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Abstract: The proper functioning of the immune system is critical for an effective defense against
pathogenic factors such as bacteria and viruses. All the cellular processes taking place in an organism
are strictly regulated by an intracellular network of signaling pathways. In the case of immune
cells, the NF-κB pathway is considered the key signaling pathway as it regulates the expression
of more than 200 genes. The transcription factor NF-κB is sensitive to exogenous factors, such as
xenoestrogens (XEs), which are compounds mimicking the action of endogenous estrogens and are
widely distributed in the environment. Moreover, XE-induced modulation of signaling pathways
may be crucial for the proper development of the immune system. In this review, we summarize the
effects of XEs on the NF-κB signaling pathway. Based on our analysis, we constructed a model of
XE-induced signaling in immune cells and found that in most cases XEs activate NF-κB. Our analysis
indicated that the indirect impact of XEs on NF-κB in immune cells is related to the modulation of
estrogen signaling and other pathways such as MAPK and JAK/STAT. We also summarize the role
of these aspects of signaling in the development and further functioning of the immune system in
this paper.
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1. Introduction

In 1986, in the journal Cell, Sen and Baltimore described for the first time the transcrip-
tion factor NF-κB, which is a central element of the signaling pathway and is considered the
main regulator that controls the expression of inflammatory mediators in immune cells [1].
NF-κB regulates the immune transcription programs associated with gene encoding, the
products that play a key role in the response to bacterial and viral invasions, and are
involved in the differentiation and maturation of immune cells as well as the development
of lymphatic organs. The expression of NF-κB is regulated at multiple levels and may be
influenced by both endogenous and exogenous factors [2,3].

Due to the latest trends promoting an ecological and healthy lifestyle, researchers
show an increasing interest in the exposure of humans to chemical substances, which are
found in food, drugs, cosmetics, plastics, and detergents (Table 1) [4–12]. Some ingredients
of these products are substances that mimic the action of endogenous estrogens and are
collectively known as xenoestrogens (XEs) (Figure 1) [13–19]. These substances affect the
organisms mainly by interacting with their nuclear hormone receptors and modulating the
intracellular signaling pathways. The primary targets of XEs in the human body are the
elements of the endocrine system. Recently, it was shown that the biological effects resulting
from XEs exposure can be observed in all tissues containing the nuclear hormone receptors.
This finding suggests that the presence of estrogen receptors (ERs) makes the immune cells
potentially sensitive to XEs (Table 2) [20–42]. Moreover, the relationship between XEs and
the NF-κB pathway has been confirmed: environmental-origin estrogens modulate NF-κB
signaling in immune cells may lead to multidirectional immune disturbance [43].
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Table 1. Characteristic of xenoestrogens [4–12].

Xenoestrogen CAS No. Molecular Formula Source References

Bisphenol A 80-05-7 C15H16O2

plastics, synthetic resins in baby bottles,
children’s toys, food packages, material coating,

and medical equipment
[4]

Bisphenol S 80-09-1 C12H10O4S

Bisphenol F 620-92-8 C13H12O2

Bisphenol AF 1478-61-1 C15H10F6O2

Bisphenol A glycidyl-methacrylate 1565-94-2 C29H36O8
resin-based dental composite resins and dentin

bonding agents [5]

Triclosan 3380-34-5 C12H7Cl3O2 antimicrobial agents in personal care products [4,6]

4-octylphenol 1806-26-4 C14H22O dyeing auxiliaries, surfactant, lubricant
additives, pesticide formula, textile printing

[6,7]
4-n-nonylphenol 104-40-5 C15H24O

Methylparaben 99-76-3 C8H8O3

antimicrobial preservatives in cosmetics,
pharmaceuticals, food commodities and

industrial products
[4,8]

Ethylparaben 120-47-8 C9H10O3

Propylparaben 94-13-3 C10H12O3

Butylparaben 94-26-8 C11H14O3

Atrazine 1912-24-9 C8H14ClN5 herbicide [9]

Dichlorodiphenyltrichloroethane 50-29-3 C14H9Cl5 pesticide [10]

