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The sequel to the landmark article “The
Hallmarks of Cancer” adds two emerging
hallmarks and two enabling characteris-
tics to the six original hallmarks (1). One
emerging hallmark is the property of can-
cer cells to escape the immune system.
Clinically apparent tumors arise as winners
in a complex, hard-fought duel between
cancer cell survival and eradication by the
immune system.

Immunoediting, a term used for
describing interactions between tumor and
immune system, only occurs when, dur-
ing the process of malignant transforma-
tion, cells develop features recognized by
the immune system (2). The contribu-
tion of the immune system to recogni-
tion and elimination of malignant cells has
been and still is being discussed contro-
versially: some studies support the con-
cept of immunosurveillance (3, 4), whereas
others only observed small effects of the
immune system in the prevention of can-
cer (5, 6). Recent studies suggest that,
while there is evidence for immunosur-
veillance, not all aspects of the interaction
between malignant cells and the immune
system can be explained by immunoedit-
ing alone (7): some tumors never show
properties making them targets of the
immune system, whereas other tumors
are recognized, but not eliminated due
to immune suppression induced by the
tumor.

However, if tumor cells are recognized
as “altered cells,” their perpetual confronta-
tion with the immune system evokes strong
selection conditions favoring tumor cells
that (I) lose properties making them targets
of the immune system and (II) gain prop-
erties making them appear non-dangerous

(8). If the tumor succeeds in decreasing
its immunogenicity, it will reach a stage
when the immune system does not con-
sider those cells to be “altered-self” any-
more. The tumor is now perceived as “self”
and non-dangerous, with all privileges of
normal healthy tissues.

When we think about therapies that
elicit anti-tumor responses at this stage,
we actually have to think about re-creating
and enforcing tumor recognition, because,
malignant tissues, although having been
infiltrated by T-effector lymphocytes and,
thus, being recognized by the immune sys-
tem, frequently do not show remission.
This correlates with reports that recruit-
ment of T-effector lymphocytes to the site
of the tumor is not necessarily sufficient for
its eradication and that tumor immunity
heavily depends on breaking tumor toler-
ance, i.e., by depletion of T-regulatory lym-
phocytes or by shielding T-effector lym-
phocytes from immune-suppressive mol-
ecules like PD-L1 (9). We propose that the
need for inducing immunity and break-
ing of tolerance might be akin to activat-
ing some kind of tumor-specific (auto)-
immunity.

The ideal tumor therapy results in local
control of the primary tumor, systemic
control of potential metastases and trig-
gers an anti-tumor immune response ulti-
mately leading to the elimination of all
malignant cells. To achieve this, tumor
therapy needs to deal with the problem
that the immune system does not consider
the tumor being dangerous anymore – it
has been adopted as “self-organ.” Conse-
quently, tumor therapy should focus on
making the immune system aware of this
hidden danger.

This concept was first put into practice
by William Coley, who injected a cock-
tail of dead bacteria into tumors in the
late 1800s, achieving cures in ≈30% of his
patients with sarcoma and lymphoma (10,
11). The mechanism responsible for this
seems to be LPS-induced IL-12 secretion
triggering a robust bystander Th1-response
against the tumor cells (12). Likewise, an
attenuated Salmonella vaccine can induce a
shift in the tumor milieu from an immune-
suppressive to an immunogenic microenvi-
ronment (13). The most successful appli-
cation derived from Coley’s work is treat-
ment of bladder cancer with the Bacillus
Calmette–Guerin vaccine: it has become
the standard therapy for superficial bladder
cancer, eradicating existing tumors, reduc-
ing the frequency of tumor recurrence,
delaying stage progression, and increasing
survival (14). The advantage of such strate-
gies is their lack of specificity. The immune
response is not restricted to a single
and, most likely, highly specific and selec-
table “tumor-antigen,” but the presence of
danger signals at the site of the tumor
“uncloaks” the cancer cells, turning them
into broad range immune targets. At this
point, we can exploit a mechanism, which
causes a break in self-tolerance in autoim-
mune diseases: transient autoimmunity
accompanying any inflammatory process
can, in the context of steady exposure to
auto-antigens and danger signals, develop
into stable autoimmunity. Following Polly
Matzinger’s ideas, the key to success of
danger-based tumor vaccination strategies
rests on repeated administration of the vac-
cine (15). Repeated immunization should
help overcome transient tumor immunity
and establish persistent protection.
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One danger-based tumor vaccination
approach conducts the immunization with
dying tumor cells (16, 17). Certain kinds
of dying or dead cells can trigger immune
responses under the right conditions. The
potential of dying/dead cells to induce
autoimmunity can be seen in “systemic
lupus erythematosus” (SLE), a chronic
inflammatory disease, in which defective
clearance of apoptotic cells leads to the
accumulation of secondary necrotic cells,
the release of danger signals, the pre-
sentation of auto-antigens and, finally, a
chronic break in self-tolerance (18–20).
Based on these observations, one can
assume that, under the appropriate condi-
tions, entities once considered to be non-
dangerous can become re-considered dan-
gerous. We propose that one can learn
from the processes which cause breaks of
self-tolerance in patients with SLE and try
to harness them to induce tumor (auto-)
immunity.

