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Abstract

Cadmium is a major environmental toxicant that is released into the atmosphere, water and

soil in the form of cadmium oxide, cadmium chloride, or cadmium sulfide via industrial activi-

ties, such as the manufacturing of batteries and pigments, metal smelting and refining and

municipal waste incineration. In the present study, we investigated the effects of cadmium

exposure on sperm quality parameters, fertilization capacity and early embryonic develop-

ment. Our study showed that in vitro incubation of human or mouse sperms with cadmium

for a long time (up to 24 hours) could significantly decreased sperm motility in a concentra-

tion- and time-dependent manner. Exposure to cadmium in the environment for a short term

(30 min) did not affect sperm motility but significantly reduced in vitro fertilization rate. We

also evaluated the effects of cadmium at concentrations of 0.625 μg/ml, and 1.25 μg/ml on

early embryonic development in vitro and observed that the blastocyst formation rate dra-

matically decreased with increasing cadmium concentration. This finding emphasizes the

hazardous effects of cadmium on sperm quality as well as on natural embryo development

and raises greater concerns regarding cadmium pollution.

Introduction

Cadmium is one of the most toxic heavy metals, has no known beneficial biological function,

and poses a significant public health hazard, including reproductive toxicity [1]. Cadmium is

commonly used in various industrial products, such as nickel-cadmium batteries, computer

components, pigments and glazes [2]. The general population may be exposed to cadmium

through ingestion of contaminated food and drinking water, inhalation of particulates from

ambient air, exposure to tobacco smoke, or ingestion of contaminated soil and dust [3]. Cad-

mium demonstrates a low excretion rate (biological half-life = 20–40 years), and accumulates

mostly in liver, kidney and testes [4].
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In recent years, ubiquitous cadmium pollution has drawn great concern due to its adverse

effects on the reproductive system. A epidemiological study observed a negative association

between seminal cadmium concentration and sperm concentration, sperm motility and per-

cent abnormal spermatozoa [5]. Short-term intake of exposure to high doses of cadmium

induced serious testicular injury (e.g., sterilization, necrosis, germ cell depletion, interstitial tis-

sue damage and BTB (blood-testis barrier) disruption) in rodents [6, 7]. It has been demon-

strated that low dosage of cadmium (50 μg/day, approximately 30- to 60-fold less than short-

term doses) adversely affects mammalian reproductive function, with effects that include the

disruption of testis and epididymis histology, damage to spermatogenesis, a decrease in sperm

motility, a change in sperm morphology and a decrease in the acrosome reaction rate in rats

[6, 7]. The epididymis and vas deferens are extremely important accessary organs that play

vital roles in sperm maturation and storage. It has been demonstrated that cadmium exposure

in rats (2 mg Cd/kg body mass/day) led to alkalization of the lumen fluid of the epididymis

and vas deferens by direct inhibition of H-ATPase function [8]. Furthermore, the altered

microenvironment damaged sperm function, including motility and capacitation. However,

the current study investigating the adverse effects of cadmium on the male reproductive sys-

tem focuses on tissue histology, epithelial cell function, sperm count, sperm morphology and

male fertility, with very limited data from an assay of sperm function after ejaculation [9].

Despite a previous report demonstrating the adverse effects of direct cadmium exposure on

spermatozoa in vitro [10], it remains unclear whether this paternal injury would result in

defects in fertilization and a subsequent reduction in the developmental potential of embryos.

Therefore, in this study we first evaluated the direct effect of cadmium upon sperm motility

both in mice and humans. In addition, fertilization capacity as well as subsequent embryonic

development are highly sensitive and reliable indicators to estimate sperm function. In vitro

fertilization (IVF), which has become a clinical practice for infertility treatment, is also

regarded as a sensitive screening system for reproductive toxicants [11]. A well-designed IVF

assay can determine a single chemical’s toxicity at a specific stage of fertilization, and simplify

understanding of the complicated physiological environment in vivo. Accordingly, in our

study, we used IVF as an assay to estimate the fertilization capacity of mouse sperm previously

exposed to cadmium in a short term and examined the early development of the resulting

embryos. To better illustrate the development process of this type of early embryos, we also

evaluated the effects of cadmium exposure on the in-vitro development of naturally occurred

early embryo.

