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Antibiotics play a vital role in saving millions of lives from fatal infections; however, the 
inappropriate use of antibiotics has led to the emergence and propagation of drug 
resistance worldwide. Multidrug-resistant bacteria represent a significant challenge to 
treating infections due to the limitation of available antibiotics, necessitating the investigation 
of alternative treatments for combating these superbugs. Under such circumstances, 
antimicrobial peptides (AMPs), including human-derived AMPs and bacteria-derived AMPs 
(so-called bacteriocins), are considered potential therapeutic drugs owing to their high 
efficacy against infectious bacteria and the poor ability of these microorganisms to develop 
resistance to them. Several staphylococcal species including Staphylococcus aureus, 
Staphylococcus epidermidis, Staphylococcus haemolyticus, and Staphylococcus 
saprophyticus are commensal bacteria and known to cause many opportunistic infectious 
diseases. Methicillin-resistant Staphylococci, especially methicillin-resistant S. aureus 
(MRSA), are of particular concern among the critical multidrug-resistant infectious Gram-
positive pathogens. Within the past decade, studies have reported promising AMPs that 
are effective against MRSA and other methicillin-resistant Staphylococci. This review 
discusses the sources and mechanisms of AMPs against staphylococcal species, as well 
as their potential to become chemotherapies for clinical infections caused by multidrug-
resistant staphylococci.
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INTRODUCTION

Staphylococci are Gram-positive, facultative anaerobe, and some staphylococcal species are 
commensal bacteria in humans, mainly on the skin. Staphylococci are clinically classified into 
two groups, coagulase-positive Staphylococcus aureus and coagulase-negative staphylococci (CoNS). 
Staphylococcus aureus shows higher virulence than CoNS because S. aureus produces various 
virulence factors such as exotoxins, immune evasion factors, adhesins, and exoenzymes (Lowy, 
1998; Foster, 2004). Staphylococcus aureus is associated with both human commensal and 
clinical infections (Lowy, 1998; Wertheim et  al., 2005). Staphylococcus aureus can cause skin 
and soft tissue disease, pleuropulmonary disease, medical device-related bloodstream infections, 
food poisoning, and even infective endocarditis or osteomyelitis (Lowy, 1998; Lindsay and 
Holden, 2004; Tong et  al., 2015; Kavanagh et  al., 2018; Lakhundi and Zhang, 2018; Oliveira 
et  al., 2018; Turner et  al., 2019; Horino and Hori, 2020; Pimentel de Araujo et  al., 2021). 
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Although less virulent than S. aureus, CoNS including 
Staphylococcus epidermidis, Staphylococcus haemolyticus, 
Staphylococcus saprophyticus, Staphylococcus capitis, 
Staphylococcus lugdunensis, Staphylococcus hominis, Staphylococcus 
schleiferi, and Staphylococcus warneri are also important 
staphylococcal pathogen and are usually associated with hospital 
infections such as skin and soft tissue disease, sepsis, meningitis, 
endocarditis, and catheter- or implanted device-mediated 
infections (Vuong and Otto, 2002; Otto, 2009; Becker et  al., 
2014; Natsis and Cohen, 2018; Azimi et al., 2020; Parthasarathy 
et  al., 2020).

Since the introduction of methicillin in clinical practice, 
methicillin-resistant S. aureus (MRSA) has evolved by acquisition 
of mecA coding PBP2’ and spread to worldwide (Chambers 
and DeLeo, 2009). The first report of MRSA was published 
in 1961 (Barber, 1961). In the 1980s and 1990s, hospital-acquired 
MRSA strains with multidrug resistance spread across the world 
(Crossley et al., 1979; Lowy, 1998; Chambers and DeLeo, 2009). 
Later, community-acquired MRSA strains, which typically cause 
skin and soft tissue infections in healthy patients, have been 
firstly reported in the 1980s (Levine et  al., 1982; Saravolatz 
et  al., 1982; Lakhundi and Zhang, 2018). In 2004, a livestock-
associated MRSA strain was identified from the family of a 
pig farmer and their pig (Voss et  al., 2005; Crespo-Piazuelo 
and Lawlor, 2021). The increased usage of vancomycin as an 
alternative to methicillin to treat MRSA infections has led to 
the emergence of vancomycin-intermediate S. aureus (VISA; 
Hiramatsu et  al., 1997) and vancomycin-resistant S. aureus 
(VRSA) strains (Weigel et al., 2003). As with MRSA, methicillin-
resistant S. epidermidis (MRSE) has also been a serious threat 
considering its high prevalence in some areas in the world 
during the 2000s (Carbon, 2000) and its recent global spread 
(Lee et al., 2018). In addition, the mecA gene was also identified 
in other CoNS including S. haemolyticus, S. hominis, S. capitis, 
and S. warneri (Humphries et  al., 2020). Furthermore, the 
reduced susceptibility to glycopeptide has also been reported 
in S. epidermidis and S. haemolyticus (Biavasco et  al., 2000).

The ever-increasing burden of global widespread multidrug-
resistant bacteria has significantly challenged with the ability 
of available antibiotics to treat infections and prompted the 
discovery of novel antimicrobial compounds to overcome the 
shortage of therapeutic options. Antimicrobial peptides (AMPs) 
produced by living organisms such as humans and bacteria 
are candidates for promising strategies to control these superbugs. 
AMPs generally have a broad spectrum of activity against 
bacteria, viruses, fungi, and parasites, a specific mode of action, 
low risk of resistance development, high stability in wide ranges 
of pH and temperature, low toxicity to eukaryotic cells, and 
immunomodulatory effects (Zhang and Gallo, 2016). They 
exhibit antimicrobial activity via interaction with bacterial 
membrane, causing membrane dysfunction and disruption, 
disturbance of cell wall, DNA/RNA, and protein synthesis 
(Nguyen et al., 2011; Mahlapuu et al., 2016; Figure 1). Therefore, 
AMPs represent a novel alternative therapeutic for the control 
of critical pathogens in the future. However, clinical applications 
of AMPs raise several concerns such as toxicity, immunogenicity, 
and hemolytic activity (Moravej et  al., 2018; Lei et  al., 2019). 

