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Respiratory Syncytial Virus (RSV) is ubiquitous and re-infection with both subtypes (RSV/A
and RSV/B) is common. The fusion (F) protein of RSV is antigenically conserved, induces
neutralizing antibodies, and is a primary target of vaccine development. Insight into the
breadth and durability of RSV-specific adaptive immune response, particularly to the F
protein, may shed light on susceptibility to re-infection. We prospectively enrolled healthy
adult subjects (n = 19) and collected serum and peripheral blood mononuclear cells
(PBMCs) during the 2018–2019 RSV season. Previously, we described their RSV-specific
antibody responses and identified three distinct antibody kinetic profiles associated with
infection status: uninfected (n = 12), acutely infected (n = 4), and recently infected (n = 3). In
this study, we measured the longevity of RSV-specific memory T cell responses to the F
protein following natural RSV infection. We stimulated PBMCs with overlapping 15-mer
peptide libraries spanning the F protein derived from either RSV/A or RSV/B and found
that memory T cell responses mimic the antibody responses for all three groups. The
uninfected group had stable, robust memory T cell responses and polyfunctionality. The
acutely infected group had reduced polyfunctionality of memory T cell response at
enrollment compared to the uninfected group, but these returned to comparable levels
by end-of-season. The recently infected group, who were unable to maintain high levels of
RSV-specific antibody following infection, similarly had decreased memory T cell
responses and polyfunctionality during the RSV season. We observed subtype-specific
differences in memory T cell responses and polyfunctionality, with RSV/A stimulating
stronger memory T cell responses with higher polyfunctionality even though RSV/B was
the dominant subtype in circulation. A subset of individuals demonstrated an overall
deficiency in the generation of a durable RSV-specific adaptive immune response.
org March 2022 | Volume 13 | Article 8236521

https://www.frontiersin.org/articles/10.3389/fimmu.2022.823652/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.823652/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.823652/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.823652/full
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:ppiedra@bcm.edu
https://doi.org/10.3389/fimmu.2022.823652
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2022.823652
https://www.frontiersin.org/journals/immunology
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2022.823652&domain=pdf&date_stamp=2022-03-29


Blunck et al. Adult T Cell Response to RSV-F

Frontiers in Immunology | www.frontiersin.
Because memory T cell polyfunctionality may be associated with protection against re-
infection, this latter group would likely be at greater risk of re-infection. Overall, these
results expand our understanding of the longevity of the adaptive immune response to the
RSV fusion protein and should be considered in future vaccine development efforts.
Keywords: respiratory syncytial virus (RSV), infection, fusion protein, peptide library, memory T cell,
polyfunctionality, viral immunity
INTRODUCTION

RSV is a major global health burden as it is a leading cause of
acute lower respiratory infection (ALRI) in young children and
the elderly (1). RSV causes approximately 22% of all severe ALRI
worldwide resulting in over 30 million annual cases and 3 million
hospitalizations. These hospitalizations result in 55,000–199,000
deaths, 50,000–75,000 of which are in-hospital deaths in children
under the age of 5 years (1, 2). In addition to infants and young
children, RSV causes significant morbidity and mortality in older
adults and immunocompromised individuals, with a similar
disease burden to influenza (3–6).

Immune responses to the initial and subsequent RSV
exposures are non-sterilizing, as evidenced by re-infection
throughout life (6, 7). This inadequate immune response is not
caused by the viral evasion of the immune system seen with other
respiratory viruses, including influenza, and is most notable in
human challenge studies showing that individuals can be re-
infected within two months with identical viral inoculum (7).
Why or how the primary immune response fails to protect from
subsequent RSV exposure remains unclear. RSV-specific serum
antibody, particularly neutralizing antibody, increases protection
against re-infection and reduces severe disease in young children,
young adults, and the elderly (8–13). Maternal-infant cord blood
demonstrates that neutralizing activity correlates with protection
of infants from severe disease (14). However, older adults
hospitalized with RSV have levels of neutralizing antibody that
are considered protective in young children (15), implying that
either their repertoire of neutralizing antibodies are less effective
or there are other more critical mediators of protection in this
population. Therefore, the pathogenesis of disease in re-infection
in older adults is likely to require immune mechanisms of
protection that are different from that required for the initial
infection in infants and young children. Fatal infant cases of RSV
demonstrate an almost complete absence of T cells and NK cells
in the lungs, illustrating a critical role for these immune cells in
controlling viral replication and clearance (16). Conversely, T
cells have been implicated in the disease pathogenesis of RSV by
causing rampant inflammation (17–19). The longevity and
durability of the T cell response following natural RSV-
infection in RSV-primed individuals and its role in providing
protection from re-infection or severe disease remains unclear.

The F protein, which mediates fusion between the viral and
host cell membranes, is the primary focus of the neutralizing
antibody response (20). It is also largely conserved between the
two subtypes, RSV/A and RSV/B (21), making it a primary target
of vaccination efforts (22). An enhanced understanding of the
org 2
range and longevity of the RSV-specific adaptive immune
response, particularly to the F protein, may shed light on the
susceptibility to re-infection throughout life. In this study, we
evaluated the RSV-specific memory T cell responses to the F
protein in healthy adult subjects over the course of a single RSV
season and found that memory T cell responses followed the
three distinct antibody kinetic profiles that are associated with
their RSV infection status: uninfected, acutely infected, and
recently infected (23).
MATERIALS AND METHODS