Materials and methods

Ethical statement

This study was carried out in full compliance with the Guide for the Care and Use of Labora-

tory Animals. The protocol was approved by the Committee on the Ethics of Animal Experi-

ments of Shanghai Institute of Planned Parenthood Research. Specifically, normal fertile

subjects were investigated at Shanghai JIAI Genetics & IVF Institute. The subjects provided

their informed consent with a signature after receiving detailed explanations of the proposed

study. The Ethics Committee of Shanghai Institute of Planned Parenthood Research approved

all procedures.

Animals

Approximately 6- to 8-week-old female B6D2F1 (C57BL/6×DBA/2, SIPPR-BK Animal Co.,

Ltd, Shanghai, China) strain mice were used as oocyte donors, and 10- to 15-week-old male

B6D2F1 mice were used as sperm donors. A total of 18 male mice and 90 female mice were
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used in this study. All mice were housed under controlled light conditions (12 h light: 12 h

dark) in the Laboratory Animal Services Facility and were fed a standard mouse diet and water

ad libitum.

Chemicals

Unless otherwise mentioned, chemicals were purchased from Sigma-Aldrich (St Louis, MO,

USA). Cadmium acetate with a purity of 99.9% was dissolved at concentration of 1 mg/ml

with double distilled water and stored at– 20˚C as stock solution. Different concentrations of

working solutions of cadmium acetate were made prior to use.

Human and mouse sperm sample preparation

Fresh human semen samples were collected into sterile plastic containers by masturbation

after 3–4 days of sexual abstinence and were then liquefied for 30 min at room temperature.

Semen samples were then submitted to sperm washing followed by swim-up with modified

human tubal fluid (mHTF, Millipore-Chemicon, Billerica, MA). Each washed sperm-mHTF

was adjusted to 5–10×106 cells/ml and divided into four groups randomly: 2.5 μg/ml, 5 μg/ml,

and 10 μg/ml cadmium groups and a control group, by adding appropriate volumes of cad-

mium acetate stock solution.

Male mouse caudal epididymis was excised and dissected from the fat pad, blood vessels,

and connective tissue. The caudal epididymis was transferred to glass dishes containing 1 ml

BWW (Biggers, Whitten and Whittingham) medium pre-warmed to 37˚C and cut into several

places with iridectomy scissors to release spermatozoa into the medium. The BWW medium

contains 25 mM NaHCO3 (Sigma-Aldrich), 1.7 mM CaCl2 (Sigma-Aldrich), 10 mM HEPES

(Sigma-Aldrich) and 2.6% p/v bovine serum albumin (BSA; Sigma) [12]. In all cases, the pH

was adjusted to 7.2–7.4. After 5 min, the sperm suspension was transferred to 5 ml centrifuge

tubes. The concentration of sperm was adjusted to 3–4×106 cells/ml by adding appropriate

cadmium acetate stock solution. Next, the spermatozoa were subjected to capacitation by incu-

bation at 37˚C under 5% CO2 in air for various periods of time.

Measurement of human and mouse sperm motility parameters

Human sperm samples (1 ml) were assigned to four groups (0 μg/ml, 2.5 μg/ml, 5 μg/ml and

10 μg/ml). The four groups of human sperm were incubated at 37˚C for 24 h. Five time points

within 24 hours (0 hours, 6 hours, 16 hours, 20 hours and 24 hours) were selected, and the

sperm motility parameters for each sample were analyzed using a computer-assisted semen

analysis (CASA) machine (HTM-TOX IVOS sperm motility analyzer, Animal Motility, ver-

sion 12.3A; Hamilton Thorne Research). The instrument settings used during the analysis

were: temperature, 37˚C; minimum cell size, 2 pixels; minimum contrast, 35; minimum static

contrast, 25; low average path velocity cutoff, 20.0; low straight-line velocity cutoff, 30.0;

threshold straightness, 50%; static head size, 1.0–2.90; static head intensity, 0.6–1.4; and mag-

nification, 1.89. Thirty frames were acquired at a frame rate of 60 Hz.