As mentioned above, S. aureus and CoNS have developed 
resistance to many antimicrobial agents, especially methicillin, 
and many staphylococcal strains may be resistant to glycopeptides 
in the future. Therefore, the development of AMPs as new 
alternative antimicrobial agents against Staphylococci is of great 
importance. In this review, we  provide an overview of human 
and bacterial AMPs that are effective against staphylococcal 
pathogens, their structures and mode of action, the current 
stage of investigation, and their potential as therapeutic agents 
in clinical treatment against staphylococcal infections.

HUMAN AMPs THAT HAVE 
ANTIBACTERIAL ACTIVITY AGAINST 
STAPHYLOCOCCAL PATHOGENS

Classification of Human AMPs
There are various ways to classify AMPs, for example, based on 
their sequences, structures, or mode of action. Based on structure, 
AMPs can be classified into subclasses, including α-helical, β-sheet, 
and extended/random-coil peptides (Mahlapuu et al., 2016; Falanga 
and Galdiero, 2017). The first subclass, α-helical AMPs, are 
unstructured in aqueous environments but become amphipathic 
α-helical structures upon contact with biological membranes 
(Takahashi et al., 2010). Their main activity involves the disruption 
of bacterial membranes, with a broad antimicrobial spectrum 
including Gram-positive and Gram-negative bacteria, fungi, and 
parasites (Lee et  al., 2013a; Kim et  al., 2014; Raja et  al., 2017). 
In contrast to α-helical peptides, β-sheet AMPs are structured 
in aqueous solution and do not undergo conformational changes 
when they interact with membranes (Lee et  al., 2016). They 
also contain cysteine residues that form disulfide bridges, which 
reinforce their structure and diminish protease degradation (Lee 
et  al., 2016). These AMPs disrupt membranes in a wide range 
of organisms and have become potential therapeutics as 
antibacterial, antiviral, antifungal, and anti-inflammatory agents 
(Panteleev et  al., 2015). The third subclass of AMPs, extended/
random-coil peptides, lack secondary structures and contain 
specific amino acids such as histidine (salivary histatins), proline 
(insect-derived pyrrhocoricin, drosocin, and apidaecin), tryptophan, 
and arginine (bovine lactoferrin and human lysozyme; Nguyen 
et  al., 2011; Mahlapuu et  al., 2016). These AMPs exert their 
antimicrobial activity, including bactericidal, fungicidal, or 
antiparasitic effects, through inducing membrane leakage or 
disturbing nucleic acid synthesis, protein production, or cell-wall 
synthesis by interacting with intracellular targets (Nguyen et  al., 
2011; Lombardi et al., 2019). The amino acid sequences of some 
representatives of each subclass are displayed in Figure  2.

Cathelicidin LL-37
LL37, first identified as human CAP18, is a human AMP that 
has a linear cationic α-helical structure (Larrick et  al., 1995; 
Vandamme et al., 2012). It has antibacterial, antifungal, and antiviral 
activities, promotes angiogenesis and wound healing, and mediates 
immunomodulatory and inflammatory responses (Bandurska et al., 
2015). LL-37 was identified at various sites, including leukocytes 
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(monocytes, neutrophils, T cells, NK cells, and B cells), epithelial 
cells of the testis, gastrointestinal tract, respiratory tract, and skin 
(Dürr et  al., 2006). LL-37 can act on both Gram-positive and 
Gram-negative bacteria. Previous studies have reported that LL-37 
has antimicrobial activity against various bacterial species: Escherichia 
coli (Smeianov et  al., 2000; Aghazadeh et  al., 2019), Klebsiella 
pneumoniae (Smeianov et  al., 2000), Pseudomonas aeruginosa 
(Smeianov et  al., 2000; Travis et  al., 2000), Neisseria gonorrhoeae 
(Bergman et al., 2005), and S. aureus (Travis et al., 2000; Midorikawa 
et al., 2003). LL-37 exerts antibacterial activity through disruption 
of cell membranes and inhibition of cell wall, nucleic acid, or 
protein synthesis (Zanetti, 2004; Brogden, 2005). In addition, LL-37 
was shown to have greater biofilm eradication capacity against 
S. aureus than conventional antibiotics such as gentamicin, 
vancomycin, rifampin, doxycycline, and cefazolin (Noore et  al., 
2013; Kang et  al., 2019). LL-37 was able to kill S. aureus at 
nanomolar concentrations, while doxycycline and cefazoline acted 

at millimolar concentrations (Noore et  al., 2013). LL-37 also 
inhibits the initial attachment and biofilm formation of S. epidermidis 
at low concentrations (Hell et  al., 2010).

However, MRSA tends to have elevated resistance to LL-37 
compared to MSSA (Ouhara et  al., 2008). Aureolysin, a 
metalloproteinase produced by some S. aureus strains, was shown 
to cleave and inactivate LL-37—the more aureolysin produced 
by an S. aureus strain, the less susceptibility of this strain to 
the antimicrobial fragment LL-17-37 (Sieprawska-Lupa et  al., 
2004). LL-37 derivatives have been investigated to improve the 
quality of LL-37 in terms of their stability, hemolysis and cytotoxicity, 
cell selectivity, and biofilm eradication (Chen et al., 2021; Ridyard 
and Overhage, 2021). D-LL-37, an LL-37 derivative in which all 
amino acids are changed to the D-form, displayed protease-
resistance properties while possessing biofilm-inhibition capacity 
equal to the L-peptide isomer LL-37 (inhibiting ~40% biofilm 
formation at a concentration of 10 μg/ml) and immunostimulatory 

FIGURE 1 | The membrane-disruptive and non-membrane-disruptive antibacterial mechanisms of antimicrobial peptides (AMPs). In the membrane-disruptive 
mechanisms, three types of interaction can occur between the membrane and the AMPs, including: (i) barrel-stave model: the peptide monomers form a hydrophilic 
transmembrane channel by arranging parallelly to the phospholipids of the membrane; (ii) carpet model: the peptides solubilize the membrane into micellar 
structures; and (iii) toroidal model: the lipid moieties fold inward due to the cascade aggregation of peptide monomers, forming a peptide-and-lipid-lined channel.
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activity and wound-healing properties on the host higher than 
the L-peptide (Dean et  al., 2011). SK-24, which corresponds to 
residues 9–32 of LL-37, demonstrated killing activity against 
S. aureus and Staphylococcal biofilm reduction, which was superior 
to LL-37 and several other derivatives (Zhang et al., 2021). KE-18, 
a derivative corresponding to residues 15–32 of LL-37, showed 
significant biofilm prevention against S. aureus (Luo et al., 2017). 
KR-12-a5 is another LL-37-derived peptide, a KR-12 analogue 
corresponding to residues 18–29, which exhibits higher 
antimicrobial activities against MRSA than LL-37 (Kim et al., 2017).