Study Design
Healthy adults were eligible for enrollment into a longitudinal
prospective study during the 2018–2019 RSV season in Houston,
Texas, United States, as described previously (23). The
Institutional Review Board at Baylor College of Medicine
approved the study protocol prior to initiation of the study.
Written informed consent was obtained from all enrolled
participants prior to any study related procedures. Briefly,
nineteen healthy adults were enrolled and completed the study.
Blood samples were collected at three time points (Visits 1, 2, and
3), which occurred in November 2018, January 2019, and May
2019, respectively. RSV infection status was determined by
changes in RSV neutralizing antibody titers using four
qualified microneutralization assays (24) utilizing prototypic
(RSV/A/Tracy and RSV/B/18537) and contemporaneous (RSV/
A/Ontario and RSV/B/Buenos Aires) isolates. Volunteers with
less than a four-fold change in RSV neutralizing antibody activity
over the course of the season by all four assays were defined as
uninfected; those with four-fold or greater increases between two
consecutive study visits by one or more assay were defined as
having an acute RSV infection; and those with a four-fold or
greater decrease in neutralizing antibody titer at their second
visit by one or more assay were defined as having a recent
infection prior to enrollment, indicating we missed the baseline
titer prior to RSV infection (23).

Peripheral Blood Mononuclear
Cell Isolation
Blood was collected in sodium citrate CPT tubes (BD Vacutainer,
Cat. #62761) and processed within four hours of collection.
PBMCs were isolated by centrifugation for 30 minutes at 1800
x g (RCF) at room temperature (21°C). Cells were washed 3 times
in phosphate buffered saline (PBS) with centrifugation at 300 x g
(RCF) for 10 minutes at room temperature (21°C). Cells were
March 2022 | Volume 13 | Article 823652
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frozen in 10% dimethyl sulfoxide (DMSO) in fetal bovine serum
(FBS) and stored in liquid nitrogen.

Fusion Protein Peptide Library Generation
Overlapping peptide libraries of the full-length RSV F0 protein
derived from RSV/A/Ontario (GenBank ID: AZQ19478.1) was
custom ordered (Genentech, San Francisco, CA) and RSV/B/B1
(Swiss-Prot ID: O36634) was obtained from JPT (Berlin, Cat.
#PM-HRSVB-FGF0). Each library contained 141 15-mer
peptides with an 11 amino acid overlap (25, 26). Each peptide
library was reconstituted in DMSO and stored at -80°C in single
use aliquots.

In Vitro Stimulation and Multiparametric
Flow Cytometry
PBMCs were rapidly thawed in a 37°C water bath and added
dropwise into pre-warmed R10 medium (RPMI 1640 + 10%
FBS). Cells were washed in R10 medium to remove excess
DMSO, and viable cells were counted using trypan blue
exclusion. Cells were resuspended at 1.5 x 106 cells/mL in 5
mL of R10 medium in 50 mL conical tubes and rested overnight
at 37°C in 5% CO2. Tubes were placed at a 5° angle, and the cap
loosened to allow for maximum oxygenation (27). After resting
overnight, samples were plated into 96-well round bottom plates.
Cells were stimulated with either R10 medium alone (negative
unstimulated control), PMA/ionomycin (positive control), the
RSV/A/Ontario F (RSV FA) protein peptide library, or the RSV/
B/B1 F (RSV FB) protein peptide library. Both RSV FA and RSV
FB protein peptide library contained anti-CD28 and anti-CD49d
co-stimulatory agents (Becton-Dickinson Biosciences, Franklin
Lakes, NJ Cat. #347690) with brefeldin A, monensin, and anti-
CD107a antibody. Stimulation was for 6 hours at 37°C in 5%
CO2 (28, 29). Following stimulation, cells were washed in PBS
(without Ca++ or Mg++), and viability dye (ThermoFisher
Scientific, Waltham, NJ) was added to enable gating out any
non-viable cells. Fc-blocking was performed to reduce non-
specific binding of antibodies using 5% FBS in PBS.
Extracellular antibodies were then added and incubated for 20
minutes in the dark at room temperature. Following washing,
cells were fixed and permeabilized (BD Cyto Fixation/
Permeabilization kit, Cat #554714) for 20 minutes in the dark
at 4°C. Cells were washed twice with BD CytoWash solution (BD
Cyto Fixation/Permeabilization kit, Cat #554714). Antibodies for
intracellular markers were then added for intracellular staining
and incubated for 30 minutes in the dark at 4°C. Cells were
washed twice in BD CytoWash solution and then cells were
resuspended in 1% paraformaldehyde prior to acquisition. In
total, samples were stained with a pool of fluorescence-
conjugated antibodies for CD45, CD56, CD16, CD3, CD4,
CD8, CD45RO, CD107a, TNFa, IFNg, and PD-1. Cells were
analyzed on an LSRII-Fortessa flow cytometer running DiVa
software (Becton-Dickinson Biosciences, Franklin Lakes, NJ),
and data were analyzed using FlowJo (version 10.7.1; TreeStar,
OR) and Simplified Presentation of Incredibly Complex
Evaluations (SPICE; National Institute of Health, Bethesda,
MD) software. Viable lymphocytes were identified by forward-
Frontiers in Immunology | www.frontiersin.org 3
and side-scatter, single-cell discrimination, live/dead
measurements using viability dye exclusion, and expression of
the pan-lymphocyte marker CD45.

Uniform Manifold Approximation
and Projection Visualization of
Flow Cytometric Data
Contour plots were generated using ‘contour’ visualization in
FlowJo (using equal probability contouring). For uniform
manifold approximation and projection (UMAP) analysis, all
samples were down-sampled to 5,000 cells using the
DownSample plugin (v3.3) available on FlowJo Exchange. All
samples were concatenated to create a single, 1,140,000 cell
composite, and a UMAP algorithm for dimensionality
reduction was applied using the UMAP plugin (v3.1) available
on FlowJo Exchange (30, 31). The composite sample was then re-
gated as indicated for all primary and secondary populations to
aid in visual overlays in exploration of the UMAP projections.
Density plots representing 90% of the total gated cells by RSV
infection status or stimulation were superimposed upon UMAP
projections to visualize differences by study visit.