Mouse sperm suspensions (200 μl) were incubated with different concentrations of cad-

mium (0 μg/ml, 2.5 μg/ml, 5 μg/ml, and 10 μg/ml) in a CO2 incubator (5% CO2 in air at 37˚C).

Sperm aliquots incubated for various periods of time under different experimental conditions

were placed in a Sperm Analysis Chamber (Hamilton Thorne Research, Beverly, USA) and

analyzed using the computer-assisted semen analysis (CASA) machine (HTM-TOX IVOS

sperm motility analyzer, Animal Motility, version 12.3A; Hamilton Thorne Research). The

instrument settings used during analysis were: temperature, 37˚C; minimum cell size, five pix-

els; minimum contrast, 50; minimum static contrast, 25; low average path velocity cutoff, 20.0;
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low straight-line velocity cutoff, 30.0; threshold straightness, 50%; static head size, 0.3–1.95;

static head intensity, 0.5–1.3; and magnification, 0.89. Thirty frames were acquired at a frame

rate of 60 Hz.

Collection of mouse oocytes and zygotes

Mature female mice were super-ovulated first with 10 IU of equine chorionic gonadotropin

(eCG) and after 48 h with 5 IU of human chorionic gonadotropin (HCG). Approximately 13–

16 h after HCG administration, the female mice were killed by CO2 asphyxiation. Next, the

cumulus oocyte complexes (COCs) were collected from the removed oviducts and then main-

tained in HTF medium supplemented with bovine serum albumin (HTF-BSA, Millipore-Che-

micon, Billerica, MA) medium at 37˚C in an atmosphere of 5% CO2.

With regard to the recovery of the naturally fertilized zygotes, female mice were mated with

males and examined 12–18 h after HCG injection for the presence of copulation plugs. The

female mice were killed by CO2 asphyxiation and fertilized oocytes were recovered by removed

the oviducts 20 h after the HCG injection. The cumulus of zygotes was dispersed in 0.1% hyal-

uronidase (Sigma-Aldrich) and washed in several changes of Hepes-buffered CZB medium

(HCZB). Fertilized oocytes (identified by the presence of a second polar body and two pro-

nuclei) were then placed in potassium-chloride-supplemented simplex optimized medium

(KSOM medium, Millipore-Chemicon, Billerica, MA), which was previously equilibrated in a

humidified atmosphere of 5% CO2 in air at 37˚C.

In vitro fertilization (IVF) and subsequent embryonic development

procedure

To investigate the effect of cadmium on fertilization and subsequent embryonic development,

described in Chemicals section, stock solution of cadmium was used as a medium supplement.

According to our preliminary experiments, we adopted three concentrations of 2.5 μg/ml,

5 μg/ml, and 10 μg/ml in the sperm exposure experiment both in mouse and human. Further-

more, we observed that cadmium exposure at a dose of 10 μg/ml for 30 minutes did not impair

the motility of mouse spermatozoa. We placed mouse sperm, which were squeezed out of

cauda epididymis, in cadmium-containing HTF-BSA for 30 min and then washed them with

HTF-BSA before analyzing the motility parameters by CASA. Next, the sperm were incubated

in fresh HTF-BSA medium for another 60 min until capacitation was complete, after which a

normal IVF procedure was performed. HTF-BSA medium was equilibrated in a 37˚C, 5% CO2

incubator one day before the experiment. A small volume of capacitated sperm suspension

was added to a drop of 100 μl HTF-BSA medium containing freshly ovulated oocytes to

achieve a final sperm concentration of 106/ml. Four to six hours later, fertilized oocytes at the

pronuclear stage were washed and cultured in KSOM for in vitro development to the morula/

blastocyst stages in 5% CO2 in air. Oocytes were observed for male and female pronucleus for-

mation (fertilization) at 6 h after the initiation of culture, and the numbers of 2-cell embryos,

4-cell embryos, morula and blastocysts after 24 h, 48 h, 72 h and 96 h in culture were checked

and recorded, respectively.

