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Summary: Dynamic treatment regimens (DTRs) are sequential decision rules tailored at each point where 
a clinical decision is made based on each patient’s time-varying characteristics and intermediate outcomes 
observed at earlier points in time. The complexity, patient heterogeneity, and chronicity of mental disorders 
call for learning optimal DTRs to dynamically adapt treatment to an individual’s response over time. The 
Sequential Multiple Assignment Randomized Trial (SMARTs) design allows for estimating causal effects of 
DTRs. Modern statistical tools have been developed to optimize DTRs based on personalized variables and 
intermediate outcomes using rich data collected from SMARTs; these statistical methods can also be used to 
recommend tailoring variables for designing future SMART studies. This paper introduces DTRs and SMARTs 
using two examples in mental health studies, discusses two machine learning methods for estimating 
optimal DTR from SMARTs data, and demonstrates the performance of the statistical methods using 
simulated data.
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1. Dynamic Treatment Regimens (DTRs)

Sequential treatments, a sequence of interventions 
in which the treatment decisions are adapted to the 
time-varying clinical status of the patient, are useful 
in treating many complex chronic mental disorders. 
For instance, existing clinical literature reports on the 
potential benefit of behavioral or pharmacological 
interventions, but patients’ heterogeneous responses 
to each modality of treatment may call for sequential, 
individualized treatments, especially in cases where the 
patient is non-responsive to monotherapy. Dynamic 
Treatment Regimes (DTRs) operationalize the sequential 

process of medical decision making and closely reflect 
actual clinical practice. DTRs are sequential decision 
rules, tailored at each stage to patients’ time-varying 
features and intermediate outcomes. They are also known 
as adaptive treatment strategies [1], multi-stage treatment 
strategies,[2,3] and treatment policies.[4-6] Examples of 
clinical trials involving sequential treatments and DTRs 
in mental health include the Sequenced Treatment 
Alternatives to Relieve Depression (STAR*D) trial for 
treating depression,[7,8] the Clinical Antipsychotic Trials 
of Intervention Effectiveness (CATIE) trial for treating 
schizophrenia;[9] Managing Alcoholism in People Who 
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Do Not Respond to Naltrexone (EXTEND) for treating 
alcohol dependence,[10] the Reinforcement-Based 
Treatment for Pregnant Drug Abusers (HOME III) trial,[11] 
Adaptive Pharmacological and Behavioral Treatments for 
Children with Attention Deficit/Hyperactivity Disorder 
(ADHD) trial,[12,13] and the Adaptive Autism Spectrum 
Disorder (ASD) Developmental and Augmented 
Intervention. [14]

Compared to conventional interventions in which 
all patients in each arm of the trial are offered the 
same treatment with the same dosage, DTRs have 
several important advantages.[15] (a) Treatment can 
be assigned to patients according to their personal 
features and, thus, maximize potential benefits. (b) 
If the effectiveness of an intervention changes over 
time, DTRs allow patients to be switched to other more 
promising treatments. (c) When there are comorbid 
conditions – as is often the case for mental disorders – 
DTRs can help decide which disorder should be treated 
primarily and when simultaneous treatment of multiple 
conditions is necessary. (d) When relapse occurs, DTRs 
can be used to make the optimal clinical decisions about 
resumption or alteration of the treatment strategy. 
(e) DTRs can be used to identify the lowest effective 
dose and, thus, minimize risk of adverse effects. And (f) 
the option of switching medications when using DTRs 
increases participant adherence during a clinical trial.

1.1 Sequential Multiple Assignment Randomized Trials 
(SMARTs)

Valid evaluations of the effectiveness of DTRs are based 
on the notion of potential outcomes, defined as the 
outcome of a subject had he followed a particular 
treatment regime, possibly different from the observed 
regime for the subject. Two assumptions are required 
to estimate the causal effect of a dynamic regime in this 
framework:[16,17] 

1. Stable unit treatment value assumption: A 
subject’s outcome is not influenced by other 
subjects’ treatment allocations.[18] 

2. No unmeasured confounders assumption: The 
newly assigned treatments are conditional on the 
history up to the current time but independent of 
potential future outcomes from the treatment.[19] 

Sequential Multiple Assignment Randomized 
Trials (SMARTs) are used to generate data that can be 
used to make causal inferences of specific treatment 
sequences and to compare the expected outcomes of 
different sequences. SMARTs randomize treatments at 
each critical decision point and, thus, provide the best 
possible data for making causal interpretations of the 
different DTRs. Below we use two examples to illustrate 
SMARTs.