Defensins
Defensins are AMPs that belong to the β-sheet subclass and 
carry six disulfide-linked cysteine residues and 4–10 arginine 
residues per molecule (Ganz et  al., 1985). Defensins have been 
widely discovered from plants, insects, and mammals, with 
broad antimicrobial activity against Gram-positive and Gram-
negative bacteria, enveloped- and non-enveloped viruses, and 
yeast and filamentous-phase fungi (Ganz et al., 1990; Gao et al., 
2021). Various functions of defensins have been investigated, 
including pore formation, neutralization or inactivation of secreted 
toxins, modulation of the immune system and enhancement 
of antibacterial effects, and induction of cytokine and chemokine 
expression to fight against bacteria (Gao et  al., 2021).

Two main defensin subfamilies, α- and β-defensins, have been 
reported in humans and some other mammals (Ganz, 2003), 
while another subfamily, θ-defensins, was later identified in 
non-human primates such as rhesus macaque monkeys or baboons 
(Tang et  al., 1999; Garcia et  al., 2008). Alpha-defensins differ 
from beta-defensins by the length of peptide chains between 
the six cysteine residues and the connecting patterns of the 
cysteine pairs to form disulfide bonds (Ganz, 2003). Human 
α-defensins have been identified from human neutrophils, 
gastrointestinal tract, and epithelial tissues, and β-defensins have 
been identified from neutrophils, leukocytes, epithelial cells, blood 
plasma, and urine (Schneider et  al., 2005; Gao et  al., 2021). To 
date, six human α-defensins have been reported, including human 
neutrophil peptides 1–4 (HNPs1–4) and human enteric defensins 
5–6 (HD5 and HD6; Gao et al., 2021). Among HNPs1–4, HNP2 
demonstrated powerful antibacterial activity against S. aureus, 
surpassing the other three HNPs (Ericksen et  al., 2005). HD5 
and HNP2 exhibited comparable activity against S. aureus, while 
HD6 did not exhibit antibacterial activity (Ericksen et al., 2005).

More than 30 human β-defensin genes have been discovered; 
however, only a few have been intensively investigated (Schutte 
et  al., 2002; Vankeerberghen et  al., 2005). They were identified 
in various organs and solutions inside the human body, for 
example, in the hemodialysis solution from patients with renal 

FIGURE 2 | Amino acid sequences of human antimicrobial peptides (AMPs). The disulfide bonds in α- and β-defensins are indicated by solid lines. The histamine 
residues in Histatin-1 and -3 are indicated by bold letters.
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failure, gastrointestinal tract, urogenital tract, respiratory tract, 
oral cavity, oral epithelium, damaged psoriasis skin, skin, tonsil, 
testicles, and antrum (Gao et al., 2021). Among the four primarily 
studied human β-defensins (hBD-1–4), hBD-3 exhibited antibacterial 
activity against S. pyogenes and S. aureus, including multidrug-
resistant S. aureus, through the cell wall perforation effect (Harder 
et al., 2001; Schneider et al., 2005). Additionally, hBD-3 has been 
reported to effectively eliminate staphylococci biofilms, even with 
MRSA and MRSE, and was significantly more effective than 
clindamycin (Huang et  al., 2012; Lee et  al., 2013b). At low 
concentrations (4–8 μg/ml), hBD-3 effectively restricted bacterial 
adhesion after 6 h and biofilm formation after 12 h against MRSA 
and MRSE (Zhu et  al., 2013). However, MRSA was reported to 
have higher resistance to hBD-3 than MSSA, with 55% of the 
tested MRSA strains exhibiting greater than 20% survival under 
treatment with 1 μg/ml hBD-3 compared to 13% of the tested 
MSSA strains (Midorikawa et al., 2003). Nevertheless, combinations 
of defensins with methicillin or β-defensins and CAP18 can have 
a synergistic effect on S. aureus, including MRSA (Midorikawa 
et  al., 2003). H4, a chimeric human defensin that combines the 
sequences of hBD-3 and hBD-4, showed superior antibacterial 
activity against S. aureus compared with that of hBD-3 and hBD-4 
and conferred high salt tolerance (Yu et  al., 2021). hBTD-1 and 
[D]hBTD-1, chimeric analogues of human β-defensin 1 and 
θ-defensin, respectively, exhibited considerable activity against 
S. aureus biofilms as well as planktonic forms (Mathew et al., 2017).

Histatins
Histatins are histidine-rich proteins that are secreted by human 
parotid and submandibular glands into the salivary glands 
(Oppenheim et  al., 1988). They were shown to have a broad 
spectrum of antibacterial and antifungal activities (Tsai and 
Bobek, 1998; Rothstein et al., 2001; Sajjan et al., 2001). Histatin 
5 (Hst5) was shown to kill 60–70% of S. aureus in 10–100 mM 
sodium phosphate buffer (NaPB) but had limited activity against 
S. aureus biofilms (Du et al., 2017). Hst 5 may attack S. aureus 
through multiple targets and energy-independent mechanisms 
(Du et  al., 2017).

P-113, a histatin derivative in which residues 4–15 are the 
same as those of histatin 5, showed a high bactericidal effect 
on MRSA (Sajjan et al., 2001; Giacometti et al., 2005). Compared 
to histatin 5, several synthetic histatin analogues, e.g., dhvar 
1 and dhvar2, demonstrated increased antibacterial activity 
against MRSA (Helmerhorst et  al., 1997). At a concentration 
of 2 mg/ml, dhvar1, dhvar4, and dhvar5 exhibited an antibacterial 
effect against S. epidermidis (Elving et  al., 2000).