In vitro culture of embryos derived from natural fertilization

To study the post-fertilization effects of Cd on the development of embryos derived from natu-

ral fertilization, embryos were continuously exposed to cadmium from the zygote stage with 2

pronuclei produced by natural insemination to the blastocyst formation stage at exposure con-

centrations of 0.625 μg/ml or 1.25 μg/ml in KSOM culture medium in vitro. KSOM medium

was equilibrated in a 37˚C, 5% CO2 incubator one day before the experiment. Zygotes were

Reproductive effects of cadmium on sperm function and early embryonic development in vitro
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observed and recorded at the initiation of culture, and the number of 2-cell embryos, 4-cell

embryos, morulae and blastocysts after 12 h, 36 h, 60 h and 84 h, respectively, were checked

and recorded.

Statistical analysis

All data in this study were obtained from five independent experiments. The Shapiro-Wilk

test was used to determine whether the data were normally distributed. If the data exhibited a

normal distribution, the statistical comparisons of the mean differences between groups were

performed using one-way analysis of variance (ANOVA) followed by Dunnett’s multiple com-

parisons test. If the data did not exhibit a normal distribution, the mean differences between

groups were calculated using non-parametric tests. GraphPad 7.0 (GraphPad Software, USA)

was used for the statistical analyses. The threshold for a statistically significant difference was

set at a P-value of�0.05. Data are expressed as the mean ± the standard error of the mean

(SEM).

Results

Cd2+ reduces sperm total motility and progressive motility

With CASA, we objectively investigated the direct effects of cadmium on sperm parameters.

As shown in Figs 1 and 2, Cd2+ led to a significant reduction in the percentage of total motile

and progressively motile sperm in a dose- and time-dependent manner, both in human and

mouse.

In detail, the total motility and progressive motility rates of human sperm exposed to

2.5 μg/ml, 5 μg/ml, and 10 μg/ml Cd2+ for 6 h were 88.64±2.15%, 86.24±5.21%, 81.18±3.32%,

and 83.04±2.04%, 77.08±4.63%, 76.80±1.83%, respectively, compared to control values of 85.7

±1.65% and 81.44±1.98%, respectively. The total motility and progressive motility rates of

human sperm exposed to 2.5 μg/ml, 5 μg/ml, and 10 μg/ml Cd2+ for 16 h were 75.72 ±3.23%,

65.40±2.87%, 28.58±6.99% (P<0.001) and 71.02±3.29%, 53.54±4.03% (P<0.05), 19.98±4.53%

(P<0.001), respectively, compared to control values of 76.76±2.21% and 70.5±2.31%, respec-

tively. The total motility and progressive motility rates of human sperm exposed to 2.5 μg/ml,

5 μg/ml, 10 μg/ml Cd2+ for 20 h were 65.72±3.54%, 47.54±4.98% (P<0.01), 12.82±6.16%

Fig 1. Cd2+ reduces human sperm total motility and progressive motility. Human sperms were treated with a series (0 μg/

ml, 2.5 μg/ml, 5 μg/ml, 10 μg/ml) of Cd2+ concentrations for 6 h, 16 h, 20 h and 24 h, and the total motility (A) and progressive

motility (B) of sperm were evaluated. Data represent the mean ± SEM, n = 5.

https://doi.org/10.1371/journal.pone.0186727.g001
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(P<0.001) and 56.22±1.47% (P<0.05), 36.6±3.95% (P<0.001), 4.34±2.69% (P<0.001), respec-

tively, compared to control values of 70.42±2.81% and 68.14±2.08%, respectively. The total

motility and progressive motility rates of human sperm exposed to 2.5 μg/ml, 5 μg/ml, 10 μg/

ml Cd2+ for 24 h were 67.40±3.37%, 37.98±2.47% (P<0.001), 2.20±0.90% (P<0.001) and

57.94±2.46% (P<0.001), 31.92±1.63% (P<0.001), 0% (P<0.001), respectively, compared to

control values of 73.22±1.92% and 69.26±1.71%, respectively (Fig 1).

