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Abstract: The soil bioavailability of phosphorus (P) is often low because of its poor solubility, strong
sorption and slow diffusion in most soils; however, stress due to excess soil P can occur in greenhouse
production systems subjected to high levels of P fertilizer. Silicon (Si) is a beneficial element that
can alleviate multiple biotic and abiotic stresses. Although numerous studies have investigated
the effects of Si on P nutrition, a comprehensive review has not been published. Accordingly, here
we review: (1) the Si uptake, transport and accumulation in various plant species; (2) the roles
of phosphate transporters in P acquisition, mobilization, re-utilization and homeostasis; (3) the
beneficial role of Si in improving P nutrition under P deficiency; and (4) the regulatory function of Si
in decreasing P uptake under excess P. The results of the reviewed studies suggest the important role
of Si in mediating P imbalance in plants. We also present a schematic model to explain underlying
mechanisms responsible for the beneficial impact of Si on plant adaption to P-imbalance stress.
Finally, we highlight the importance of future investigations aimed at revealing the role of Si in
regulating P imbalance in plants, both at deeper molecular and broader field levels.

Keywords: silicon; silicon transporter; phosphorus transporter; phosphorus imbalance; phosphorus
deficiency; excess phosphorus

1. Introduction

Silicon (Si) is the second most abundant element in the Earth’s crust, and its content
within plants ranges from 0.1% to 10% depending on species. Although still not proven to
be a plant-essential element, Si is widely recognized as a beneficial factor for plant growth
and development. Si can alleviate biotic stresses, such as plant pathogens and insect pests,
and abiotic stresses, such as drought, heat, cold, lodging, salinity, ultraviolet radiation,
metal toxicity and nutrient imbalance [1]. Si can strengthen plant resistance to abiotic and
biotic stresses via physical and physiological biochemical mechanisms. Recently, several
authors have systematically reviewed research progress on the elucidation of mechanisms
of Si-mediated alleviation of biotic and abiotic stresses in plants [2–7]. In these reviews,
however, the beneficial effects of Si on nutrient imbalance have received relatively little
attention. Because of increasing deficiencies or excesses of some essential elements in soils
worldwide, the importance of Si in mitigating nutrient imbalance has gradually attracted
much attention.

Phosphorus (P) is a key element that greatly influences plant growth and productiv-
ity. Available P is very low in soils for two reasons: P fixation into organic forms, and
binding or adsorption of P either by aluminum and iron (Fe) oxides or calcium minerals,
depending on soil pH [8]. Critical strategies for improving crop performance in low-P
soils are the improvement of P acquisition efficiency by enhancing soil P availability and
the enhancement of P utilization efficiency in inner plant organs. Excess-P stress is also
observed in some greenhouse soils subjected to heavy application of P fertilizer or in
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hydroponic culture where a high P concentration is supplied [9]. The beneficial effect of Si
on P deficiency or excess stress has been reported for a number of plant species [10–25]. To
the best of our knowledge, however, no review has discussed the roles and mechanisms
of Si in alleviating P-imbalance stress in plants. In this review, therefore, we focus on the
roles of Si in mitigating P-deficiency or excess-P stress. We also discuss the mechanisms
underlying Si enhancement of plant tolerance to P-imbalance stress.

2. Silicon (Si) Absorption, Transport and Accumulation in Higher Plants

All plants contain Si [26]. In some plants, termed Si-accumulator plants, concentrations
of Si may be almost as high as those of macro-elements. The leaf is the organ with the
highest Si accumulation, with Si generally accounting for more than 1.5% of leaf dry weight
in Si-accumulator plants. Si is taken up and translocated by plants in the form of uncharged
silicic acid (H4SiO4), which is ultimately irreversibly precipitated as amorphous silica in
cell walls and extracellular spaces by transpirational flow. The Si content of various plant
species differs depending on their Si absorption capabilities and Si loading capacities from
roots to xylem [27].