BACTERIAL AMPs THAT HAVE 
ANTIBACTERIAL ACTIVITY AGAINST 
STAPHYLOCOCCAL PATHOGENS

Classification of Bacterial AMPs
Bacteriocins are ribosomally synthesized AMPs produced by 
bacteria and have been classified based on the producer organism, 
inhibitory spectrum, molecular size, chemical structure, mode 

of action, or plasmid nature (Jack et  al., 1995; Ennahar et  al., 
2000; Oscáriz and Pisabarro, 2001; Kumariya et  al., 2019). 
Various classification schemes for bacteriocins have been 
proposed over the years. In this review, we  adopt an updated 
classification by Soltani et  al. (2021). The classification of 
bacteriocins is presented in Table  1. The bacteriocins from 
Gram-positive and Gram-negative bacteria were classified into 
two classes, namely class I  and class II. Class I  bacteriocins 
are ribosomally synthesized and posttranslationally modified 
peptides (RiPPs; Arnison et  al., 2013) with molecular masses 
<5 kDa. Class I  bacteriocins are further subdivided based on 
their modifications. They can be  divided into lantibiotics, 
sactibiotics, linaridins, thiopeptides, glycocins, circular peptides, 
and bottromycins from Gram-positive bacteria; nucleotide 
peptides and siderophore peptides from Gram-negative bacteria; 
linear azol(in)e-containing peptides (LAPs) and lasso peptides 
from both Gram-positive and Gram-negative bacteria; and 
cyanobactins produced by cyanobacteria. Among these, 
lantibiotics have been widely investigated for therapeutic 
applications (Soltani et  al., 2021; Fernandes and Jobby, 2022). 
Lantibiotics usually contain 19–38 amino acids that carry 
unusual amino acid residues, namely lanthionine, 
β-methyllanthionine, and dehydrated amino acids (Willey and 
van der Donk, 2007; Arnison et  al., 2013). Lanthionine and 
β-methyllanthionine are conducted from dehydration of serine 
and threonine, yielding di-dehydroalanine and 
di-dehydrobutyrine residues, respectively, followed by forming 
thioether linkages for stabilization. Other class I-bacteriocins 
have their characteristic modification, such as sactibiotics with 
sulfur to α-carbon linkage, glycocins with glucosylated cysteine, 
thiopeptides with a 6-membered nitrogen-containing ring, 
bottromycins with methylated amino acids, and C-terminal 
decarboxylated thiazole (Table 1; Figure 3). Class II bacteriocins 
consist of unmodified peptides, which are further divided into 
three subclasses: pediocin-like single peptides, unmodified single 
peptides, and two-peptide bacteriocins.

Nisins
Nisin is a 34-amino acid lantibiotic produced by Gram-positive 
bacteria, including Lactococcus, Staphylococcus, and Streptococcus 
species (Gross and Morell, 1971; O’Connor et al., 2015; O’Sullivan 
et  al., 2020; Figure  3). To date, several variants of nisin have 
been reported, for example, nisin A (Gross and Morell, 1971), 
nisin Z (Mulders et  al., 1991), nisin Q (Zendo et  al., 2003), 
nisin U (Wirawan et  al., 2006), nisin F (de Kwaadsteniet et  al., 
2008), nisin H (O’Connor et  al., 2015), nisin O (Hatziioanou 
et al., 2017), nisin J (O’Sullivan et al., 2020), and nisin P (Garcia-
Gutierrez et  al., 2020). Nisin has an antibacterial effect against 
a wide spectrum of Gram-positive bacteria, including staphylococci, 
streptococci, enterococci, bacilli, and listeria. Nisin binds to lipid 
II, which is a membrane component required for peptidoglycan 
biosynthesis, and then permeabilizes the cell membrane and 
inhibits cell wall synthesis (Breukink and de Kruijff, 1999; Lubelski 
et al., 2008). Additionally, nisin was shown to cause cell shrinkage 
and chromosomal DNA condensation in a MRSA model, suggesting 
that nisin interferes with DNA replication or segregation in the 
bacteria (Jensen et  al., 2020).
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Nisin A exhibited high antibacterial activity against both 
planktonic and biofilm S. aureus cells (Okuda et  al., 2013). 
The combination of nisin A and vancomycin was reported to 
effectively inhibit S. aureus biofilm formation and reduce the 
thickness of preformed biofilms produced by multidrug-resistant 
S. aureus (Angelopoulou et  al., 2020). Nisin A and nisin Z 
differ by a single substitution at the 27th amino acid residue, 
with a histidine in nisin A and an asparagine in nisin Z. The 
structural alteration gives nisin Z a higher solubility and diffusion 
ability while maintaining its antimicrobial activity compared 
to nisin A, providing an advantage for nisin Z in the food 
preservation industry (de Vos et  al., 1993; Laridi et  al., 2003). 
The combination of nisin Z (1 μg/ml) and methicillin (32 μg/
ml) significantly reduced the growth of MRSA (3.1 log reduction 

after 3 h of treatment; Ellis et  al., 2019). Nisin U, a variant 
produced by Streptococcus uberis, exhibited an inhibitory effect 
against some staphylococci, such as Staphylococcus simulans 
and Staphylococcus cohnii, but not against S. aureus (Wirawan 
et  al., 2006). Nisin F is a variant produced by L. lactis subsp. 
lactis and showed antimicrobial activity against Staphylococcus 
carnosus and S. aureus (de Kwaadsteniet et  al., 2008). Nisin 
J, a nisin variant produced by S. capitis, demonstrated high 
antimicrobial activity against Staphylococcus species, including 
MRSA (O’Sullivan et al., 2020). Nisin H, a bacteriocin produced 
by Streptococcus hyointestinalis and conferring an intermediate 
structure between lactococcal nisin A and streptococcal nisin 
U, also exhibited a bactericidal effect against S. aureus (O’Connor 
et  al., 2015). Nisin P was produced by Streptococcus agalactiae 

TABLE 1 | Classification of bacteriocins from Gram-positive and Gram-negative bacteria.