As for mouse sperm motility, the total motility and progressive motility rates of mouse

sperm exposed to 2.5 μg/ml, 5 μg/ml, 10 μg/ml Cd2+ for 1 h were 65.80±2.27%, 67.00±1.23%,

64.40±2.23% and 56.00±2.24%, 55.00±1.52%, 54.00±2.57%, respectively, compared to control

values of 70.80±1.77% and 60.20±2.15%, respectively. The total motility and progressive motil-

ity rates of mouse sperm exposed to 2.5 μg/ml, 5 μg/ml, 10 μg/ml Cd2+ for 2 h were 59.40

±4.31%, 58.40±4.48%, 49.00±6.54% and 48.80±4.20%, 47.80±3.75%, 40.20±6.11%, respectively,

compared to control values of 64.80±4.64% and 54.00±4.00%, respectively. The total motility

and progressive motility rates of mouse sperm exposed to 2.5 μg/ml, 5 μg/ml, 10 μg/ml of Cd2+

for 3 h were 52.20±4.16%, 48.40±3.99%, 36.00±6.80% (P<0.01) and 42.80±3.89%, 38.60

±3.95%,29.00±5.86% (P<0.05), respectively, compared to control values of 58.20±3.32% and

48.80±3.99%, respectively (Fig 2).

Influences of cadmium exposure on sperm fertilization and subsequent

embryonic development in vitro

Following exposure to Cd using HTF medium containing different concentrations (2.5 μg/ml,

5 μg/ml and 10 μg/ml) of Cd2+ for 30 min, sperm were washed in HTF, and the quality param-

eters were analyzed by CASA. Data revealed that the total motility and progressive motility of

spermatozoa showed no obvious difference from those of controls when spermatozoa were

incubated in HTF-cadmium (0 μg/ml, 2.5 μg/ml, 5 μg/ml and 10 μg/ml) for 30 min. Next, sper-

matozoa in the four groups were adjusted to a concentration of 1×106/ml and then used in an

IVF procedure. Fertilized oocytes were judged normal by extrusion of the second polar body

and the presence of 2 pronuclei, which indicate successful fertilization. As shown in Table 1,

all four groups of spermatozoa retained their fertilization potential; however, the rate of pronu-

clei formation (fertilization) was significantly reduced in a dose- and time-dependent manner

compared to that in the control group. However, the first cleavage, 4-cell/8-cell, morula and

Fig 2. Cd2+ reduces mouse sperm total motility and progressive motility. Mouse sperm were treated with

different concentrations (0 μg/ml, 2.5 μg/ml, 5 μg/ml, 10 μg/ml) of Cd2+ for 1 h, 2 h, and 3 h, and the total motility (A) and

progressive motility (B) of sperm were assessed. Data represent the mean ± SEM, n = 5.

https://doi.org/10.1371/journal.pone.0186727.g002
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blastocyst formation rates in the groups treated with different Cd2+ concentrations exhibited

no significant difference compared with the values observed in the non-treated control group

(Table 1).

Influences of cadmium exposure on the development of embryos

derived from natural fertilization in vitro

Considering that the potential hazards of toxicants has been suggested to vary according to the

different developmental and differentiation states of target cells and tissues [13], and since the

detrimental effect of low-level Cd2+ direct exposure on spermatozoa motility and fertilization

had been observed, we were further concerned about whether naturally fertilized oocytes were

influenced by Cd2+. An in vitro culture experiment was set up in which embryos derived from

natural insemination were divided into three groups at random: Cd2+-free KSOM, 0.625 μg/

ml Cd2+-added KSOM, and 1.25 μg/ml Cd2+-added KSOM. As shown in Table 2, the 0.625 μg/

ml Cd2+-added group exhibited a significant decline in the percentage of 2-cell embryos,

4-cell/8-cell embryos, morulae and blastocysts compared to the Cd2+-free group (P < 0.001).

However, the 1.25 μg/ml Cd2+-added medium had a dramatic impact on 2-cell embryo forma-

tion, causing 2-cell arrest (Table 2).