In the context of tumor immunology,
cell death is a double-edged sword. Tumor
cells often modulate apoptotic pathways
rendering them less responsive to death
stimuli. Down-regulation of Fas expression
or resistance to Fas-mediated apoptosis are
common strategies of tumor cells to escape
immunosurveillance (21) and are associ-
ated with resistance to therapy, metastatic
capacity, and poor prognosis. For example,
c-Jun and Stat-3 act as oncogenes by coop-
eratively repressing the transcription of Fas,
rendering tumor cells insensitive to FasL-
induced apoptosis (22). A complete loss
of Fas expression is less common, possibly
to low-level expression of Fas supporting
tumor growth (23). Many other mecha-
nisms to evade elimination by apoptosis,
i.e., suppression of caspase-8 activity by
CDK1/CYCLIN B1 dependent phosphory-
lation (24), bcl-2 amplification (25), and
loss of pro-apoptotic proteins like BAX
(26) and PUMA (27), have been reported
for a large variety of cancer types (28).

These findings are hard to reconcile with
the observation that a high rate of tumor
cell apoptosis is accompanied by poor
prognosis in some types of cancer (29–31).
It is known that cancer cells show many dif-
ferent changes to the apoptotic machinery
(28, 32); but does this mean they have lost
all capability to execute apoptosis? Apop-
tosis is necessary for tissue homeostasis,

contributes to the maintenance of periph-
eral tolerance and might even play a role
in the induction of the latter (33, 34). The
fact that most chemotherapeutics at least
initially induce tumor apoptosis confirms
that cancer cells frequently retain their abil-
ity to execute apoptosis (35, 36). It is rea-
sonable to assume that those parts of the
apoptotic machinery involved in the induc-
tion of extrinsic apoptosis by the immune
system preferentially experience negative
selection. If other parts of the apoptotic
pathway would also be a potential source of
harm, why do they, in defiance of the excep-
tional adaptability of cancer cells, still func-
tion properly? We suggest that, in contrast
to the oversimplified illustration, cancer
cells do not completely lose their capability
to undergo apoptosis, but that their apop-
totic machinery can instead be “hijacked”
in a way that not only sustains their exis-
tence, but also accelerates tumor formation
(37–39): an “altruistic” death of limited
amounts of cancer cells is a possible way
to support the survival of the tumor on the
whole.

Over the years, the tumor-supportive
effects of apoptotic tumor cells have
received greater recognition, and it is now
assumed that apoptotic tumor cells and the
corresponding phagocytes participate in
forming and shaping the tumor microen-
vironment (40). Apoptotic cells release
a diverse spectrum of molecules, which
act as “keep-out,” “find-me,” “eat-me,” and
“tolerate-me” signals and ensure that the
clearance of apoptotic cells is facilitated by
defined groups of phagocytes, in particular
by macrophages (41).

Of particular interest are lipid media-
tors, which are released from cells under-
going apoptosis: (I) lysophosphatidyl-
choline is a potent chemoattractant for
macrophages and is released from cells exe-
cuting apoptosis (42). (II) Upon prote-
olytic activation of sphingosine kinase 2,
sphingosine-1-phosphate (S1P) is released
from apoptotic cells (43). In addition
to its role as a chemoattractant (44),
S1P polarizes macrophages toward a non-
inflammatory phenotype (M2), character-
ized by decreased secretion of TNF-α and
IL-12-p70 and increased formation of IL-8
and Il-10 (45).

The engulfment of apoptotic cells by
macrophages induces their polarization

toward the M2-phenotype (Figure 1A).
These alternatively activated macrophages
tune down inflammation and promote
angiogenesis, tissue remodeling, and repair
(46, 47). Furthermore, phagocytosis of
apoptotic cells by M1-macrophages also
triggers a shift toward alternative activa-
tion (48). Fittingly, a large number of
macrophages at the site of the tumor
are associated with a poor prognosis
and these tumor-associated macrophages
share many characteristics with M2-
macrophages (49, 50). Their presence at
the site of a tumor supports Dvorak’s con-
cept that tumors are “wounds that do not
heal” (51).