Class Group Characteristics Examples of bacteriocins (producer strain)

Class 
I (posttranslationally 
modified 
bacteriocins - 
RiPPs)

Lantibiotics Contain lanthionine and 3-methyl-lanthionine residues
Some contain two lantibiotic peptides

Nisin (Lactococcus lactis)
Epidermin (Staphylococcus epidermidis)
Nukacin (Staphylococcal sp.)
Mutacin I, II, III/1140, IIIb/B-Ny266 
(Streptococcus mutans)
Mutacin Smb, K8 (Streptococcus mutans)
Lacticin 3147 (Lactococcus lactis)
Haloduracin (Bacillus halodurans)

Sactibiotics Contain sulfur to α-carbon linkage(s) Subtilosin A (Bacillus subtilis)
Thuricin CD (Bacillus thuringiensis)
Ruminococcin C (Ruminococus gnavus)

Linaridins Linear peptides
Contain dehydroamino acids, allo-isoleucine, N-terminal N,N-
dimethyl-alanine and C-terminal 2-aminovinyl-D-cysteine (Avi-Cys)

Cypemycin (Streptomyces sp.)

Thiopeptides Macrocyclic peptides
Contain a characteristic six-membered nitrogen-containing ring, 
oxazole/thiazol(in)e rings and/or dehydroamino acids

Thiostrepton (Streptomyces azureus)

Glycocins Contain S-glucosylated cysteine(s) Sublancin (Bacillus subtilis 168)
Circular peptides N-to-C cyclized unmodified single peptides Enterocin AS-48 (Enterococcus faecalis)

Garvicin (Lactococcus garvieae)
Gassericin A (Lactobacillus gasseri)

Bottromycins Macrocyclic peptides with a linear tail
Contain an amidine moiety, methylated amino acids and a 
C-terminal decarboxylated thiazole

Bottromycin A2 (Streptomyces bottropensis)

Nucleotide peptides Contain a nucleotide part Microcin C (Escherichia coli)
Siderophore peptides Contain a non-ribosomal siderophore-type modification anchored 

at a serine-rich C-terminal region
Microcin E492 (Klebsiella pneumoniae)
Microcins H47, M (Escherichia coli)

Linear azol(in)e- containing 
peptides (LAPs)

Linear peptides containing combinations of thiazole and oxazole 
heterocycles

Microcin B17 (Escherichia coli)
Listeriolysin S (Listeria monocytogenes)

Lasso peptides Contain only unmodified amino acids
Characterized by an entangled [1]rotaxane topology (lasso fold)

Microcin J25 (Escherichia coli)

Cyanobactins Macrocyclic peptides
Contain azol(in)e heterocycles and D-stereocentres
Some contain a prenylated amino acid

Patellamide A (Prochloron spp.)
Sphaerocyclamide (Sphaerospermopsis sp.)

Class II (unmodified 
bacteriocins)

Pediocin-like single 
peptides

Contain YGNGV-motif Pediocin PA-1 (Pediococcus acidilactici)
Enterocin CRL35 (Enterococcus mundtii)
Carnobacteriocin BM1 (Carnobacterium 
piscicola)

Unmodified single peptides Non-YGNGV-motif linear single peptides Epidermicin NI01 (Staphylococcus epidermidis)
Lactococcin A (Streptococcus cremoris)
Microcin V (Escherichia coli)
Microcin L (Escherichia coli)
Microcin S (Escherichia coli)

Two-peptides Two or more unmodified peptides Mutacin IV, V, VI, N (Streptococcus mutans)
Plantaricin F (Lactobacillus plantarum)
Lactacin F (Lactobacillus johnsonii)
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and showed antibacterial activity against staphylococci, but the 
effect was not as high as nisin A and H (Garcia-Gutierrez 
et  al., 2020). Ripcin B–G, a synthetic peptide generated by 
the fusion of ripcin and the C-terminal end of nisin (1–20), 
exhibited stronger and selective bactericidal activity against 
S. aureus, including MRSA (Zhao and Kuipers, 2021). Nisin 
encapsulated in nanofibers made of polyvinyl alcohol, wheat 
gluten, and zirconia exhibited well-controlled release and high 
inhibition activity against S. aureus (H. Wang et  al., 2015). 
Nisin-biogel, a delivery system for nisin based on guar gum 
gel, has been developed and displayed antimicrobial activity 
against S. aureus (Jesus et  al., 2021). At subinhibitory levels, 
it suppressed some virulence factors, such as the factors related 
to biofilm formation, coagulase, and protein A; however, the 
expression of some other virulence genes, such as spA 
(staphylococcal protein A), coa (coagulase), icaA (intracellular 
adhesin A), and icaD (intracellular adhesin D), was elevated, 
requiring a thorough consideration of the optimal dosage when 
applying nisin in clinical practice (Jesus et  al., 2021).

Epidermins
Epidermin is a 21-amino acid lantibiotic produced by 
S. epidermidis that exhibits an antimicrobial effect against 
staphylococci and streptococci (Schnell et  al., 1988; Figure  4). 
Epidermin kills bacteria by inhibiting cell wall synthesis by 
interacting with the cell wall precursor lipid II and sometimes 
by causing pore formation (Bonelli et  al., 2006).

Epidermin significantly reduced the S. epidermidis cells 
attached to silicone catheters in an in vitro catheter colonization 
model (Fontana et al., 2006). Epidermin exhibited antibacterial 
activity against >85% of tested S. aureus (165 strains) involved 
in bovine mastitis (Varella Coelho et  al., 2007). In another 
study, epidermin showed antibacterial activity against 81.3% 
of tested S. aureus involved in human infections, including 
MRSA endemic clones in Brazil (Nascimento et  al., 2006). 
Epidermin also exhibited antibacterial effects against 
S. haemolyticus, S. capitis, S. simulans, S. saprophyticus, S. hominis, 
and S. epidermidis, although no activity was observed against 
some tested S. aureus (Nakazono et  al., 2022).