Discussion

Cadmium has been demonstrated to impair mammalian reproduction in recent studies.

Destruction of testis caused by Cd2+ has been carefully studied [14–17]. However, the sperm

are another key cell type affected by Cd2+, and given their critical role in male reproduction,

Table 1. Effects of cadmium on mouse sperm fertilization capability in the IVF procedure and on subsequent embryonic development.

Category No. of oocytes

(replicates)

No. with pronuclei

formation (%)a
No. of 2-cell

embryos (%)b
No. of 4-cell

embryos (%)b
No. of 8-cell

embryos (%)b
No. of

morulae (%)b
No. of

blastocysts (%)b

Control 199 (5) 186 (92.8) 181 (96.6) 176 (94.7) 176 (94.7) 176 (94.7) 159 (86.8)

2.5μg/ml 179 (5) 131 (71.9)** 129 (98.3) 124 (94.8) 124 (94.8) 122 (93.2) 117 (88.4)

5μg/ml 214 (5) 121 (53.9)***,## 115 (95.8) 115 (95.8) 115 (95.8) 114 (95.1) 108 (88.6)

10μg/ml 113 (5) 15 (13.3)***,###,$ $ $ 15 (100.0) 14 (97.1) 14 (97.1) 14 (94.1) 12 (84.3)

aBased on total oocytes.
bBased on total pronuclear embryos.

**, ##p<0.01,

***, ###, $ $ $p<0.001, comparisons were made between the control group and each treated group, between the 2.5 μg/ml group and the other two

concentration groups, and between the 5 μg/ml and 10 μg/ml concentration groups, respectively.

https://doi.org/10.1371/journal.pone.0186727.t001

Table 2. Effects of cadmium on the development of naturally fertilized mouse zygotes.

Category No. of oocytes with pronuclei

(replicates)

No. of 2-cell

embryos (%)

No. of 4-cell

embryos (%)

No. of 8-cell

embryos (%)

No. of morulae

(%)

No. of blastocysts

(%)

Control 167 (5) 158 (93.2) 158 (93.2) 157 (92.2) 157 (92.2) 144 (83.6)

0.625μg/

ml

222 (5) 184 (82.0) * 171 (76.4) *** 170 (75.4) *** 170 (75.4) *** 99 (46.8) ***

1.25μg/ml 266 (5) 213 (78.2) ** 0 (0.0) 0 (0.0) 0(0.0) 0 (0.0)

Based on total oocytes with pronuclei.

***p < 0.001, comparisons were made between the control group and each treated group and between the 0.625 μg/ml and 1.25 μg/ml concentration

groups, respectively.

https://doi.org/10.1371/journal.pone.0186727.t002
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the deleterious effects of Cd2+ exposure are of great clinical importance. In the present study,

we used a set of promising in vitro models for reproductive toxicology [18] and examined the

direct effects of Cd2+ on spermatozoa, fertilization and early embryo development, extrapolat-

ing experimental data that demonstrated the human reproductive hazard posed by Cd2+. Our

findings revealed that Cd2+ reduced the motility of sperm in vitro and affected the penetration

of sperm into oocytes and the development of embryos derived from natural fertilization.

Several studies have already reported diminution of sperm motility in individuals exposed

to Cd2+, including smokers [19]. In our study, the results demonstrate that Cd2+ dramatically

decreased the percentage of total motile and progressively motile sperm in a dose- and time-

dependent manner, not only in humans but also in mice (Figs 1 and 2). In line with our opin-

ion that Cd2+ may reduce the motility of human spermatozoa, a previous study analyzing the

effect of Cd2+ on the motility and vitality of human spermatozoa in vitro indicated that Cd2+

significantly diminished the progressive motility of human spermatozoa within their concen-

tration range without affecting sperm vitality. Notably, the Cd2+ concentration used in the

present study was higher than that used in the abovementioned study. Given the different cri-

teria for screening human sperm samples, one possible explanation for this discrepancy is that

the quality of sperm used in the present study was higher than that employed by Da, C.R., et al.