Although the cytoplasmic membrane of plant roots may provide a channel for the
absorption of silicic acid by non-ionic diffusion, the permeability coefficient of silicic
acid through the plasma membrane is only 10−10 m·s−1 [28]. This proposed route is,
therefore, not consistent with the characteristics of some Si-accumulating plants, especially
graminaceous ones [29]. Absorption of Si by plants and its transport to the xylem involve
both passive and active uptake processes [30]. Si uptake by plants is significantly inhibited
by treatment with metabolic inhibitors (2,4-dinitrophenol and potassium cyanide) or low
temperature stress, thus demonstrating that plants can actively absorb and transport
Si [29–31]. Plant roots are able to take up Si from an external medium and transfer it to
cortical cells via a low-affinity silicic acid transporter with a Km value of 0.15 mM. In one
kinetic study, differences in Si uptake by rice (Oryza sativa), cucumber (Cucumis sativus)
and tomato (Solanum lycopersicum) were found to be correlated with the abundance of
Si transporters on the root plasma membrane, which was highest and lowest in rice and
tomato, respectively [30].

The identification of two Si transporter genes (OsLsi1 and OsLsi2) in rice was a land-
mark discovery that accelerated the development of the field of plant Si research [32,33].
OsLsi1 belongs to the nodulin 26-like intrinsic protein (NIP) subfamily of aquaporins,
which is responsible for Si uptake from soil into root cells. In rice, OsLsi1 is an influx Si
transporter located on the distal side of both exodermis and endodermis in roots. OsLsi2 is
a putative anion and efflux transporter located on the proximal side of endodermis and
exodermis in the root plasma membrane. According to a mathematical model based on a
simple diffusion equation, this characteristic cellular localization pattern explains the high
Si uptake capacity of rice [34]. A number of genes involved in Si uptake and distribution
(Lsi1, Lsi2, Lsi3 and Lsi6) have now been identified and functionally validated in numerous
plant species, both monocots, such as rice, maize (Zea mays) and barley (Hordeum vulgare),
and dicots, such as pumpkin (Cucurbita moschata), cucumber, tomato and horsetail (Eq-
uisetum arvense) (Table 1) [32,33,35–47]. Depending on the plant species, these genes are
expressed in roots, shoots or both organs (Table 1). The tissue and cellular locations of these
genes, which differ among plant species, determine the different roles of Si transporters in
plant Si uptake, transport and accumulation.
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Table 1. Genes involved in Si transport in plants.

Plant Species Gene Name Function Spatial Expression Transcriptional
Regulation by Si Supply References

Oryza sativa

OsLsi1 Si influx
transporter

Distal side of both
exodermis and

endodermis in roots
Downregulated [32]

OsLsi2 Si efflux
transporter

Proximal side of
both exodermis and
endodermis in roots;

bundle sheath
cell layer

around enlarged
vascular bundles

Downregulated [33]

OsLsi3 Si efflux
transporter

Parenchyma tissues
between enlarged
vascular bundles

and diffuse
vascular bundles

Unknown [35]

OsLsi6 Si influx
transporter

Xylem transfer cells
located at the outer
boundary region of

enlarged large
vascular bundles in

node I

Unknown [35–37]

Zea mays

ZmLsi1 Si influx
transporter

Plasma membrane of
the distal side of root

epidermal and
hypodermal cells in
seminal and crown
roots; cortex cells in

lateral roots

Unaffected [38]

ZmLsi2 Si efflux
transporter

Endodermis with no
polarity in roots Downregulated [39]

ZmLsi6 Si transporter for
xylem unloading

Xylem parenchyma
cells closed to vessels
in both leaf sheaths

and leaf blades

Unaffected [38]

Hordeum vulgare

HvLsi1 Si influx
transporter

Plasma membrane
on the distal side of

epidermal and
cortical cells; plasma

membrane of
hypodermal cells in

lateral roots

Unaffected [40]

HvLsi2 Si efflux
transporter

Endodermis with no
polarity in roots Downregulated [39]

HvLsi6

Si uptake in root
tips; xylem

unloading in leaf
blades and

sheaths;
intervascular

transfer in nodes

Epidermis and
cortex cells of tips;

parenchyma cells of
vascular bundles in

leaf blades and
sheaths; transfer

cells surrounding
enlarged vascular
bundles adjacent

to numerous
xylem vessels

Unaffected [41]
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Table 1. Cont.