Simplified Presentation of Incredibly
Complex Evaluation Analysis
Simplified Presentation of Incredibly Complex Evaluation
(SPICE) is a software that can be used to analyze multivariate
data sets for which a series of nominal measurements and a
single continuous measurement is available. We employed
SPICE software in our study as a means to visually inspect and
represent the polyfunctionality of T cell subsets in response to
stimulation with either RSV FA or RSV FB protein peptide
libraries (32). SPICE analysis is largely qualitative rather than
quantitative and is used to provide an overall commentary of the
trends in the data. No statistical conclusions were drawn from
the SPICE data and we do not refer to any differences in
polyfunctional responses as “significant” since other methods
were used to determine statistical significance throughout
the manuscript.

High Resolution Human Leukocyte
Antigen-Typing
Blood was collected in Acid Citrate Dextrose tubes (Becton-
Dickinson Biosciences, Franklin Lakes, NJ) and DNA was
extracted from whole blood using the Qiagen EZ1® DNA
Blood 350 µl Kit (Qiagen, Hilden, Germany) with the EZ1
Advanced system. After extraction, DNA concentration and
qual i ty were measured with the Qiagen Qiexper t
spectrophotometer. Next generation sequencing (NGS) human
leukocyte antigen (HLA)-typing for HLA-A, -B, -C, -DRB1,
-DRB3/4/5, -DQB1, -DQA1, -DPB1, and -DPA1 was done
using MIA FORA kit (Immucor, Norcross, GA), according to
the manufacturer’s instructions. Briefly, after long-range PCR
amplification of each HLA gene, DNA fragments (500–900 bp)
were selected, amplified, cleaned, and sequenced on a MiSeq
using MiSeq Reagent Kits v2 (300 cycles) (Illumina, San Diego,
CA). Samples were analyzed using MIA FORA NGS software.
March 2022 | Volume 13 | Article 823652
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Prediction of RSV/A and RSV/B F Protein
T Cell Epitopes
T cell epitopes within the RSV FA and RSV FB protein peptide
libraries were predicted using the Immune Epitope Database and
Analysis Resource (IEDB, National Institute of Allergy and
Infectious Disease, Bethesda, MD) major histocompatibility
complex (MHC)-I and MHC-II binding algorithms (33, 34).
Only HLA alleles from our cohort were included in the
predictions and allele-specific percentile ranks of all algorithms
queried by the IEDB tool were utilized (35). A percentile rank is
generated by comparing the predicted binding affinity of a
selected peptide against that of a large set of similarly sized
peptides randomly selected from the SWISS-PROT database
(36). Percentile rank provides a uniform scale allowing
comparisons across different predictors. A lower percentile
rank indicates higher affinity. Predicted hits were further
refined to those specifically within our peptide libraries
utilizing a threshold of <5% for both MHC-I and MHC-II.

Statistical Analysis
A repeated measures mixed model analysis was performed to
assess differences in expression of each functional marker among
the three RSV infection status groups and three study visits. The
covariance structure and diagnostic plots of the residuals were
examined to assess the validity of the model assumptions for a
repeated measures analysis of variance approach. The analysis first
determined whether the visit by infection status interaction term
in the model was significant by the omnibus F-test. Pairwise
comparisons were conducted only of the mean percentage
difference between the visits within each infection status group
for a total of nine a priori comparisons per functional marker.
Statistical significance was indicated for P values ≤ 0.05. No
correction was made for multiple comparisons. T cell and
neutralizing antibody scores were calculated by quartile ranking
responses, where the top quartile received a score of 4 and the
lowest quartile received a score of 1. Populations of T cells that
received scores included: total T cells, CD4+ memory T cells, CD8+

memory T cells and CD4+/CD8+ memory T cells which were
summed for each individual to create a composite score with a
range of 4–16. Separate T cell composite scores were calculated for
responses to the RSV FA and RSV FB protein peptide libraries.
Neutralizing antibody score was calculated by quartile ranking
neutralizing antibody titers to RSV/A/Tracy, RSV/B/18537, RSV/
A/Ontario, and RSV/B/Buenos Aires which were summed for
each individual to create a composite score with a range of 4–16.
Pearson’s correlation coefficients were calculated between T cell
scores to each peptide library and corresponding neutralizing
antibody scores. Statistical analyses were performed using Stata
14 (Stata Corp, College Station, Texas).
RESULTS

Demographics
Healthy adults under the age of 65 with no underlying conditions
were enrolled during the 2018–2019 RSV season, where RSV/B
Frontiers in Immunology | www.frontiersin.org 4
was the dominant circulating subtype, as described previously
(23). There were three RSV infection status groups, which were
defined by changes in neutralizing antibody titer: uninfected
(n=12), acutely infected (n=4), and recently infected (n=3).
Volunteers with less than a four-fold change in RSV
neutralizing antibody activity over the course of the season by
all four assays were defined as uninfected; those with four-fold or
greater increases between two consecutive study visits by one or
more assay were defined as having an acute RSV infection; and
those with a four-fold or greater decrease in neutralizing
antibody titer at their second visit by one or more assay were
defined as having a recent infection prior to enrollment,
indicating we missed the baseline titer prior to RSV infection.
Ages ranged from 23–59, with no discernable difference detected
among age, gender, or ethnicity across infection status (23).