In line with these findings is the
observation that inhibiting the clearance
of apoptotic tumor cells by administra-
tion of Annexin-A5 retards tumor growth
in a colorectal carcinoma model and
greatly enhances the effect of immuniza-
tion with irradiated lymphoma cells in
a lymphoma model (52, 53). The data
presented suggests that this is due to
the fact that the non-inflammatory clear-
ance of apoptotic cells by macrophages
is blocked so that the apoptotic cells
get secondarily necrotic. The concomitant
loss of membrane integrity is accompa-
nied by the release of danger-associated
molecular patterns (DAMP), which act
as natural adjuvants. Phagocytosis of sec-
ondary necrotic cells by macrophages
(Figure 1B) leads to an increased expres-
sion of TNF-α and IL-1β. In addition,
several DAMPs released from secondary
necrotic cells, like HMGB1 and HMGN1,
are potent stimuli for dendritic cell matu-
ration (54).

The close interaction between tumors,
the immune system and cell death gives
rise to new therapeutic approaches. Some
aspects of this interaction may be exploited
to support conventional cancer therapies.
Systemic administration of Annexin-A5 or
other phosphatidylserine ligands may help
slow down tumor progression by blocking
the tumor-supportive properties of apop-
totic cells. In combination with radio- or
chemotherapy, Annexin-A5 could be used
as a natural adjuvant, which increases the
immunogenicity of dying tumor cells and,
thus, helps elicit an anti-tumor immune
response (55). This may be especially help-
ful in targeting cancer cells, which have
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FIGURE 1 |The dual role of cell death in tumor tolerance/immunity.
(A) Role of apoptotic cells in formation of the tumor microenvironment.
Apoptotic cells (AC) are mainly taken up by monocytes (MC; yellow) and
alternatively activated macrophages (M2; green). Upon phagocytosis of
ACs, MCs, and classically activated macrophages (M1, red) get polarized
toward an M2-phenotype. M2-macrophages participate in tissue
remodeling and angiogenesis and via secretion of anti-inflammatory
cytokines (TGF-β, IL-10), inhibit M1-activation of macrophages and shift
TH1-responses toward the TH2-phenotype. (B) Tumor-supportive effects of

apoptotic cells are abrogated by Annexin-A5. Annexin-A5 (yellow circles on
secondary necrotic cells) inhibits swift clearance of apoptotic cells, leading
to progression of ACs into secondary necrosis. Secondary necrotic cells
(SNEC) are mainly taken up by MCs, classically activated macrophages
and dendritic cells (DC; red). Upon phagocytosis of SNEC, MCs get
polarized toward the M1-phenotype. Phagocytosis of SNEC by DCs leads
to antigen presentation and priming of T cells. Classically activated
macrophages secrete inflammatory cytokines (TNF-α, IL-1β) and induce
TH1-responses via IL-12.

resisted therapy and would possibly lead to
a relapse.

Until recently, cell death was either char-
acterized as programed and apoptotic, or
accidental and necrotic. This paradigm
has been undermined by the discovery of
several other forms of cell death, rang-
ing from immunogenic apoptosis (56)
or necroptosis (57) to pyroptosis (58,
59). So, in addition to manipulating cell
death induced by radio- or chemother-
apy in a way to increase its immuno-
genicity, the direct induction of immuno-
genic tumor cell death pathways might
become a promising approach in cancer
therapy (17, 54, 60), especially, since our
means of controlling the manner of cell
death have greatly increased during recent
years (61–63).

Surgical removal of malignant tissue
plays an important role in modern can-
cer therapy. The cancer cells obtained in
this process may be used as a vaccine to
establish anti-tumor immunity, if treated
and administered properly. The focus must
be on cancer cells dying by immuno-
stimulatory forms of cell death leading
to necrotic cell corpses, whose deploy-
ment would activate antigen-presenting-
cells. This way, the specific autologous
tumor cells can serve as reservoirs of tumor
antigens, which, upon phagocytosis by

inflammatory macrophages and dendritic
cells, are effectively (cross-)presented. The
impact of the vaccine could be optimized
by repeated administration of the dying
cells. However, we have to be very care-
ful, since a recent study indicates that
excessive immune responses against can-
cer can result in an increased risk of
developing the autoimmune disease scle-
roderma (64), pointing out several paral-
lels between the induction of autoimmu-
nity and immunosurveillance. While this
study actually supports the idea that mech-
anisms inducing autoimmunity can also be
used to elicit tumor immunity, it also sug-
gests that any agents used to recruit anti-
tumor responses must be well-balanced.
After all, nobody wants to escape cancer’s
fire by jumping into the frying pan of
autoimmunity.
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