[20]. Consistent with our notion that Cd2+ may reduce the motility of mouse spermatozoa, a

study adopted a series of Cd2+ concentrations (0.1 μM, 0.5 μM, 1 μM, 5 μM, 10 μM, 50 μM) in
vitro and a similar injection dosage (1.2 mg/kg BW) in vivo, and demonstrated that Cd2+ pro-

moted tyrosine phosphorylation of dihydrolipoamide dehydrogenase (DLD), inhibited its

dehydrogenase activity, and thus decreased adenosine triphosphate (ATP) production and

sperm motility. However, the abovementioned study focuses only on the mechanism of action

of cadmium on sperm motility and does not demonstrate a dose- and time-dependent effect of

cadmium on sperm motility [21].

Furthermore, the range of environmental Cd exposure levels is very broad and varies

according to the evaluation method, survey object and region. According to the latest literature

report, environmental cadmium exposure levels were observed as follows: blood Cd concen-

trations from 0 μg/l to 5.0 μg/l, urine Cd concentrations from 0 μg/l to 9.8 μg/l and semen Cd

concentrations from 0 μg/l to 5.92 μg/l [5, 22]. Moreover, the biological half-life of Cd was too

long, and urinary Cd concentrations kept increasing with age [23], indicating that Cd exposure

exerts a cumulative effect on organisms with long-term exposure. Our data from the cadmium

exposure mouse model demonstrated that the testis Cd concentration is approximately twice

the blood Cd concentration; therefore, the blood Cd level did not perfectly reflect the actual sit-

uation in the male reproductive system. Environmental exposure is an extremely complicated

process, and Cadmium exposure is often accompanied by exposure to lead and magnesium

[5]. Therefore, a combination effect is common in humans with exposure to cadmium. How-

ever, for a single-factor in vitro study, it is helpful to use higher concentrations than those used

in in vivo studies. Furthermore, the higher concentration of cadmium is closer to occupational

and acute exposure. Accordingly, in this study, we used a much higher Cd concentration than

that reported in the existing literature reports. Nevertheless, we intend to refine the selection

of Cd concentration for future study.

For decades, an increasing number of infertile couples have resorted to assisted reproduc-

tion technology (ART) to conceive a child. Therefore, it is of great importance to clarify the

effect of Cd exposure on in vitro fertilization (IVF). According to the literature on exposure,

there are three research methods and perspectives regarding the effect of Cd on IVF: 1. Oocyte

exposure (maternal effect). It has been well-documented that Cd exposure negatively affects

oocyte maturation, subsequent fertilization and embryo development [24]. 2. Sperm and

oocyte exposure in culture media (parental effect). No reports were found about this type of
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exposure. 3. Sperm exposure (paternal effect). Keewan Kim et al. suggest an inverse adjusted

association between blood cadmium in men and oocyte fertilization [25]. However, the causal-

ity between sperm Cd exposure and IVF outcomes is far from settled; therefore, we focused on

this part in consideration of the purpose of this study. Our experimental results demonstrated

that incubation of sperm in cadmium-added HTF medium for short time (30 min) to imple-

ment IVF did not significantly alter the total motility and progressive motilty of spermatozoa

compared to that observed in control spermatozoa (Fig 2). Upon induction of the IVF process,

differences among the spermatozoa caused by pretreatment with different concentrations

Cd2+ could still be detected in the processes of fertilization and subsequent embryonic devel-

opment. The IVF procedure includes sperm-egg binding, zygote formation and the first cleav-

age to form a 2-cell embryo. After transfer of the zygote into KSOM medium, the pronucleus

undergoes multiple cleavages to form a 2-cell embryo, 4-cell embryo, morula then blastocyst

successively in vitro. Although Cd2+ exposure reduces the fertilization rate with increasing

Cd2+ concentration, oocytes fertilized with these spermatozoa still retained their full-term

developmental potential after being transferred (Table 1). This fact confirmed the hypothesis

that exposure to Cd2+ from various sources affects sperm quality. However, although sperm

fertilization ability was diminished, Cd2+-contaminated sperm did not affect the process of

early embryo development in our study, and it could be speculated that while infertile males

suffer less serious contamination, IVF still serves as a sensible and feasible approach in ART.