Nukacins
Nukacin is a type A(II) lantibiotic that was first identified in 
1998 from S. warneri ISK-1 (Kimura et  al., 1998). This peptide 
consists of 27 amino acid residues and arrests cell wall biosynthesis 
by binding to lipid II (Islam et  al., 2012; Figure  4). Nukacin 
ISK-1 showed a bacteriostatic effect against Bacillus subtilis by 
stopping cell growth without pore formation (Asaduzzaman 
et  al., 2009) while exhibiting bactericidal activity against 
Micrococcus luteus and S. simulans via pore formation and cell 
lysis (Roy et  al., 2014). Several variants of nukacin have been 
reported, including nukacin KQU-131 produced by S. hominis 
(Wilaipun et  al., 2008), nukacin 3299 produced by S. simulans 
(Ceotto et  al., 2010), and nukacin IVK45 and nukacin KSE650 
produced by S. epidermidis (Janek et  al., 2016; Nakazono et  al., 
2022). Nukacin ISK-1 exerted a bacteriostatic effect against MRSA 

FIGURE 3 | Amino acid structures of some bacteriocins belonging to different groups.
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planktonic cells; however, activity against biofilm cells was not 
observed (Okuda et al., 2013). Nukacin 3299 exhibited antibacterial 
activity against 66.7% (18/27) of S. aureus strains involved in 
bovine mastitis (Ceotto et  al., 2010). Nukacin KSE650 showed 
antibacterial activity against S. haemolyticus, S. capitis, S. simulans, 
S. saprophyticus, S. hominis, and S. epidermidis, although no 
activity was observed against some tested S. aureus, while Nukacin 
ISK-1 showed an antibacterial effect against S. aureus (Nakazono 
et al., 2022). The difference of four amino acid residues between 
Nukacin ISK1 and Nukacin KSE650 mature peptide caused 
different susceptibility against S. aureus strains.

Mutacins
Mutacins are bacteriocins produced by Streptococcus mutans, 
which have been classified into two types: lantibiotics containing 
unusual amino acid residues and non-lantibiotics consisting 
of unmodified peptides (Merritt and Qi, 2012). The lantibiotic 
mutacins include mutacin I, II, III/1140, B-Ny266 (Figure 4), 
Smb, and K8 and usually confer a wider spectrum of activity. 

In contrast, non-lantibiotics, such as mutacin IV, V, VI, and 
N, play an important role at the S. mutans intraspecies level 
and in closely related species (Merritt and Qi, 2012). Lantibiotic 
mutacins were reported to have bactericidal activity through 
pore formation and inhibiting cell wall synthesis (Hasper 
et  al., 2006). Against S. aureus, mutacin III exhibited the 
highest antibacterial activity; mutacin I, IIIb (mutacin 
B-Ny266), and IVb showed intermediate activity, while mutacin 
II, IV, K8, and Smb had almost no effect (Watanabe et al., 2021).

Other Bacterial AMPs
Garvicin KS is a leaderless multipeptide bacteriocin produced 
by Lactococcus garvieae (Thapa et al., 2020). Garvicin KS showed 
bactericidal activity against 50/53 tested S. aureus strains (Chi 
and Holo, 2018). Against the least sensitive strain, the combination 
of nisin and garvicin KS showed a synergetic effect by completely 
killing the bacteria after 12 h. The combination of farnesol 
and garvicin KS was not effective; however, combinations of 
farnesol and nisin or the three compounds rapidly eradicated 

FIGURE 4 | Amino acid structures of lantibiotic bacteriocins.
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S. aureus (Chi and Holo, 2018). Garvicin KS and micrococcin 
P1 displayed a synergetic effect against S. aureus biofilms, 
including MRSA (Kranjec et  al., 2020). Pep5 is a 34-amino 
acid residue lantibiotic produced by S. epidermidis (Kaletta 
et  al., 1989). Pep5 exhibited inhibitory activity against 77.2 
and 87.5% of the tested coagulase-negative staphylococci and 
S. aureus, respectively (Nascimento et  al., 2006).

EFFECT OF AMPs ON 
STAPHYLOCOCCAL INFECTION MODELS 
AND CLINICAL TRIALS USING AMPs

To evaluate the effect of AMPs including human AMPs and 
bacteriocins on S. aureus and the host, in vivo experiments using 
S. aureus-infected animal models were conducted. In a skin 
infection murine model, garvicin KS and micrococcin P1 displayed 
synergistic effects against MRSA (Ovchinnikov et  al., 2020). In 
a rat S. aureus-induced uterine endometritis model, nisin (25 mg/
kg) administration significantly restored the inflammation of the 
endometrium and improved the expression of several serum 
cytokines, which showed high expression in the endometritis (Jia 
et al., 2019). Nisin-eluting nanofibers were also shown to be effective 
against skin infection by MRSA in mice (Heunis et  al., 2013). 
Mersacidin, a lantibiotic produced by Bacillus sp., was shown to 
eradicate the colonization of human-derived MRSA in a mouse 
rhinitis model (Kruszewska et al., 2004). Sublancin, a glycosylated 
AMP produced by B. subtilis, exhibited antibacterial and 
immunomodulatory effects against a MRSA-infected mouse model 
that induced intraperitoneal (Wang et  al., 2017; Li et  al., 2021) 
or intestinal injury (Wang et  al., 2014). K2A and R13A, two 
analogues of mutacin 1,140, have been reported to improve 
pharmacokinetics in vivo and efficiently rescue mice infected with 
MRSA at 10 mg/kg (100% protection) or 2.5 mg/kg (50% protection; 
Geng et  al., 2018). In an intraperitoneal infection mouse model, 
mutacin B-Ny266 effectively protected the mice from mortality 
induced by S. aureus. At a dose <1 mg/kg, mutacin B-Ny266 
showed a comparable ED50 (effective dose protecting 50% of the 
animals) to that of vancomycin (Mota-Meira et  al., 2005). 
Epidermicin NI01, a synthetic AMP, effectively protected Galleria 
mellonella larvae from MRSA infection without signs of toxicity 
or stimulating the host immune system (Gibreel and Upton, 2013).