Total T Cell Responses to RSV F Protein
Peptide Libraries
To compare functional responses of T cells among the three
infection status groups, we first analyzed the total T cell
response (CD3+,CD56-; Figure 1) by measuring the expression
of four functional markers: CD107a, IFNg, TNFa, and PD-1 using
the antibody panel shown in Supplementary Table 1. A
representative gating strategy is shown in Supplementary
Figure 1A. All gates were set from fluorescence minus one
(FMO) controls (Supplementary Figure 1B). CD107a (also
known as LAMP-1) is a marker of degranulation of cytolytic T
cells, whereas IFNg and TNFa are pro-inflammatory cytokines,
and PD-1 is a surface protein that negatively regulates immune
responses, which serves as a marker of T cell exhaustion (37–39).
In addition to analyzing single expression of these four markers,
we also analyzed the polyfunctionality of the T cell response since
the magnitude of a T-cell response as measured by a single
parameter does not fully reflect its functional potential (40).
Higher polyfunctionality can indicate a higher quality anti-viral
immune response and is often used to evaluate the quality of
vaccine-induced immune responses. Several studies have provided
compelling evidence that the quality of the T cell response is a
crucial factor in defining a protective T cell response (40–48).
Consistent with the stability of their neutralizing antibody
response (23), the uninfected group had a stable total T cell
response over the course of the RSV season as measured by
either single functional marker expression (Figures 1A–D) or
polyfunctionality (as defined by dark blue and yellow pie slices) of
activation markers CD107a, IFNg, and TNFa (Figure 1E). The
acutely infected group had minimal changes in single activation
marker expression throughout the season but had significantly
higher PD-1 expression at enrollment (Visit 1; Figures 1A–E).
The T cells from the acutely infected group also displayed less
polyfunctionality at enrollment compared to the uninfected group
but regained polyfunctionality, comparable to the levels in the
uninfected group by Visit 3. This pattern is similar to that
observed with the neutralizing antibody responses for the
acutely infected and uninfected groups (Figure 1E) (23). The
total T cell response of the recently infected group followed a
pattern similar to their neutralizing antibody response. There was
March 2022 | Volume 13 | Article 823652
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a significant decline in CD107a and TNFa expression over the
course of the season (Figures 2A, C), as well as a reduction of
polyfunctionality, although polyfunctionality remained low in
comparison to the uninfected group at Visit 3 (Figure 2E).
Total polyfunctional profiles with combinations of all four
functional markers (CD107a, IFNg, TNFa, and PD-1) followed
similar patterns as described for the polyfunctional profiles of the
three activation markers (Supplementary Figure 2). Additionally,
Frontiers in Immunology | www.frontiersin.org 5
all trends observed with the RSV FA protein peptide library were
also observed following stimulation with the RSV FB F protein
peptide library (data not shown).

Uniform Manifold Approximation and
Projection Analysis
We next wanted to consider whether there were global
differences in T cells by RSV infection status or by RSV
A B

C

E

D

FIGURE 1 | Total T cell responses to the RSV F protein peptide libraries as a function of RSV infection status and study visit. (A–D) Individual functional marker
expression following stimulation with the RSV/A F (RSV FA) protein peptide library by RSV infection status: uninfected (n = 12), acutely infected (n = 4), and recently
infected (n = 3). PBMCs from adult volunteers were stimulated with the RSV FA protein peptide library and the expression of CD107a, IFNg, TNFa, and PD-1 were
measured relative to the unstimulated controls by flow cytometry. These values are reported as percent positive of total CD3+ T cells. Each symbol represents the
response from a single individual. The thick horizontal bar indicates the mean of all responses within each group at that visit. A significant pairwise comparison of
mean percentage difference between visits within a group is denoted by a thin horizontal bar with *P ≤ 0.05, **P ≤ 0.01. (E) Polyfunctional T cell responses to RSV
FA protein peptide library by RSV infection status. Simplified Presentation of Incredibly Complex Evaluations (SPICE) software was used for the identification of total
T cells expressing the various activation markers. Pie charts show the frequency in which PBMCs produced the various combinations of the activation markers
CD107a, IFNg, and TNFa; or expressed PD-1 alone. Background (determined from the media-stimulated negative controls) was subtracted from all samples and
negative values were set to zero. Surrounding arcs denote the specific markers produced by the cells in each pie segment. Representative negative and positive
controls across all study visits are boxed.
March 2022 | Volume 13 | Article 823652
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A B
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D

FIGURE 2 | CD4+ Memory T cell responses to the RSV F protein peptide libraries by RSV infection status and study visit. (A–D) Individual functional marker expression by
RSV infection status: uninfected (n = 12), acutely infected (n = 4), and recently infected (n = 3). PBMCs were stimulated in vitrowith RSV FA (A, B) or RSV FB (C, D) F protein
peptide libraries. Marker expression is shown as percentage of total CD4+ memory T cells. symbol represents the response from a single individual. The thick horizontal bar
indicates the mean of all responses within each group at that visit. A significant pairwise comparison of mean percentage difference between visits within a group is denoted
by a thin horizontal bar with *P ≤ 0.05. (E, F) Polyfunctional CD4+ memory T cell responses to RSV FA or RSV FB protein peptide libraries as a function of RSV infection status
and study visit. Simplified Presentation of Incredibly Complex Evaluations (SPICE) analysis was performed for the identification of CD4+ memory T cells expressing multiple
activation markers. Pie charts show the frequency in which PBMCs produced the various combinations of the activation markers CD107a, IFNg, and TNFa; or expressed
PD-1 alone. Background (determined from the media-stimulated negative controls) was subtracted from all samples and negative values were set to zero. Surrounding arcs
denote the specific markers produced by the cells in each pie segment. Representative negative and positive controls across all study visits are boxed.
Frontiers in Immunology | www.frontiersin.org March 2022 | Volume 13 | Article 8236526
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subtype. To aid in exploration of the dataset, we created a
composite sample by representative down-sampling (5,000 cells
per sample) flow cytometry results obtained from each study
subject at each study visit using the DownSample plugin (v3.3)
available on FlowJo Exchange. A sample UMAP algorithm for
dimensionality reduction was applied to gated live T
lymphocytes (CD45+CD3+CD56-) composite sample and
assessed all additional fluorescence markers (Supplementary
Figure 3). Cells from the composite sample were mapped in
Cartesian space (Supplementary Figure 3A). Gating on T cell
subsets following the strategy outlined in Supplementary
Figure 1, confirmed that UMAP analysis clustered distinct cell
phenotypes (Supplementary Figure 3B). We compared UMAP
clustering among infection status groups to understand whether
there are global differences in T cell populations in response to
stimulation with the RSV F protein peptide libraries that could
explain, at least in part, the different antibody kinetic profiles of
our cohort (Supplementary Figure 3C).

