kinetic energy of the ion. (2) The tunneling current is continuous and persistent
since it does not depend on the transient opening of the voltage-gated channels, which
generates a transient current. (3) The tunneling current changes non-linearly with respect
to the membrane voltage as represented in Figure 10. The quantum tunneling-induced
membrane depolarization contributes to the hyperexcitability of the neurons and thus to
the pathogenesis of neuropathic pain.

The second pathophysiological aspect in the neuropathic pain is the ephaptic trans-
mission and the cross-talk between neurons. The ephaptic transmission has been observed
experimentally and it has been implicated in the pathogenesis of neuropathic pain [10–13].
This type of transmission entails the ability of a stimulated neuron having an action poten-
tial to stimulate adjacent neurons without chemical or clear electric synapse. Therefore, its
underlying mechanism seems elusive and not clearly defined. Moreover, the only possible
mediator, according to the literature, of the ephaptic transmission is the endogenous electric
field generated when the neuron fires [45,46]. However, these endogenous electric fields
produce a small change in the membrane potential of the neighboring neurons by around
0.5 mV [45,46], which is a minute change relative to the membrane potential of the neuron
of 70 mV. Therefore, the mechanism of the endogenous electric field can be only sufficient
in changing the voltage of neurons and inducing an action potential in the case of highly
packed cells with a small extracellular space as in the olfactory neurons [47]; otherwise
no ephaptic transmission is expected to occur [47]. However, this type of transmission
has been observed even with small changes in the membrane potential as we mentioned
previously [45,47]. Hence, an alternative mechanism to ephaptic coupling is required to
explain its process. The quantum tunneling model can provide a much more reasonable
and consistent mechanism to explain the ephaptic coupling between neurons without the
requirement of a strong endogenous electric field, which produces large changes in the
membrane potential, and without even the requirement of large changes in potassium
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concentration. Therefore, the quantum interpretation is distinctive from the interpretations
that depend on the significant changes in the chemical and electrical gradients. The quan-
tum tunneling model views ephaptic coupling as a quantum synapse that is formed due
the quantum tunneling of potassium ions that exit to the extracellular space between neu-
rons as presented in Figure 5. These potassium ions tunnel through the closed potassium
channels in the membrane of the neighboring unstimulated neurons to generate an inward
tunneling current that can depolarize the membrane potential to the threshold needed to
trigger an ectopic action potential. These potassium ions require a large number of trials to
succeed in achieving a significant tunneling fraction sufficient to depolarize the membrane
potential. Interestingly, the probability of inducing an ectopic action potential depends on
the number of the closed potassium channels available for quantum tunneling of potas-
sium ions, which increases if demyelination occurs because potassium channels become
exposed [48–51]. Therefore, the quantum tunneling model predicts that the formation of
quantum synapses is enhanced in demyelinated/unmyelinated neurons. This is consistent
with the observations that indicated that ephaptic coupling, which corresponds to the
quantum synapse in the present paper, was amplified if neurons are unmyelinated [47].
Therefore, the quantum synapse can be regarded as the underlying mechanism of ephaptic
interactions. Additionally, the decrease in the barrier height of the closed gates of potassium
channels strengthen the formation of quantum synapses because in this case the quantum
tunneling of potassium ions is boosted. The results indicated that the quantum tunneling
model can yield a significant probability of ectopic action potential induction according to
Figures 12 and 13.

The quantum synapses can be formed between the unmyelinated pain C-fibers them-
selves, between the unmyelinated pain C-fibers, and unmyelinated C-fibers of other sensa-
tions, which includes thermal and crude touch sensations, and between the unmyelinated
C-fibers and the (de)myelinated pain Aδ fibers and the (de)myelinated Aβ fibers which
transmits proprioception, vibrations, pressure, and discriminative touch especially when
they are joined in the same peripheral tract before they diverge at the level of the dorsal
horn of the spinal cord segment. Moreover, the quantum synapses can be formed between
the unmyelinated C-fibers and the sympathetic fibers when they come close to each other
at the level of dorsal root ganglion (DRG) due to the sprouting of the sympathetic fibers
to the DRG that has been described in the literature [8,9,22] in addition to the other sites
near the spinal nerve (SN) down to the peripheral tracts reaching the targeted tissues.
See Figure 16.
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location that includes the spinal nerve (SN), the dorsal root ganglion (DRG), and the dorsal root (DR).
3: It represents the central nervous system, which includes the spinal cord segments and the brain
(not shown). AR: anterior root; SCG: sympathetic chain ganglion.
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Once the neuronal fibers diverge in separate tracts in the central nervous system (not
shown in Figure 16 to avoid complexing and crowding the figure), the quantum synapses
can also be formed but within the same tract because the tracts such as the spinothalamic
pathway, which transmits pain, temperature, and crude touch, and the dorsal column–
medial lemniscus pathway, which transmits proprioception, vibrations, pressure, and
discriminative touch, become spatially separated to the degree that the minute changes in
potassium concentration in one pathway cannot reach the other one.