1.2 Examples of SMARTs

We first illustrate a SMART using a trial for pregnant 
drug abusers [11] as an example. The goal of the trial is 
to study how the intensity and scope of reinforcement 
based treatment (RBT) might be adapted to a pregnant 
woman’s progress in treatment. There are four types 
of RBT (in order of intensity of the intervention): 
abbreviated RBT (aRBT), reduced RBT (rRBT), treatment-
as-usual RBT (tRBT), and enhanced RBT (eRBT). At the 
first stage of the trial, each participant is randomized 
to one of the two intermediate intensity interventions 
(tRBT or rRBT). In the second stage after two weeks, 
non-responders are re-randomized to continue the 
original intervention or use the next more intensive 
intervention, and responders are re-randomized to 
continue with the same intervention or to use the next 
less intensive intervention. This trial is illustrated in 
Figure 1.

A second example is a SMART study of treatments 
for children with attention deficit/hyperactivity disorder 
(ADHD).[12,13] The study lasted for a school year (i.e., 
8 months). Interventions include differing doses 
of methamphetamine and differing intensities of a 
behavioral modification intervention. As demonstrated 
in Figure 2, children were randomly assigned to begin 
with low-intensity behavioral modification or with low-

Figure 1. Design of adaptive reinforcement-based 
treatment for pregnant drug abusers

IN ORDER OF INTENSITY OF INTERVENTION:
aRBT, abbreviated reinforcement based treatment
rRBT, reduced reinforcement based treatment
tRBT, treatment-as-usual reinforcement based treatment
eRBT, enhanced reinforcement based treatment
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dose medication. This stage lasts for two months, after 
which the Impairment Rating Scale (IRS) [20] and the 
individualized List of Target Behaviors (LTB) measure[21] 

were used to assess each child’s response to initial 
treatment. Children who responded would continue 
to receive the initial low intensity treatment. Children 
who did not respond would be re-randomized to either 
intensify the initial treatment or to receive adjunctive 
treatment with the alternative type of treatment. The 
target outcome of the study was school performance 
score at the end of study. The primary aim of the study 
was to test the main effect of beginning with low-

dose medication versus beginning with low-intensity 
behavioral modification on the rate of non-response by 
the end of the school year. Secondary aims included (a) 
how baseline variables (e.g., prior medication history, 
ADHD impairment score, the comorbid presence of an 
oppositional defiance disorder [ODD] diagnosis, race, 
etc.) influence the choice of treatments in the first and 
second stage; and (b) differences in the effect between 
the four adaptive interventions embedded in the design. 

2. Statistical analysis of data collected in SMARTs

2.1. Primary analysis

The primary aims of the above ADHD SMART study 
are listed in table 1. Comparisons of first-stage and 
second-stage intervention options can be made using 
a two-sample t-test for the two groups of patients. 
When comparing the imbedded adaptive intervention 
options in the last row of Table 1, it is necessary 
to compare weighted averages that adjust for the 
response rate of the initial treatment and randomization 
probabilities; inverse probability weighting[22] generates 
weighted averages that reflect the response rate in the 
population. A more detailed description of the primary 
analyses of SMART studies and specifically for this ADHD 
trial can be found in Nahum and Shani.[23] The sample 
size estimation for the primary analysis can be found in 
Oetting.[24] 

2.2. Finding the optimal DTR

Besides comparison of two initial regimes, it is also of 
interest to find the optimal regime (i.e., resulting in the 
best final outcome) using the rich data collected from 
SMARTs. One benefit of the optimal regime is that it 

Figure 2. Design of trial on adaptive pharmacological 
and behavioral treatments for children 
with Attention Deficit/Hyperactivity 
Disorder (ADHD) 