Regarding human AMPs, many experiments to show the 
effect of AMPs, especially LL-37 and beta-defensin, on various 
S. aureus infection animal model have been reported. The 
application of LL-37 promoted tissue regeneration including 
re-epithelialization and angiogenesis in MRSA-infected surgical 
wounds (Simonetti et al., 2021). Hybrid peptide CaD23 consisted 
of LL-37 and human beta-defensin-2 showed a good efficiency 
with the reduction of S. aureus cells by 94% in a murine keratitis 
model (Ting et al., 2021). The LL 37 derivatives, 17tF-W, eliminated 
MRSA USA300 cells in catheter and its surrounding tissues of 
a murine infection model (Narayana et  al., 2019). Both LL-37 
and IDR-1 (an innate defense regulator peptide) exhibited 
immunomodulation effects and restored pulmonary function in 
mice with MRSA pneumonia (Sun et  al., 2013). Histatin 5, 

Dh5 (residues 11–24 of histatin), P-113, Dhvar4 (an increased 
amphipathicity variant from Dh5), and Dhvar5 (a reduced 
amphipathicity variant from Dh5) showed bactericidal effects 
against S. aureus, including MRSA, in vivo (Welling et al., 2007). 
In an in vivo MRSA osteomyelitis prevention model, 24 mg 
Dhvar-5 beads showed a significant reduction in bacterial load 
inoculated in rabbit femora compared to the control; however, 
complete sterilization of the femora could not be observed (Faber 
et  al., 2004). 99mTc-HBD-3, a human β-defensin 3 radiolabeled 
with 99mTc, demonstrated favorable uptake of AMPs at the infected 
site in an S. aureus-infected rat model (Follacchio et  al., 2019). 
HDMP, a human defensin-6 mimic peptide, significantly rescued 
mice with MRSA bacteremia at a survival rate as high as 100%, 
which was higher than that of vancomycin (83.3%) at the same 
dosage (5 mg/kg; Fan et  al., 2020).

The promising results of AMP activity observed in preclinical 
studies have led to investigations in human clinical trials to 
evaluate their safety and effectiveness. Clinical trials targeting 
S. aureus infections have been carried out (Table 2). Compared 
to placebo, topical LL-37 treatment significantly improved the 
healing rate of hard-to-heal venous leg ulcers, without any 
local or systemic safety concerns (Grönberg et  al., 2014). 
Intranasal treatment with LTX-109, a chemically synthesized, 
peptide-mimetic drug, was reported to effectively eradicate the 
persistent colonization of MRSA and MSSA in the nasal cavity 
without the signs of adverse effects (Nilsson et  al., 2015). 
PLG0206, an engineered AMP, efficaciously reduced the bacterial 
count, including S. epidermidis and S. aureus, in patients with 
chronic periprosthetic joint infections (Huang et  al., 2021). 
GSK132232, a synthetic AMP, rapidly decreased lesion size 
and pain in acute bacterial skin and skin structure infections, 
although several mild-to-moderate adverse effects were observed, 
including nausea, vomiting, diarrhea, and headache (Corey 
et  al., 2014). Numerous AMPs have undergone clinical trials; 
however, only a few AMPs are currently approved for clinical 
application, including nisin, gramicidin, polymyxins, daptomycin, 
and melittin (Dijksteel et  al., 2021).

EMERGENCE OF RESISTANCE TO 
AMPs

Although AMPs represent potential alternative clinical 
antimicrobials, continuous exposure to AMPs could lead to the 
development of resistance in formerly susceptible cells. Bacteria 
can escape bacteriocins through acquired resistance and innate 
resistance involved in cell wall synthesis, cytoplasmic membrane 
synthesis, cell envelope alterations, membrane permeability and 
specific receptor expression, or energy metabolism and transport 
(de Freire Bastos et  al., 2015; Andersson et  al., 2016; Soltani 
et al., 2021). In S. aureus, several factors were reported to be involved 
in resistance to AMPs (Figures  5, 6). The disruption of either 
Dlt or MprF results in elevated sensitivity to defensins (Peschel 
et  al., 1999, 2001; Kawada-Matsuo et  al., 2013). Dlt is associated 
with the addition of alanine to teichoic acids on the cell wall, 
while MprF is associated with the addition of lysine to 
phosphatidylglycerol in the cell membrane (Figure  5). Amino 
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acid incorporation causes a shift to a weak negative charge on 
cell surfaces (Peschel et  al., 1999, 2001). A transporter of VraDE 
regulated by one two-component system, BraRS, is associated 
with resistance to nisin A, Nukacin ISK-1, and bacitracin (Kawada-
Matsuo et  al., 2013). In BraRS (NsaRS)/BraDE system, sensing 
of nisin A by BraDE results in the autophosphorylation of BraS, 
followed by the phosphorylation of BraR (Hiron et  al., 2011; 
Randall et  al., 2018). The phosphorylated BraR can bind to the 
upstream region of vraDE, giving rise to the increased expression 
of vraDE (Figure 5). The transporter PmtA-D regulated by PmtR 
is associated with resistance to beta-defensin 3 and nisin A (Cheung 
et  al., 2018). Another factor, staphylokinase, was also involved in 
alpha-defensins resistance because staphylokinase directly binds 
to alpha-defensin, causing the neutralization of its activity (Bokarewa 
et al., 2006). These factors are generally conserved among S. aureus 
strains. Therefore, S. aureus has a natural resistant system against 
several bacteriocins, although S. aureus retained sensitivity when 
treated with high concentrations of AMPs.

It was questionable whether highly resistance could evolve if 
exposed to a high concentration of nisin A. After several experimental 
trials, finally, some research groups were able to obtain highly 
nisin A-resistant S. aureus strains with mutations in BraRS, or 
PmtR when exposing S. aureus to sub-MICs of nisin A (Blake 

et  al., 2011; Arii et  al., 2019; Kawada-Matsuo et  al., 2020, 2021). 
Arii et  al. (2019) isolated several nisin A highly resistant S. aureus 
strains by exposing sub-MIC of nisin A three times and obtained 
two types of the mutants, with mutations in braRS or pmtR 
(Figure  6). The mutants with braRS mutation showed higher 
expression of VraDE, which is an effector for nisin A resistance, 
than that of the wildtype, while the mutants with pmtR mutation 
did not show high expression of VraDE. Three mutants with braRS 
mutation had different point mutation sites, including the upstream 
region of braXRS, braR, or braS. The point mutation upstream 
of the braXRS region was associated with the increased promoter 
activity, causing high expression of braRS. By the point mutation 
of braR, the mutated BraR without phosphorylation was able to 
bind to the upstream region of braRS. The braS mutation was 
found in the histidine kinase region, suggesting that the mutated 
BraS is autophosphorylated without the stimulation of nisin A. Blake 
et  al. also reported the point mutation of NsaS (BraS) in nisin-
resistant S. aureus strains. Another nisin A highly resistant S. aureus 
mutant was isolated by the mutation of PmtR with the increased 
expression of PmtA-D, an ABC transporter, involved in the 
susceptibility to nisin A and beta-defensin (Kawada-Matsuo et  al., 
2020, 2021). Since PmtR was a negative regulator for PmtA-D 
expression, the mutated PmtR could not bind to the upstream 

TABLE 2 | Some antimicrobial peptides (AMPs) under investigation and clinical phase of development for treatment of Staphylococcal infections.