The formation of quantum synapses explains the hyperexcitability among the C-
pain fibers themselves because these synapses can induce an ectopic action potential
in another neuron and thus a higher number of neurons and higher number of action
potentials are transmitted to brain centers, which contributes to the generation of pain
sensations. Moreover, the quantum synapses formation between pain fibers and non-pain
fibers explains why mechanical stimuli such as touch or pressure (allodynia) and thermal
stimuli (hyperalgesia) such as cold and warmth can trigger pain [1,7,8,22] because in this
case the action potentials transmitted through non-pain fibers can be induced in the pain
fibers via quantum tunneling of potassium ions through the closed channels. Furthermore,
the quantum synapses can be formed between pain fibers and the sympathetic fibers since
they can get the chance to become in close proximity to each other and this explains why
sympathetic stimulation can trigger and maintain the neuropathic pain which is described
as ‘sympathetically maintained pain’ [7,8,22]. When we say that the neurons are close to
each other, we are not referring to the highly packed cells as in the olfactory pathway, rather
we are referring to the neurons that have a large extracellular space that yields a small
change in the membrane potential of the neurons and a small change in the potassium
concentrations during action potential because in this case an alternative mechanism, other
than the endogenous electric field, is required to explain the cross-talk between neurons.
Accordingly, the quantum synapses can explain the cross-talk between the neurons with the
same sensational modality and between the neurons with different sensational modalities.

The third pathophysiological aspect is the spontaneous firing and generation of ectopic
action potential in the axons of injured neurons. The neurons can fire an action potential on
their own once the membrane potential is depolarized to the threshold value, otherwise
no action potential will be generated. According to Figure 14, it is clear that the thermally
assisting energy provided from the thermal environment can lower the barrier height of the
closed gate enhancing the tunneling probability of sodium ions. This enhancement leads
to significant inward tunneling current of sodium ions that is sufficient to depolarize the
neurons to the threshold value 55 mV. As the barrier height G decreases, the depolarization
to the threshold value happens at lower values of thermally assisting energy E. This
means that less thermal energy is required to induce the spontaneous firing. On the
other hand, and according to Figure 15, the classical opening of closed voltage-gated
channels can result in a spontaneous neuronal firing. However, there are unique features
of the quantum tunneling-induced spontaneous firing that may make it the major factor
in the generation of the ectopic action potentials. These features include: (1) According to
the quantum tunneling model, the membrane potential changes with a higher rate with
respect to the energy as is clear in Figure 14. This means that less energy is required to
induce an ectopic action potential. On the other hand, the classical model predicts that
the membrane potential changes with a lower rate with respect to the barrier height G,
as presented in Figure 15. This means that more energy is required to induce an ectopic
action potential according to the classical model. (2) According to the quantum tunneling
model, it is not required to provide a thermal energy E equivalent or higher than the
barrier height G to induce an ectopic action potential. For example, in Figure 14, when
G = 3× 10−20 J, a thermal energy E that is less than 1× 10−20 J is required to depolarize
the membrane potential to the threshold of 55 mV and thus to induce an ectopic action
potential. On the other hand, the full energy of the barrier height G must be provided to
depolarize the membrane potential significantly and induce an ectopic action potential
as is clearly represented in Figure 15. Therefore, it is more energetically favorable for the
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neurons to spontaneously fire quantum mechanically rather than classically. The quantum
tunneling-induced spontaneous firing, which is energetically favorable, contributes to the
hyperexcitability and the ongoing neuronal activity which explains the ongoing pain in
patients with neuropathic pain [1,7,8,22].