Plant Species Gene Name Function Spatial Expression Transcriptional
Regulation by Si Supply References

Cucurbita
moschata

CmLsi1 Si influx
transporter

Plasma membrane of
all cells in roots Unknown [43]

CmLsi2-1;
CmLsi2-2

Si efflux
transporter Roots and shoots Unknown [42]

Cucumis sativus

CsLsi1 Si influx
transporter

Distal side of
endodermis and

cortical cells in root
tips as well as root
hairs near root tips

Downregulated [44]

CsLsi2 Si efflux
transporter

Endodermal cells of
roots without

polar distribution
Unknown [45]

Solanum
lycopersicum SlLsi1 Si influx

transporter

Plasma membrane of
both root tips and

basal regions
without polarity

Unaffected [46]

Equisetum arvense EaLsi2-1 Si efflux
transporter Roots and shoots Unknown [47]EaLsi2-2

3. Phosphorus (P) Uptake and Utilization by Plants

One of the most essential mineral elements, P is not only a component of many im-
portant compounds in plants, such as nucleic acids, proteins and phospholipids, but also
plays an important role in photosynthesis, respiration and many enzymatic reactions [48].
P homeostasis in plants is, therefore, indispensable for normal physiological and biochemi-
cal functioning, but most P in soils is biologically unavailable because of its poor solubility,
strong sorption and slow diffusion [49]. Approximately 30% of the world’s agricultural
soils are estimated to be P deficient [50]. To ensure crop productivity and quality, farmers
often increase the amount of P fertilizer applied to P-deficient soils. Unfortunately, the P use
efficiency of applied P fertilizer is less than 20%, with the residual P easily immobilized in
soil or flowing into surface water through runoff [51]. In addition, rock P, a non-renewable
resource and the main source of P fertilizer, is estimated to become exhausted within the
next 50–100 years [52].

P often exists in soil in two chemical forms: organic and inorganic (orthophosphate,
Pi). Pi acquisition, utilization and homeostasis depend on complicated transport processes
mediated by Pi transporters belonging to five phosphate transporter (PHT) families: PHT1
to PHT5 [53–56]. Plant PHT1 family proteins, whose role in P uptake, mobilization and
re-utilization has been widely studied, belong to a major facilitator superfamily (MFS).
P transport characteristics and kinetic parameters (Km) differ significantly among PHT1
family members. Many PHT1 family members have been identified in higher plants, includ-
ing Arabidopsis (Arabidopsis thaliana), rice, wheat (Triticum aestivum), maize, barley, soybean
(Glycine max), sorghum (Sorghum bicolor), tomato and potato (Solanum tuberosum) [57]. Most
PHT1 family genes are induced by Pi starvation and expressed mainly in plant roots, with
the expression of a few family members also detectable in other plant organs [53,58–60].
Some MYB and WRKY transcriptional factors and ZAT6 can bind to various cis-elements,
such as MYCS, P1BS and W-box elements, in the promoter region of plant PHT1 family
genes [61–65] to regulate PHT1 gene expression. PHT1 family genes are also affected by
arbuscular mycorrhiza [55,66,67]. This post-transcriptional gene regulation is also crucial
for proper plant responsiveness to Pi. PHF1 proteins, SPX domain-containing proteins,
microRNAs, and phosphorylation/dephosphorylation proteins are also involved in the
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post-transcriptional regulation and signal transduction of PHT1 family genes [68–74], as
are plant hormones such as auxin, ethylene and cytokinin [75–78].

PHT1 proteins, which generally function in the acquisition of Pi from soil, have
received far more attention than other PHT family genes. PHT2, PHT3, PHT4 and PHT5
family members, which play vital roles in maintaining Pi distribution and homeostasis
in plants, are localized in plastids [79,80], mitochondria [54], the plastid envelope or the
Golgi apparatus [81] and vacuolar membranes [82], respectively. The chloroplast envelope-
localized protein PHT2 is responsible for Pi translocation into leaves and Pi starvation
responses [79,83]. PHT3 family members, which are plant mitochondrial Pi transporters, are
involved in Pi exchange between the cytoplasm and the mitochondrial matrix via the Pi/H+

symport or Pi/OH− antiport [84,85]. The plastid and Golgi apparatus-located PHT4 genes
play important roles in various biological processes, including Pi translocation in plastids
and the Golgi apparatus [81,86], carbon metabolism [87,88], pathogen resistance [89], and
salt tolerance [90]. SYG1/PHO81/XPR1-MFS (SPX-MFS) proteins, which constitute the
PHT5 family, function in Pi sequestration in vacuoles and the transport of Pi across the
tonoplast in plants [82,91].