Peptide name Description Target Administration Phase Clinical trial ID Mechanism References

Nisin Polycyclic 
lantibiotic

Ventilator Associated 
Pneumonia

Oral NCT02928042 Depolization of cell 
membrane

LL-37 Human cathelicidin Hard-to-heal venous leg ulcers Topical polyvinyl 
alcohol viscous-
based solution

I/II EU Clinical Trials 
2012-002100-41

Membrane disruption

Immunomodulation

Grönberg et al., 
2014

OP-145 Derivative of LL-37 Chronic suppurative otitis 
media

Ear drops I/II ISRCTN84220089 Membrane disruption

Immunomodulation
PMX-30063 Defensin mimetic Acute Bacterial Skin Infections 

Caused by Staphylococcus 
aureus (MSSA)

Intravenous II NCT01211470 Membrane disruption

Immunomodulation

LTX-109 Synthetic 
tripeptide

Persistent nasal S. aureus 
carriers

(MRSA/MSSA)

Non-bullous Impetigo

Topical hydrogel I/II NCT01158235

NCT01803035

Membrane disruption Nilsson et al., 2015

XF-73 
(Exeporfinium 
Chloride)

Derivative of 
porphyrin

Commensal S. aureus nasal 
carriage

Topical nasal gel II NCT03915470 Membrane disruption

PLG0206 Engineered 
cationic 
antimicrobial 
peptide

Periprosthetic Joint Infection Intravenous I NCT05137314 Membrane disruption Huang et al., 2021

Friulimicin B Cyclic lipopeptide Community Acquired 
Pneumonia

Staphylococcal Skin Infections

Intravenous I NCT00492271 Membrane disruption

Omiganan Derivative of 
Indolicidin

Catheter Infections/
Colonization in Patients With 
Central Venous Catheters

Topical Skin Antisepsis

Topical gel III NCT00231153

NCT00608959

Membrane disruption

Immunomodulation

DPK-060 Derivative of 
Kininogen

Acute External Otitis Ear drops II NCT01447017 Membrane disruption

Immunomodulation
GSK1322322 Synthetic 

hydrazide
Acute Bacterial Skin and Skin 
Structure Infection

Oral II NCT01209078 Peptide deformylase 
inhibitor

Corey et al., 2014
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region of pmtA-D. In addition, this mutant also exhibited increased 
virulence in a mouse bacteremia model. Dobson et  al. (2014) 
reported that AMP-resistant S. aureus strains selected by pexiganan, 
iseganan, or melittin showed higher survival in Tenebrio molitor, 
an insect model. Therefore, considerations should be  taken into 
account to overcome the emergence of bacteriocin-resistant bacteria. 
The combination of bacteriocins with different modes of action 
or the combination of conventional antibiotics and bacteriocins 
may allow a reduction in dosage and avoid the development of 
bacteriocin resistance (de Freire Bastos et  al., 2015).

CONCLUDING REMARKS AND 
PERSPECTIVES

Staphylococci including S. aureus and CoNS are important 
human pathogens associated with potentially life-threatening 
infections. The emergence of drug-resistant Staphylococci has 
significantly challenged the available treatment options, 
necessitating the discovery of novel therapeutics. AMPs exhibit 
excellent promise as alternatives to conventional antibiotics due 
to their broad-spectrum activity; rapid mode of action; low 
risk of resistance development and anti-inflammatory and 
immunomodulatory effects; synergistic effects with conventional 
antibiotics; and clinical efficacy against some multidrug-resistant 
bacteria. This review discusses potential AMPs, focusing on 
human AMPs and bacteriocins, which display antibacterial 
activity against Staphylococci, including methicillin-resistant 

staphylococci, in vitro and in some infection models, and 
presents the current clinical investigation phase of some AMPs. 
The production costs, cytotoxic effects, reduced efficacy in the 
body (low stability, high susceptibility to proteolysis, reduced 
activity in physiological conditions), and resistance development 
are the major obstacles that challenge the clinical usage of 
AMPs (Pachón-Ibáñez et  al., 2017; Dijksteel et  al., 2021). The 
incorporation of AMPs into artificial materials, the development 
of innovative formulation or delivery systems, and the 
combination with conventional antibiotics may provide effective 
strategies to overcome the disadvantages of AMPs and promote 
their market authorization as novel AMP-based drugs.
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FIGURE 5 | Examples of bacteriocin resistance mechanisms in Staphylococcus aureus. I. In the ApsRS system, the sensing of cationic antimicrobial peptides 
(AMPs) results in the autophosphorylation of ApsS, followed by the phosphorylation of ApsR. The phosphorylated ApsR can bind to the upstream regions of mprF 
and dltABCD, increasing the expression of these factors. MprF is associated with the addition of lysine to phosphatidylglycerol in the cell membrane, and DltABCD 
is associated with the addition of alanine to teichoic acids on the cell wall. Amino acid incorporation causes a shift to a weak negative charge on the cell surfaces 
and makes the cell less sensitive to cationic AMPs. II. In the BraRS (NsaRS)/BraDE system, sensing of nisin A by BraDE results in the autophosphorylation of BraS, 
followed by the phosphorylation of BraR. The phosphorylated BraR can bind to the upstream region of vraDE, giving rise to the increased expression of an ABC 
transporter VraDE which expels the AMPs from the cell.
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FIGURE 6 | Schematic diagram of the nisin A highly resistant mechanism. I. A point mutation in the promoter region results in the higher expression of braXRS. 
This leads to the increased induction of vraDE expression by nisin A. II. A point mutation in braS (encoding a sensor protein) causes nisin A-independent 
phosphorylation of BraS, resulting in increased phosphorylated BraR, which induces a constant expression of vraDE. III. A point mutation in braR (encoding a 
response regulator) results in nisin A-independent activation of vraDE expression. IV. A point mutation in pmtR encoding a negative regulator PmtR for pmtABCD 
expression. Mutated PmtR, which lacks the DNA binding ability, results in a constant pmtABCD expression.
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