BMOD, behavior modification 
MEDS, oral methamphetamine 

Table 1. Primary analysis questions and example in the ADHD study

Type of primary question Example in the Attention Deficit/Hyperactivity Disorder (ADHD) study

Comparing first-stage 
intervention options

Compare the potential outcomes for patients beginning with low-intensity behavior 
modification (BMOD) and low-dose oral methamphetamine (MEDS)

Comparing second-stage 
intervention options

Among patients who do not respond to the first stage treatment, compare intensifying 
the initial intervention versus augmenting the initial intervention with the alternative 
intervention

Comparing adaptive 
intervention options

There are four imbedded adaptive interventions: 
1. Begin with BMOD, augment with MEDS if not responding
2. Begin with BMOD, intensify BMOD if not responding
3. Begin with MEDS, augment with BMOD if not responding
4. Begin with MEDs, intensify MEDS if not responding

The goal is to compare the mean outcomes for all pairs of these adaptive 
interventions.
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assigns individualized treatments at each stage based 
on a patient’s personal characteristics and intermediate 
outcomes; this approach is likely to produce better 
overall outcomes compared to ‘one-size-fits-all’ regimes 
that are not tailored to patients’ personal features. The 
optimal DTR also provides insights about the effects 
of patients’ characteristics on the choice of treatment 
and eventual outcome; based on this information, 
researchers can design future confirmatory SMART 
trials. 

Estimating optimal DTR from SMART data has 
recently received considerable attention in the statistics 
community; several statistical methods have been 
developed to achieve this goal.[25] Here we focus on 
two machine-learning methods which are flexible, 
computational efficient, and applicable to handling large 
numbers of patient-specific characteristics (including 
genomic and imaging characteristics) as potential 
tailoring variables,

Q-learning, first proposed in Watkins,[26] was 
implemented to analyze SMART data by Murphy 
and colleagues[27] and Zhao and colleagues.[28] It is a 
regression-based method to identify optimal multi-
stage decision rules, where the optimal treatment at 
each stage is discovered by a backward induction to 
maximize the estimated Q-function (“Q” stands for 
“quality of action’’). Q-learning is based on simple linear 
regression model and can be implemented by a SAS 
procedure known as PROC QLEARN.[29]  For single-stage 
studies when the assumptions hold and the regression 
model is correctly specified, Q-learning is efficient. Thus 
it is widely used to analyze SMART studies with a limited 
number of tailoring variables. However, regression 
based Q-learning may suffer from incorrect model 
assumptions when the number of tailoring variables is 
large. Even if using nonparametric learning algorithms, 
the Q-learning approach selects the optimal treatment 
by modeling the Q-function and its contrasts that are 
not explicitly related to the optimization of the objective 
function (i.e., value function[30]). The mismatch between 
maximizing the Q-function and the value function 
potentially leads to suboptimal regimes due to over-
fitting of the regression model.

Recent advances in statistical methodology 
avoid these problems. Outcome-weighted learning 
(O-learning) which was first introduced by Zhao and 
colleagues[31] to choose optimal treatment rules by 
directly optimizing the expected clinical outcome at the 
end of the study for single-stage trials. The resulting 
optimal treatment regimen is found by weighted 
supportive vector machines (SVM) and can take any 
unconstrained nonparametric functional form. Their 
simulation studies demonstrate that O-learning 

outperforms Q-learning, especially in small-sample 
settings with a large number of tailoring variables. Zhao, 
and colleagues[32] generalized the developed O-learning 
to multiple-stage trials by a backward iterative method.

Most recently, Zeng and colleagues,[33] proposed 
Augmented Multi-stage Outcome-weighted Learning 
(AMOL), which integrates Q-learning under the 
O-learning framework and, thus, improves the 
performance of O-learning. This method incorporates 
doubly robust augmentation which is also referred as 
augmented inverse probability weighting originally 
proposed in the missing data literature[34] into O-learning 
by drawing information from regression model-based 
Q-learning at each stage in the decision tree. Thus, 
it combines the robustness of O-learning with the 
imputation ability of Q-learning.