4. Mechanisms of Si Alleviation of P-Deficiency Stress in Plants

The first evidence of Si-alleviated P deficiency was obtained from a long-term field
experiment conducted at the Rothamsted Experimental Station. In that experiment, which
compared barley yields in two fields not subjected to P fertilizer application, the yield of
barley fertilized with Si was higher than that of a field without Si amendment [18]. The
beneficial effect of Si on P-deficiency stress has been subsequently reported in several
graminaceous species, such as wheat, rice and maize, under soil cultivation as well as
hydroponic conditions (Table 2). It is known that large amounts of P exist in soils bound
in unavailable form [92,93]. The effect of Si on P deficiency was initially thought to be
associated with the enhancement of P availability in soil. A significantly positive correlation
existed between Si availabilities and P mobilization in 143 representative Artic soils [94].
Furthermore, exogenous Si also was proved to contribute to the increased P activization
from Fe-P phases on mineral surfaces [94,95]. Many studies have shown that the increased
soil P availability under high Si can be explained by Si competition with P for binding at
the surface of soil minerals resulting in P mobilization [96–102]. Several studies suggest
that the competitive ability of Si against P may be pH-dependent [21,103–105]. The effect
of Si on soil P mobilization may depend on Si fertilizer form, Si level, soil mineralogy and
plant P uptake.

Table 2. Summary of effects of silicon (Si) on phosphorus (P) content and plant growth: (−) inhibition, (+) stimulation, and
(0) no change.

Taxon Si Form P Level Experimental
Conditions

pH of
Experimental

Medium

Effects on
Shoot P
Content

Effects on
Plant

Growth?
References

Glycine max;
Fragaria
ananassa;
Solanum

lycopersicum

Silicic acid
0.58 mM;
0.23 mM;
2.3 mM;

Hydroponic 5.5 Decreased + [10–12]

Oryza sativa Silicic acid 1.4–700 µM Hydroponic 5.5

No effects
under low P

(≤14 ppm), but
decreased at

higher P levels

+ [13,14]
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Table 2. Cont.

Taxon Si Form P Level Experimental
Conditions

pH of
Experimental

Medium

Effects on
Shoot P
Content

Effects on
Plant

Growth?
References

Cucumis
sativus Silicic acid 0.05–1.2 mM Hydroponic 5.5

No effects
under low P

(0.05 mM), but
decreased at

higher P levels

+ [15]

Oryza sativa Silicic acid 90–210 µM Hydroponic 5.5 Decreased + [16]

Solanum
lycopersicum

Potassium
silicate 0.44–0.66 mM Hydroponic 5.8–6.0 Increased + [17]

Hordeum
vulgare

Sodium
silicate

No P
addition Field Unknown Decreased

slightly + [18]

Oryza sativa Silicic acid No P
addition Soil culture 4.5 No effects + [19]

Oryza sativa Sodium
silicate

No P
addition Soil culture 4.5 No effects + [20]

Zea mays Calcium
silicate

0–0.3 g per
1.5 kg soil Soil culture 5.3 Increased + [21]

Oryza sativa Diatomaceous
earth

25–
50 kg P ha−1 Field 7.4 Increased + [22]

Oryza sativa

Wollastonite,
slag and
foliar Si
solution

4.5 ton ha−1

and
0–80 mg L−1

Soil culture 6.1 No effects 0 or − [23]

Triticum
aestivum

Sodium
silicate

No P
addition Soil culture 4.0 Increased + [24]

Solanum
tuberosum

Powder
FertiSilica 10–200 ppm Soil culture 4.5 No effects 0 [25]

Si is commonly applied as calcium or sodium silicate, both of which increase soil pH.
In acidic soils, aluminum (Al) toxicity is the most important factor limiting crop growth
and production. At soil pH values at or below pH 5, Al ions are solubilized into the soil
solution and dramatically inhibit root growth and function, in turn severely impairing water
and nutrient acquisition by roots and, thereby, leading to a significant reduction in crop
yields [8,106,107]. An increase in soil pH due to Si application can effectively improve the
growth condition of plant roots suffering from Al toxicity [24], thus resulting in increased
transpiration and, therefore, greater P uptake and utilization [21]. Furthermore, high soil
pH, within a certain range, can facilitate soil P activization and plant P uptake [108].