We found that whereas there were variations within each
infection status group at the various study visits, there were no
variations associated with infection status (Supplementary
Figure 3C). To assess whether there were RSV subtype-specific
differences, we compared T cell responses following stimulation
with the two different RSV F protein peptide libraries
(Supplementary Figure 3D) and found that there was no
difference. Virus-specific T cell responses are rare events.
Therefore, these results were not surprising and indicate that
any differences in responses among the subject groups or RSV
virus-subtypes were based upon functionality rather than broad
T cell phenotype.

CD4+ Memory T Cell Responses to RSV F
Protein Peptide Libraries
We evaluated CD4+ memory T cell (CD45RO+CD4+ T cells)
responses (Figure 2 and Supplementary Figure 4). CD107a and
PD-1 expression did not change significantly within any of the
groups following stimulation with either the RSV FA or RSV FB
protein peptide library and are therefore not shown. As observed
with the total T cell response, the uninfected group had a very
stable CD4+ memory T cell response to both F protein
peptide libraries over the course of the RSV season as
measured by single functional marker expression (Figures 2A–
D) or by polyfunctionality of the activation markers (Figures 2E,
F). The acutely infected group also had a very stable CD4+

memory T cell response by single functional marker analysis
(Figures 2A–D), but polyfunctional analyses revealed a distinct
profile to that of the uninfected group with changes in
polyfunctionality over the study duration when stimulated
with either RSV FA or RSV FB protein peptide libraries
(Figures 2E, F) . The acutely infected group had a
polyfunctional profile driven by increased PD-1 expression and
reduced polyfunctionality compared to the uninfected group at
enrollment (Visit 1). Polyfunctionality increased over the RSV
season in the acutely infected group and more closely resembles
that of the uninfected group by Visit 3. The recently infected
Frontiers in Immunology | www.frontiersin.org 7
group had significant decreases in CD4+ memory T cell single
marker expression of IFNg, and TNFa over the course of the
season but had only subtle changes in polyfunctionality over the
RSV season (Figures 2B, C). The recently infected group had an
increased double functionality (co-expression of two activation
markers, indicated by yellow pie slice) and reduced triple
functionality (co-expression of all 3 activation markers,
indicated by dark blue) compared to the uninfected group at
Visit 1. By Visit 3, however, the polyfunctional profile of CD4+

memory T cells was comparable to that of the uninfected group.

CD8+ Memory T Cell Responses to RSV F
Protein Peptide Libraries
We then evaluated CD8+ memory T cell (CD45RO+CD8+ T
cells) responses (Figure 3, and Supplementary Figures 5, 6).
The expression of single functional markers by CD8+ memory T
cells remained the same for each infection status for the duration
of the study (Supplementary Figure 5). Although the expression
of single functional markers was both low and stable, the
polyfunctional profiles were distinct among the three groups
(Figure 3 and Supplementary Figure 6). Like the other subsets,
the polyfunctionality of the CD8+ memory T cell response in the
uninfected group was consistent across the three study visits to
both RSV F protein peptide libraries (Figures 3A, B). In the
acutely infected group, there was a lack of triple functionality
toward the RSV FA protein peptide library at enrollment (Visit 1;
Figure 3A). Polyfunctionality in the acutely infected group
expanded following infection at Visit 2 but retracted by Visit 3
to levels slightly lower than the uninfected group.
Polyfunctionality of CD8+ memory T cells toward the RSV FB
protein peptide library in the acutely infected group was nearly
absent over the study period (Figure 3B). The CD8+ memory T
cell response of the recently infected group was distinct from that
of the uninfected or acutely infected group and displayed very
little polyfunctionality toward either peptide library. This distinct
profile is quite notable, particularly at Visit 1, when
combinations of all four functional markers were analyzed
(Supplementary Figure 6).

CD4+/CD8+ Memory T Cell Responses to
RSV F Protein Peptide Libraries
CD4+/CD8+ double positive T cells make up a low frequency of
total T cells and can express memory markers such as CD45RO.
Their role in viral immunity and cancer is hotly debated, though
there is evidence they may have enhanced anti-viral capabilities
(49–52). We therefore analyzed the CD4+/CD8+ memory T cell
response among the infection status groups and found that the
trends mimic those of the canonical CD4+ or CD8+ memory T
cell response (Supplementary Figure 7). Similar to the other
subsets of T cells, the uninfected group had very consistent levels
of CD4+/CD8+ memory T cell response over the RSV season to
both RSV F protein peptide libraries. The acutely infected group
had a significant decrease in TNFa expression following
infection, but by Visit 3 TNFa expression had returned to
levels observed at enrollment. The recently infected group had
March 2022 | Volume 13 | Article 823652
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a significant decrease in CD107a expression over the RSV season.
Taken altogether, responses of all T cell subsets, as measured by
both the magnitude of single parameters and polyfunctionality,
closely mimics that observed in the antibody kinetic profiles by
RSV infection status (23).