AMOL has three new features not reported in the 
studies by Zhao and colleagues.[31,32] Firstly, for single-
stage trials, AMOL generalizes the original O-learning[31] 
to allow for negative outcome values instead of adding 
an arbitrarily large constant[31] which leads to numeric 
instability. This feature is useful when there are both 
positive and negative outcomes observed in a clinical 
study (e.g., rate of change of clinical symptoms). 
Secondly, by using residuals from a regression on 
variables other than the treatment assignment as 
outcome values, AMOL is able to reduce the variability 
of weights in O-learning to achieve numeric stability 
and efficiency gain. Thirdly, and most importantly, for 
multiple-stage trials, AMOL estimates optimal DTRs via 
a backward induction learning procedure[32] which starts 
from the last stage and propagates backwards to the 
first stage to boost efficiency through augmentation and 
integration with Q-learning. At each stage of the study 
of interest, the optimal treatment regimes are obtained 
using only subjects whose treatment assignments 
coincide with the optimal rule for all the future stages 
in the study. Thus, one major limitation of O-learning is 
that the number of subjects used for inferring optimal 
treatment rules decreases geometrically with the 
increasing number of stages, so their method may 
be inefficient. In contrast, at each stage, AMOL uses 
robustly weighted O-learning for estimating the optimal 
DTRs; the weights are based on the observed outcome 
and a conditional expectation term for subjects who 
follow the optimal treatment rules in future stages or 
– for those who do not follow optimal rules in future 
stages – weights imputed from regression models 
obtained from Q-learning. Therefore, AMOL, as a 
hybrid approach, simultaneously takes advantage of the 
robustness of nonparametric O-learning and also makes 
use of the model-based Q-learning which uses data 
from all subjects. 
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2.3 Example of Q-learning and O-learning based 
analyses of ADHD data  

The ADHD data analysis we present here was simulated 
by investigators at the University of Michigan based 
on an ongoing two-stage SMART trial on ADHD[12] 
that has been used in a workshop about SMART that 
can be downloaded at: (http://www-personal.umich.
edu/~dalmiral/software/mw_workshop_files/SAS%20
Code/adhd_simulated_data.txt). The primary outcome 
of the study is the school performance score (ranging 
from 1 to 5) measured at the end of the study. There 
are 150 subjects, four baseline covariates (e.g. prior 
medication history, ADHD impairment score, ODD 
diagnosis, race) and two time-varying covariates 

including adherence to the initial treatment and 
months to remission. There were 99 participants who 
did not respond to first stage intervention and are re-
randomized in the second stage. 

We present the estimated coefficients of the 
optimal DTR estimated by Q-learning and AMOL in 
Table 2. AMOL gives a sparse set of variables with non-
important variables yielding coefficients near zero. In 
contrast, Q-learning leads to many more variables with 
non-zero coefficients. We can rank the importance 
of standardized covariates by the magnitude of their 
coefficients. In stage 1, medication prior to enrollment 
has the largest magnitude coefficient estimated by 
AMOL (-0.001557, Table 2), which is more than 3-fold 

Table 2. Standardized coefficients for the optimal dynamic treatment rule estimated by various methods 
using data from the Attention Deficit/Hyperactivity Disorder (ADHD) study a

stage 1 stage 2

Q-L AMOLb Q-L AMOLb

 Intercept 3.454 0  Intercept 2.889 0

ODD diagnosis -0.199 -0.229 ODD Diagnosis -0.144 0

Baseline ADHD score -0.357 0.276 ADHD score -0.28 0

Prior medication -0.028 -1.557 Prior medication 0.012 0

White race 0.211 0.456 White race 0.247 0.088

trt1 (1 for BMOD; -1 for MED) 0.225 trt1 0.273 -0.043

ODD diagnosis* trt1 -0.068 ODD diagnosis* trt1 -0.141 0

ADHD *trt1 0.163 ADHD *trt1 0.075 0

Prior medication*trt1 -0.348 Prior medication *trt1 -0.049 0

race*trt1 0.086 White race*trt1 0.11 0.088

Months to non-response -0.015 0

Adherence to trt1 0.003 0.999

Months to non-response*trt1 -0.33 0

Adherence to trt1*trt1 0.09 0

trt2 -0.385

…

Adherence to trt1*trt2 0.633

Q-L, Q-learning      O-L, O-learning    AMOL, Augmented Multi-stage Outcome-weighted Learning