Plants have evolved diverse strategies to cope with P deficiency. One effective strategy
to counteract P-deficiency stress is the secretion of organic acid anions (e.g., malate, citrate
and oxalate) by plant roots [109]. Current evidence indicates that Si application strongly
promotes the exudation of both malate and citrate by roots, with the amounts of these an-
ions released by roots always higher than in other tested treatments [24]. The highest efflux
of malate and citrate in response to P deficiency occurs following Si treatment. Furthermore,
Si has been reported to upregulate the expressions of Pi transporter genes (TaPHT1;1 and
TaPHT1;2) in wheat roots at low P [24]. Despite these findings, the mechanisms underlying
Si modulation of Pi transporter gene expression in roots require further study. At low
P levels, in fact, the greatest beneficial effect of Si on plant growth, improvement of internal
P use efficiency, occurs indirectly via a decrease in Fe and manganese (Mn) uptake [14].
Si-decreased Mn accumulation in shoots is due to the decrease of Mn translocation from
roots to shoots by the formation of Mn-Si complex in root cells, and down-regulating the
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expression of Mn transporter gene [110]. Given that P usually has a high affinity to metals
such as Fe and Mn [9], the internal availability of P in plants may be affected by levels of
Mn, Fe and other metals when the P concentration is low.

5. Mechanisms of Si-Based Alleviation of Excess-P Stress in Plants

Excess-P stress rarely occurs in natural soils. In greenhouse production systems,
however, famers apply high levels of P fertilizer, which results in large amounts of
P accumulated in the soil [111]. Soil Olsen-P, an important indicator of soil P supply
ability and the risk of soil P runoff and leaching into the environment, has reached
as high as 200 mg P kg−1 in greenhouse systems (compared with the critical value of
46.0–58.0 mg P kg−1 in vegetable field soils) [112–114]. Although accumulated P is re-
quired for metabolism and storage in plants, high P concentrations inhibit enzymatic
reactions, create abnormal osmotic pressure, and decrease essential metal element avail-
ability in cells [115]. For example, excess P application has been shown to reduce zinc (Zn)
uptake and bioavailability [116–119]. Recent studies suggest that the Zn concentration in
aerial parts of plants is negatively related to soil-available P in both calcareous and acid
soils, while a high P concentration in soil has a strong antagonistic effect on Zn accumula-
tion in plants [120,121]. In plants, typical symptoms of P-induced Zn deficiency are leaf
chlorosis and necrosis [122]. Furthermore, low Zn levels in plants that are important nutri-
tional sources of this element, such as cereal grains and vegetables, may lead to inadequate
Zn intake in humans.

In several plant species, Si alleviation of excess P damage has been attributed to a
decrease in P uptake (Table 2) that reduced the concentration and accumulation of inorganic
P in plants. In one hydroponic experiment, Si significantly decreased P uptake by rice
under high P levels, with the amount of inorganic P in shoots almost half that of shoots
cultivated without supplemental Si [14]. Si has been found to decrease P uptake in rice
as well as some Si non-accumulating plants, such as tomato, soybean and strawberry
(Fragaria vesca) [27]. Furthermore, application of Si to cucumber, a moderate Si accumulator,
has also been found to alleviate symptoms of toxicity induced by P excess, resulting in a
marked decrease in leaf P and an increase in the proportion of water-extractable Zn [15].

One possible explanation for the aforementioned observations is that Si deposition
in endodermal cells of plant roots may contribute to decreased P uptake and alleviation
of excess-P stress. This effect has been attributed to the formation of apoplastic barriers
to P permeability across roots caused by Si deposition in roots, which decreases excessive
uptake of P [9,123]. Another explanation is that the formation of a cuticle-silica double
layer due to Si deposition in leaves reduces the plant transpiration rate. Transpiration is
negatively correlated with the Si content of aerial parts of rice, and the rice transpiration
rate can be reduced by 20–30% when the SiO2 content of shoots exceeds 10% of the
dry matter weight [104]. A positive correlation exists between plant leaf P content and
transpiration rate [124]. Except for several Si-accumulator plants, however, most plant
species accumulate little Si in their organs. In addition to the physical barrier function
of Si deposition in roots or leaves, Si may therefore participate in the regulation of plant
responses to excess-P stress in other ways.

A number of studies have suggested that Si improves the growth of plants under
abiotic stress by regulating the expressions of genes directly associated with the uptake
and translocation of stress factors. We recently investigated the effect of Si on P uptake
and accumulation under high P concentrations in both relatively long- and short-term
experiments. We found that Si decreased both P uptake and accumulation in rice by
downregulating the P transporter gene OsPHT1;6 in roots [16]. A split-root experiment
further indicated that OsPHT1;6 expression was decreased by Si accumulation in shoots,
resulting in decreased Pi uptake in rice [16]. In this study, we dissected the physiological
and molecular mechanisms underlying the beneficial effects of Si under excess-P stress
using the rice mutant lsi1, defective in Si uptake. Compared with the wild type, Oochikara,
lsi1 accumulated a similar level of Si in roots but exhibited much less accumulation in
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shoots [125]. By taking advantage of this mutant, the study has proved the importance of
Si accumulation in shoots to alleviate excess-P stress.