Subtype-Specific Differences
in T Cell Responses to RSV F
Protein Peptide Libraries
Because we observed differences between the responses to the
RSV FA and RSV FB protein peptide libraries across all infection
groups and T cell subsets, we combined these data for all 19
adults at each timepoint to assess viral subtype-specific
differences in T cell responses. In total T cells, the RSV FA
protein peptide library induced higher expression of each
individual activation marker (CD107a, IFNg, and TNFa) than
Frontiers in Immunology | www.frontiersin.org 8
the RSV FB protein peptide library (Figures 4A–D). Whereas
this trend is only significant at Visit 3 for IFNg and TNFa
expression, the trend was consistent at every timepoint for these
three activation markers. PD-1 expression, however, was similar
between the two peptide libraries, indicating that stimulation
with the RSV FB peptide library is not simply exhausting the T
cells. There was also decreased polyfunctionality of the total T
cell response when stimulated with the RSV FB protein peptide
library compared to the RSV FA library at all three timepoints
(Figures 4E, F).

We tested whether a specific compartment of the T cell
response is driving these RSV subtype-specific differences.
CD4+ memory T cells demonstrated significantly higher
CD107a, IFNg, and TNFa expression at most time points
when stimulated with RSV FA versus RSV FB protein peptide
library (Figures 5A–D). There was also a subtle increased
A

B

FIGURE 3 | CD8+ Memory T cell responses to RSV F protein peptide libraries as a function of RSV infection status and study visit. Polyfunctional CD8+ Memory T cell
responses to (A) RSV FA or (B) RSV FB protein peptide libraries by RSV infection status: uninfected (n = 12), acutely infected (n = 4), and recently infected (n = 3).
Simplified Presentation of Incredibly Complex Evaluations (SPICE) analysis was performed for the identification of CD8+ memory T cells expressing multiple cytokines. Pie
charts show the frequency in which PBMCs produced the various combinations of the activation markers CD107a, IFNg, and TNFa; or expressed PD-1 alone.
Background (determined from the media-stimulated negative controls) was subtracted from all samples and negative values were set to zero. Surrounding arcs denote
the specific markers produced by the cells in each pie segment. Representative negative and positive controls across all study visits are boxed.
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FIGURE 4 | RSV subtype-specific differences in total T cell responses to RSV F protein peptide libraries for all study subjects. (A–D) Individual functional marker
expression following stimulation with either peptide library (n = 19). PBMCs were stimulated with either RSV FA or RSV FB peptide library and expression of CD107a,
IFNg, TNFa, and PD-1 were measured by flow cytometry and reported as a percentage of total T cells. Each symbol represents the response from a single
individual. The thick horizontal bar indicates the mean of all responses within each group at that visit. A significant pairwise comparison of mean percentage
difference between visits within a group is denoted by a thin horizontal bar with *P ≤ 0.05, **P ≤ 0.01. V1, Visit 1; V2, Visit 2; V3, Visit 3. (E) Polyfunctionality of
activation markers in total T cell responses as a function of stimulation type and study visit. Pie charts show the frequency in which PBMCs produced the various
combinations of the activation markers CD107a, IFNg, and TNFa; or expressed PD-1 alone. Background (determined from the media-stimulated negative controls)
was subtracted from all samples and negative values were set to zero. Surrounding arcs denote the specific markers produced by the cells in each pie segment.
Representative negative and positive controls across all study visits are boxed. (F) Total polyfunctionality of total T cells by stimulation and study visit. Pie segments
indicate frequency of cells producing combinations of all four functional markers CD107a, IFNg, and TNFa and PD-1. Background (determined from the media-only
negative controls) was subtracted from all samples and negative values were set to zero.
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polyfunctionality of CD4+ memory T cells stimulated with the
RSV FA library (Figures 5E, F). CD8+ memory T cells displayed
subtle differences in single marker expression between the two F
protein peptide libraries, with significantly higher expression of
CD107a at Visit 1 and IFNg at Visit 2 (Figures 6A–D). There was
a marked reduction in polyfunctionality of CD8+ memory T cells
when stimulated with RSV FB protein peptide library compared
with the RSV FA protein peptide library (Figures 6E, F).
Therefore, memory T cells from both major subsets (CD4+ and
CD8+), drive these RSV subtype-specific differences in responses.

RSV-Subtype Specific Differences
in T Cell Responses Are Not Due
to HLA-Haplotypes
Although the RSV/A/Ontario and RSV/B/B1 F protein sequences
utilized to construct the F protein peptide libraries are very
highly conserved (91% sequence homology), even small amino
acid changes can lead to alternative T cell epitope recognition by
individuals with specific HLA genotypes, which could potentially
explain the RSV subtype-related differences in the T cell
responses we observed. To test whether these subtype-specific
differences are due to alternate epitope recognition originating
from the HLA-restriction of the subjects in our cohort, we
performed high resolution HLA-typing on all subjects in the
study. We then predicted HLA-restricted epitopes within the
RSV F protein (RSV/A/Ontario and RSV/B/B1) utilizing MHC
class I and class II predictive algorithms (data not shown). We
mapped these potential epitopes along the RSV F protein
sequences to identify potential epitope ‘hotspots’ within each
peptide library (data not shown). We found similar hotspots by
subtype where the highest T cell epitope predictions (lowest rank
scores) for MHC class II are consistently near the N terminus
and between aa 150–250. The list of potential epitopes was
refined by utilizing only those contained within both peptide
libraries. Both subtypes had similar predicted epitopes within the
15mer peptide libraries (data not shown), indicating the RSV
subtype-specific differences in T cell response do not stem from
an inability of the adults in our cohort to respond to the peptide
libraries because of antigen presentation.