4.2. The Potential Applicability of The Quantum Tunneling Model in The Context of
Neuropathic Pain

The applicability of the quantum tunneling model can be demonstrated in two sections:

1. Pathophysiological implications: There are certain unique features in the quantum
tunneling model that make it distinctive from any classical model. These features
can be deduced from Equation (2) and include: (1) The exponential dependence on
the mass of the ion and the length of the gate to determine the quantum tunneling
probability and quantum conductance. This would serve to be a promising strategy
to test the validity of the role of the quantum behavior of ions. For example, as
sodium and potassium ions have different masses, then observing an exponential
difference between ions in terms of tunneling probability and quantum conductance
is expected. Interestingly, the exponential mass difference can be also applied on
other ions such as lithium and hydrogen ions. Similarly, observing an exponen-
tial dependence on the length of the gate will add additional supporting evidence.
(2) Another implication that indicates strongly to the quantum tunneling behavior
of ions is observing a depolarization action by potassium ions especially when there
is a decrease in the energy barrier of the closed gate. Classically, when there is a
gain-of-function mutation in potassium channels or when these channels open, it is
expected that the outward potassium current will occur, which tends to hyperpolarize
the membrane potential. However, according to the quantum tunneling model, it is
expected that the inward potassium current will occur, which tends to depolarize the
membrane potential.

2. Pharmacological implications: These implications are crucial to be demonstrated to
exhibit the beneficial consequences of the quantum tunneling model. If the patho-
physiological implications can be tested experimentally and the quantum coherence
of ions can be proven in ion channels, especially in the narrow hydrophobic gate, then
we can propose this class of medications, which is ‘quantum decoherence inducers’
or ‘quantum coherence destroyers’ or ‘quantum decoherence agents’. All of these
coined terms can be used to describe the ability of these proposed drugs to collapse
the quantum wave or to weaken the quantum behavior of ions. If this quantum
decoherence happens, then all the proposed pathophysiological mechanisms will be
diminished or will be eliminated. Consequently, these proposed drugs can contribute
significantly to pain relief and achieve satisfactory clinical outcomes. Our proposal
for these drugs requires further investigation and an interdisciplinary cooperation
to test the potential applicability of this proposal. We propose these drugs to attract
the attention of all researchers across the different related disciplines to the possi-
ble applicability of the quantum tunneling model to act actively in the treatment of
the neuropathic pain or even in the prevention of neuropathic pain by implement-
ing our understanding of the pathophysiological mechanisms from the quantum
mechanical perspective.

4.3. Limitations

As our study belongs to the field of quantum biology, there are the concerns about the
quantum decoherence issues due to the noisy and hot biological environment. However,
these concerns no longer represent a serious barrier to applying the principles of quantum
mechanics due to the accumulating theoretical and experimental evidence that indicates
strongly that the quantum coherence can be maintained in the biological environment [69–71].
Additionally, our quantum tunneling model is applied on ions, which are not the typical
particles that quantum mechanics is applied to due to their larger mass if it is compared with
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the mass of protons and electrons. However, recent experimental studies showed that the
quantum behavior can be evident on larger mass scale than the mass scale of ions, which
includes the mass scale of peptides and molecules composed of several hundreds of atoms
and with a mass up to 6000 AMU [72,73], which is much larger than sodium and potassium
ions. Furthermore, as the barrier shape of the closed gate remains to be further specified,
the symmetrical Eckert potential is required to show its reasonable experimental validity to
provide sensible estimation of the tunneling probability and the quantum conductance of
ion channels.

5. Conclusions

The pathological causes of neuropathic pain can decrease the barrier height of the
closed gate of voltage-gated channels and induce demyelination. These two major patho-
logical effects contribute to the emergence of obvious quantum behavior of sodium and
potassium ions. Three pathophysiological aspects can be revisited in the context of the
quantum tunneling model, which contribute significantly to the pathogenesis of neuro-
pathic pain. The first aspect is the quantum tunneling-induced membrane depolarization
which is mediated by the inward quantum tunneling current of sodium ions. The second
aspect is the formation of quantum synapses which are formed by the quantum tunneling
of potassium ions that exit during action potentials. These quantum synapses explain the
ephaptic interactions between injured neurons. The third aspect is the quantum tunneling-
induced spontaneous neuronal firing and generation of ectopic action potentials. All these
three pathophysiological aspects create a state of hyperexcitability among pain fibers that
explains the clinical manifestations in the patients with neuropathic pain. See Figure 17.
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