ODD, Oppositional Defiant Disorder      BMOD, Behavioral Modification      MED, Medication

trt1: first stage treatment, 1=use BMOD; -1=use MED 

trt2: second stage treatment, 1=intensify current treatment; -1=add alternative treatment
a Q-learning also included other interaction terms with trt2 which are omitted in the table
b  The reported coefficients were obtained from fitting a linear prediction rule for the outcome with listed variables included as co-

variates in AMOL. The estimated coefficients were the numbers displayed in this column multiplied by 0.001 for the ease to show 
relative magnitude of each variable (e.g., the estimated coefficient for prior medication was -0.001557). 
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the magnitude of the second largest covariate (race). 
The fitted optimal DTR suggests that patients who 
previously took medication before the trial would be 
better off starting with medication, and those who 
did not take medication before the trial should start 
with behavioral modification. In stage 2, adherence 
to treatment in stage 1 has the largest magnitude 
coefficient (0.999, Table 2). The AMOL fitted optimal 
DTR suggests that patients who adhered to their initial 
treatment should be assigned to continue with the 
same treatment, while patients who did not adhere to 
the first treatment should switch. 

3. Discussion

This paper has introduced the design of SMARTs 
for assessment of DTRs in psychiatric research, the 
statistical methods used to make inference about the 
primary goal in such studies, and the most recently 
introduced machine learning methods for identifying 
the best treatment and for identifying potential tailoring 
variables for future confirmative trials. A few core 
issues about the statistical analyses of SMART and DTR 
merit further research. Most methods on identifying 
optimal DTR from SMART are targeted on continuous 
outcomes; further work will be need to extend this 
approach to deal with ordinal or categorical outcomes 
and censored survival events. Moreover, in mental 
health research there is often interest in a combination 
of outcomes (to comprehensively assess potential 
benefit); for example, alleviation of symptoms may be 
considered in conjunction with increased quality of 
life and functioning, time to response, and reduction 

of side effects. In this situation it may be insufficient 
to represent all information in a single dimensional 
outcome. Further work will be needed to develop 
machine-learning methods for handling such multi-
dimensional outcomes. Another issue is that in many 
clinical studies there may be multiple options – not 
just two – at each stage of the study; current machine-
learning methods need to be extended to identify 
optimal DTRs when multiple treatment options are 
possible at each stage of the study. Future research 
is also needed to develop methods for selecting the 
feature variables from observational studies that 
will best maximize interpretability of constructed 
DTR. Finally, one practical challenge is that multiple-
stage randomized clinical trials require prolonged 
commitment and compliance from all participants. 
Missing data in SMARTs is often a rule rather than an 
exception, so continued effort is needed to find creative 
ways for reducing missing data and for statistically 
dealing with missing data. Shortreed and colleagues[35] 
recently discussed imputation methods for handling 
missing data in SMART. 
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概述 : 动态治疗方案（Dynamic treatment regimens，
DTRs）是一种序贯决策规则，是根据每个患者随时间
变化而变化的特征和先前观察到的中间结果而量身定
制的临床决策。精神障碍具有慢性和复杂性的特点，
精神障碍患者具有异质性特点。这就要求随时间推移，
根据个体对治疗反应的不同而分析出最佳的治疗方案，
并动态地应用到患者之后的治疗中。多重方案随机
序贯试验（Sequential Multiple Assignment Randomized 
Trial，SMARTs）的设计可以估计 DTRs 的治疗效应。
SMARTs 收集到大量的个体化变量和中间结果，在此基
础上应用已有的现代统计工具可以优化 DTRs。这些统

计方法也可为今后的 SMARTs 研究设计推荐量身定制
的变量。本文通过两个精神卫生研究案例介绍了 DTRs
和 SMARTs，讨论了从 SMARTs 数据估算出最佳 DTR 的
两种不同的计算机自动分析方法，并使用模拟数据演
示这两种统计方法的性能。

关键词 : 多重方案随机序贯试验，动态治疗方案，个
体化医疗，O 型学习，Q 型学习，双稳健估计
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