RSV-Specific T Cell and Neutralizing
Antibody Responses Are Correlated
Finally, we tested the relationship between T cell and neutralizing
antibody responses among RSV infection status or RSV subtype
(Figure 7 and Supplementary Figure 8). We were interested in
Frontiers in Immunology | www.frontiersin.org 10
determining if individuals with higher RSV-specific T cell
activity also had higher RSV-specific neutralizing antibody
levels. We used quartile-ranking of T cell and neutralizing
antibody responses to test this hypothesis. We found that T
cell and antibody scores were not correlated at Visit 1 or 2 but
were highly correlated at Visit 3 for both RSV subtypes
(Figure 7A and Supplementary Figure 8A). We found that
the uninfected group was distributed evenly among the quartiles
at Visits 1 and 2 (Figure 7B and Supplementary Figure 8B). At
Visit 3 there was a significant correlation of the RSV FA T cell
score and neutralizing antibody score in the uninfected group.
There are, however, individuals with low quartile scores in the
uninfected group, suggesting a small subset of this group may
now be susceptible to re-infection. The acutely infected group
had scores in the low quartile ranges for both antibody and T cell
scores at Visit 1 but, following re-infection, these individuals
ended in the high quartiles for both responses, suggesting
protection from re-infection. Although not statistically
significant, both RSV FA and RSV FB T cell scores nonetheless
were highly correlated at Visit 3 (RSV FA: r = 0.730; RSV FB: r =
0.880). At enrollment, the recently infected group was in the high
quartiles, but dropped to the low quartiles by Visit 2. The
correlation coefficient for the recently infected group is
undefined at Visit 3, suggesting no relationship between T cell
and antibody responses. Therefore, by Visit 3, individuals who
were high T cell responders were also high neutralizing antibody
responders and those with low T cell responses had low
neutralizing antibody responses.
DISCUSSION

In this study we analyzed the memory T cell response to RSV F
protein peptide libraries in a cohort of healthy adults with three
distinct antibody kinetic profiles corresponding to their RSV
infection status. We found that memory T cell responses mimic
previously published antibody responses observed for the three
distinct RSV infection status groups (23). Both the acutely and
recently infected groups had reduced T cell polyfunctionality
compared to the uninfected group at enrollment (Visit 1: early in
the RSV season), indicating that higher RSV-specific memory T
cell polyfunctionality may protect against re-infection. T cells
from the acutely infected group displayed higher PD-1
expression, particularly at enrollment and even without
stimulation, suggesting that these individuals’ T cells may have
March 2022 | Volume 13 | Article 823652
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FIGURE 5 | RSV subtype-specific differences in CD4+ Memory T cell responses to RSV F protein peptide libraries for all study participants. (A–D) Individual
functional marker expression. PBMCs were stimulated in vitro with RSV FA (A, B) or RSV FB (C, D) peptide libraries (n = 19). Expression of CD107a, IFNg, TNFa,
and PD-1 was measured by flow cytometry and reported as a percentage of CD4+ memory T cells. Each symbol represents the response from a single individual.
The thick horizontal bar indicates the mean of all responses within each group at that visit. A significant pairwise comparison of mean percentage difference between
visits within a group is denoted by a thin horizontal bar with *P ≤ 0.05. V1, Visit 1; V2, Visit 2; V3, Visit 3. (E) Polyfunctionality of activation markers in CD4+ memory
T cell responses by stimulation and study visit. Pie charts represent the mean frequencies of responding CD4+CD45RO+ T cells following stimulation with RSV FA or
RSV FB protein peptide library. Pie charts indicate frequency of cells producing combinations of the activation markers CD107a, IFNg, and TNFa or expressing PD-1
alone. Background (determined from the media-only negative controls) was subtracted from all samples and negative values were set to zero. (F) Total
polyfunctionality of CD4+ memory T cells by stimulation and study visit. Pie segments indicate frequency of cells producing combinations of all four functional
markers CD107a, IFNg, and TNFa and PD-1. Background (determined from the media-only negative controls) was subtracted from all samples and negative values
were set to zero.
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been exhausted prior to infection, which may predispose them to
RSV re-infection. Higher expression of PD-1 may also play an
inhibitory role during the CD8+ T effector cell transition to
impair T cell differentiation and subsequent viral clearance
during acute infection (38, 39). Additional studies with a larger
cohort are warranted to test whether polyfunctionality of
memory T cells can be used as a correlate of infection in the
adult population.

Increased individual functional marker expression and
increased polyfunctionality across all T cell subsets to the RSV
FA F protein peptide library rather than the RSV FB protein
peptide library was unexpected, as RSV/B was the dominant
circulating subtype during the study period (23). Additionally,
the highest fold changes in neutralizing antibody were detected
to a prototypic B strain (RSV/B/18537), which is analogous to the
RSV/B/B1 strain used for generating the F protein peptide library
used in this study, and the lowest fold changes were detected to a
contemporaneous RSV/A strain (RSV/A/ON) (23). Although the
reason for this is unknown, the difference in subtype-specific T
cell responses raises several interesting questions. Is this higher T
cell response to the RSV FA protein peptide library characteristic
of adults in general? If so, do the elderly consistently have a
stronger T cell response to RSV/A F protein? Do these lower T
cell responses to the RSV FB protein peptide library make adults
more susceptible to RSV/B than RSV/A infections? Or is this
difference in response reflective of what these particular adults
were primed with in prior respiratory seasons? Additional
studies testing the T cell responses of older adults, particularly
with emphasis on polyfunctionality, as well as the frequency and
severity of re-infection by subtype in this population, are
warranted. These subtype-related differences have implications
for vaccine development, as most vaccine candidates are derived
from a single RSV/A strain (prototypic GA1). Our data indicate
that adults may need additional protection from RSV/B, so
bivalent vaccines containing both RSV subtypes may be
warranted, at least for the older adult population.