Unlike several other studies that detected toxic effects of some substances, for example, di-

(2-ethylhexyl)-phthalate, acetamiprid, imidacloprid and nicotine, on sperm function and

fertilization ability, our study demonstrated that toxic substances affect sperm function in

addition to reducing the blastocyst formation rate [26, 27]. This difference may be because dif-

ferent pollutants do not have the same mechanism of action on sperm and embryo develop-

ment. Moreover, it is necessary to evaluate the developmental potential and security of the

blastocyst by implantation experiments in future studies.

To determine the impact of Cd2+ on early embryonic development, naturally fertilized

zygotes were continuously exposed to Cd2+ at different concentrations (0 μg/ml, 0.625 μg/ml,

and 1.25 μg/ml) until blastocyst formation. In the presence of the higher concentration

(1.25 μg/ml) of Cd2+ in the culture medium, the first cleavage stage of naturally fertilized

oocytes to form 2-cell embryos was remarkably inhibited, and all such embryos were arrested

at the 2-cell stage. Although the lower concentration (0.625 μg/ml) of Cd2+ exposure in natu-

rally fertilized oocytes affected the process of development from the first cleavage stage to the

blastocyst stage, some embryos still retained full-term developmental potential (Table 2). The

toxicity of cadmium to naturally fertilized oocytes is much higher than that observed for sper-

matozoa function in our results. Therefore, we infer that maternal cadmium exposure has a

more severe adverse impact on the fetus than does paternal exposure.

The mechanisms underlying the hazardous effects of Cd2+ remain unclear. Oxidative stress,

apoptosis, inflammation, and effect of cadmium on competitive suppression of zinc are possi-

bly involved in these mechanisms [28–32]. Previous studies indicated that acute or chronic

exposure to Cd2+ causes oxidative stress in animals and humans [32, 33], which could harm

reproductive organs. Furthermore, Cd2+ generates reactive oxygen species (ROS) that induce

apoptosis in testicular germ cells. A potential underlying signaling pathway may be activated

through Cd-induced ROS and may be responsible for the upregulation of poly (ADP-ribose)

polymerase-1 (PARP-1), translocation of apoptosis inducing factor (AIF) to the nucleus, and

apoptosis of testicular cells in rat testes [34]. Some studies have demonstrated that the injury

due to acute Cd2+ exposure activates a large number of inflammatory and cytotoxic mediators,

especially the production of TNF-α and IL-1β [35]. Studies have also demonstrated that Cd2+

induces inflammation in the mouse testis [36], which may decrease the sperm parameters.
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Studies have demonstrated a preventive effect of Zn2+ against Cd2+-induced oxidative stress in

the rat testis [30]. A competitive mechanism of interaction is a plausible mechanism for the

protective effect of Zn2+ in relation to Cd2+ toxicity. Radiolabeled Zn has been reported to be

incorporated into elongated spermatids and to display competitive interaction with heavy met-

als for incorporation [37]. Because Zn is an essential component of the oxidant defense system

and functions at several levels [38] and Zn deficiency in the diet paves the way for cell damage

in the rat testis [39], the competitive suppression effect of cadmium on zinc may lead to a

decrease in sperm quality.

Taken together, the results of the present study unveiled the hazardous effects of direct

exposure to Cd2+ on sperm quality, sperm penetration into oocytes, and the development of

embryos derived from natural fertilization. The results indicated that direct exposure to Cd2+

exerted harmful effects on sperm function and embryonic development. These reliable data

elucidated the reproductive toxicity of Cd2+ in mammals from a new perspective, i.e., the

direct effects of Cd2+ on gametes, fertilization and embryonic development. Therefore, consid-

ering the current levels of cadmium pollution in some areas and the increased incidence of

infertility in the population, our study to some extent broadens the knowledge about the harm-

ful effects of heavy metals and underlines the great importance of preventing cadmium

pollution.
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