In cereal crops, P stored in seeds accounts for 60–85% of total plant P at matu-
rity [126–128]. Moreover, approximately 65–85% of total P in grains is stored in the form
of phytate [121]. Phytate, which is barely digestible by monogastric animals and humans,
combines with some essential microelements, such as Zn and Fe, thus greatly reducing
their availability [129]. Additionally, non-digested phytate is excreted into the environment.
Decreasing the total P and phytate content of grains is thus an important goal for solving
these environmental and nutritional problems [130]. In a field experiment, we observed
that wild-type plants accumulated less P in grains, husks and straw compared with the Si
uptake-defective mutant lsi1 [16]. This result can be attributed to a decrease in P uptake in
the wild type caused by Si, as higher Si accumulation was observed in shoots of the wild
type than in lsi1 [16]. This finding indicates that Si has an important role in reducing P
input to maintain P balance and in increasing the nutritional value of primary products.

6. Conclusions and Future Prospects

Although not considered an essential element in higher plants, Si has been shown to
have beneficial roles in the enhancement of plant resistance to various biotic and abiotic
stresses, including diseases, insect pests, drought, salt, heavy metals and nutrient imbalance.
Many studies have been conducted to illustrate the mechanisms of Si alleviation of P-
deficiency or excess-P stress. These investigations have collectively shown the beneficial
effects of Si supplementation on P-imbalance stress in different plant species. In regard
to the diversity of the Si-mediated P-imbalance stress resistance mechanisms, the above-
described studies in this review have demonstrated that exogenous Si application is able to
alleviate P-deficiency stress by increasing P mobility, decreasing exchangeable Al3+ in acid
soils, increasing the exudation of both malate and citrate, upregulating P transporter genes
and enhancing internal P utilization by decreasing Fe and Mn uptake (Figure 1). At the
same time, the positive effects of exogenous Si on excess-P stress can be attributed to the
formation of apoplastic barriers arising from Si deposition in the cortex cells of roots and
also the downregulation of P transporter genes (Figure 1).

Si-mediated tolerance mechanisms against P-deficiency or excess-P stress should
continue to contribute to the improvement of P-imbalance stresses in diverse crop plants.
Given currently published results, however, research on the improvement of plant P
balance via Si has mainly focused on physiology and biochemistry, with deeper molecular
regulatory mechanisms remaining to be fully revealed. Therefore, our recommendations
regarding future research on Si alleviation of P-imbalance stresses and research prospects
are as follows:

(1) With the development of multi-omics methods, such as metabolomics, ionomics,
transcriptomics and proteomics, the molecular mechanisms of Si mitigation of plant
biotic and abiotic stresses can be explored in depth. These investigations should
provide new insights and opportunities for dissecting the underlying mechanisms of
Si mediation of P balance in plants under P-deficiency or excess-P stress.

(2) Recent studies have demonstrated experimentally the direct effect of Si on the expres-
sions of P transporter genes (TaPHT1;1, TaPHT1;2 and OsPHT1;6), but the associated
detailed regulatory mechanisms and signaling pathways have not yet been fully de-
termined.

(3) lsi1 is a rice mutant defective in Si uptake. Although Si accumulation in the roots
of lsi1 is similar to that of the wild type, the level of Si accumulated in shoots is
much lower in the mutant. This characteristic can be applied to help researchers
distinguish the different roles of Si accumulation in shoots and roots in Si alleviation
of P-imbalance stress.
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Figure 1. A schematic model for the beneficial impact of silicon on plant under P imbalance stress.

The adaptive mechanisms of plant response to P-imbalance stress are complex. The
regulatory effects of Si on P-deficiency or excess-P stress may constitute a complex sys-
tem involving various biochemical and physiological processes as well. Consequently,
systematic studies of Si-mediated alleviation of P-imbalance stress in plants with a fo-
cus on molecular and genetic levels should provide a theoretical foundation for practical
applications of Si to agricultural production.
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