The recently infected group had a significant decrease in
memory T cell single marker expression over the RSV season and
marked reduction of polyfunctionality of memory T cells in
comparison with the uninfected group at Visit 3, implying these
individuals have a lower overall quality of RSV-specific T cell
response. Taken together with the antibody response profiles of
these individuals (23), these results suggest an overall inability to
sustain long-lived memory from both B and T cell responses. The
rapid decay of antibody observed in the recently infected group
Frontiers in Immunology | www.frontiersin.org 12
closely resembles the natural decay of immunoglobulin in the
absence of newly generated antibody (53, 54). This decay
indicates that the antibody response in these individuals could
be driven primarily by short-lived circulating plasma blasts that
can secrete large amounts of antibody rapidly following infection
rather than long-lived plasma cells that typically reside in bone
marrow and maintain high levels of antibody long-term (55).
Short-lived circulating plasma blasts are typically derived from
an extrafollicular response unlike long-lived plasma cells, which
are thought to be generated primarily through germinal center
responses (55). We hypothesize that individuals in the recently
infected group are predisposed to elicit primarily an
extrafollicular rather than germinal center response to RSV
infection. Predisposition toward an extrafollicular-dominant T
cell response may have arisen during the primary exposure in
infancy or, more likely, during multiple re-infection events
throughout life.

The short-lived antibody response may not be limited to RSV
but may hold true for other seasonal respiratory viruses. Indeed,
we observed a rapid loss of hMPV-specific antibody responses
within this cohort (23). Mechanistic studies aimed at elucidating
the underlying cause of these various infection kinetic profiles of
long-term memory will have significant impact on vaccine
development for respiratory pathogens at large.

Whether or not there is a relationship between the T cell
response and a known correlate of protection, neutralizing
antibody, is unclear. By the end of our study period, we saw a
significant correlation between T cell response scores (to both
RSV subtypes) and neutralizing antibody scores. This correlation
indicates that individuals with high neutralizing antibody
responses are likely to have strong T cell responses (and vice
versa). It is not surprising that the highest correlation is at Visit 3
compared to earlier study visits, as a limitation of the study is the
timing of sample collections to capture the kinetics of T cell
responses immediately following infection. As infections were
defined using fold-changes in neutralizing antibody rather than
PCR, the exact timing of RSV infection in the infected groups is
unknown. Therefore, we are best able to detect a relationship at
Visit 3, when all subjects have reached a steady-state in their
RSV-specific immune response. A relationship between
neutralizing antibody and T cell responses suggests that
including T cell scores and using them in conjunction with
neutralizing antibody responses may strengthen the ability to use
them as a correlate of infection and help to identify individuals at
higher risk for re-infection. Furthermore, there are differences in
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FIGURE 6 | RSV subtype-specific differences in CD8+ Memory T cell responses to RSV F protein peptide libraries for all study participants. (A–D) Individual
functional marker expression. PBMCs were stimulated in vitro with RSV FA (A, B) or RSV FB (C, D) peptide libraries (n = 19). Expression of CD107a, IFNg, TNFa,
and PD-1 was measured by ICS and reported as a percentage of CD8+ memory T cells. Each symbol represents the response from a single individual. The thick
horizontal bar indicates the mean of all responses within each group at that visit. A significant pairwise comparison of mean percentage difference between visits
within a group is denoted by a thin horizontal bar with *P ≤ 0.05. V1, Visit 1; V2, Visit 2; V3, Visit 3. (E) Polyfunctionality of activation markers in CD8+ memory T
cell responses by stimulation and study visit. Pie charts represent the mean frequencies of responding CD8+CD45RO+ T cells following stimulation with RSV FA
or RSV FB peptide library. Pie charts indicate frequency of cells producing combinations of the activation markers CD107a, IFNg, and TNFa or expressing PD-1
alone. Background (determined from the media-only negative controls) was subtracted from all samples and negative values were set to zero. (F) Total
polyfunctionality of CD8+ memory T cells by stimulation and study visit. Pie segments indicate frequency of cells producing combinations of all four functional
markers CD107a, IFNg, and TNFa and PD-1. Background (determined from the media-only negative controls) was subtracted from all samples and negative
values were set to zero.
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the scores by RSV infection status. The two infection groups have
opposite patterns in that, the acutely infected group starts within
the lowest quartile scores for both T cell and antibody responses,
but by the end of the season have the highest for both. The
recently infected group starts with high scores for both
responses, but by the end of the season there is no relationship
between scores. Together, these results strengthen the hypothesis
that combined use of T cell scores and neutralizing antibody
scores can be used as a correlate of infection.
Frontiers in Immunology | www.frontiersin.org 14
In summary, we identified three distinct T cell immune
responses to the RSV F protein peptide libraries that reflect
three distinct antibody kinetic profiles. This increased
understanding of how long RSV-subtype specific memory T
cell responses persist and how this longevity relates to antibody
responses increases our knowledge of how some adults become
susceptible to re-infection. This knowledge is vital for developing
an efficacious RSV vaccine, particularly in older adult
populations where pre-existing immunity may need to be ‘re-
A

B

FIGURE 7 | Correlation between RSV FA T cell and neutralizing antibody responses. A significant linear relationship between T cell score and neutralizing antibody
score is denoted by a correlation coefficient (r) with *P ≤ 0.05. (A) Correlation between RSV FA T cell score with neutralizing antibody score by study visit (n = 19).
(B) Correlation between RSV FA T cell scores with neutralizing antibody score by RSV infection status and study visit. Uninfected (n = 12), acutely infected (n = 4), or
recently infected (n = 3) individuals are shown.
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trained’ for establishing an optimal and durable immune
response upon vaccination.
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