Monoethyl phthalate 2306-33-4 C10H10O4 plasticizer in polyvinyl chloride (PVC)
products, packaging of medical devices, food,

and personal care products.
[11]Mono-(2-ethylhexyl) phthalate 4376-20-9 C16H22O4

Di-(2-ethylhexyl) phthalate 117-81-7 C24H38O4

2,3,7,8-tetrachlorodibenzo-p-dioxin 1746-01-6 C12H4Cl4O2 pesticide [12]Cells 2021, 10, x 3 of 20 
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Table 2. Estrogen receptors in immune cells. Presence of estrogen receptors (nuclear and membrane) in human and ani-
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tein-coupled estrogen receptor, ERRβ—estrogen receptor-related β, ERs(α/β)—estrogen receptors (α/β), mRNA—mes-
senger RNA, RT-PCR—real-time PCR. [20–43]. 
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Figure 1. Xenoestrogens in human tissues. Xenoestrogens are absorbed into the human
body via digestion, inhalation and transdermal absorption. Compounds were detected
in human hairs, breast milk, blood, adipose tissue, cord blood, amniotic fluid, urine,
menstrual blood, and semen [13–19].
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Table 2. Estrogen receptors in immune cells. Presence of estrogen receptors (nuclear and membrane) in human and animals’ immune cells were confirmed on the protein and RNA level.
Abbreviation: GPER—membrane-associated G protein-coupled estrogen receptor, ERRβ—estrogen receptor-related β, ERs(α/β)—estrogen receptors (α/β), mRNA—messenger RNA,
RT-PCR—real-time PCR [20–43].

Cell Type. Estrogen Receptor Material Subject Method References

B cell ERα; ERβ Protein mice Flow cytometry [20]

B cell ERα (46 kDa, 66 kDa); ERβ (56 kDa) Protein human Flow cytometry [21]

B cell CD19+ ERα (low); ERβ (high) mRNA premenopausal female,
postmenopausal female, male RT-PCR [22]

B cell precursors ERα; ERβ mRNA mice RT-PCR [23]

Basophilic leukemia cell line
RBL-2H3 ERα; lack of ERβ mRNA rat cell line RT-PCR [24]

Dendritic cell ERα; ERβ mRNA mice RT-PCR [25]

Dendritic cell GPER Protein/mRNA human Western blot/RT-PCR [26]

Dendritic cell ERα RNA mice RT-PCR [27]

Eosinophils GPER Protein/mRNA human Flow cytometry/Immunochemistry/RT-PCR [28]

Eosinophils GPER Protein/mRNA human Western blot/RT-PCR [26]

Endometrial neutrophils lack of ERα Protein female Immunocytochemistry [29]

Macrophages CD68+ ERRβ Protein human Immunocytochemistry [30]

Mast cell ERs Protein human Immunocytochemistry [31]

Mast cell ERs Protein human Immunocytochemistry [32]

Mast cell ERs Protein human Immunocytochemistry [33]

Mast cell line HMC-1 ERα; lack of ERβ mRNA human cell line RT-PCR [24]

Monocytes ERα; ERβ mRNA human RT-PCR [34]

Monocytes ERα (low); ERβ (low) mRNA premenopausal female RT-PCR [22]

Monocytes ERα (high); ERβ (low) mRNA postmenopausal female, male RT-PCR [22]

Monocytes GPER Protein/mRNA human Western blot/RT-PCR [26]

Natural killer ERα; ERβ Protein mice Immunocytochemistry [35]

Natural killers ERα (46 kDa); ERβ (56 kDa) Protein human Flow cytometry [21]
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Table 2. Cont.

Cell Type. Estrogen Receptor Material Subject Method References

Natural killer ERα (66 kDa); ERβ (56 kDa) Protein human Western blot [36]

Neutrophils ERα; lack of ERβ mRNA human RT-PCR [34]

Neutrophils ERα (67 kDa); ERβ (56 kDa) Protein human Western blot [37]

Neutrophils ERβ Protein cow Flow cytometry/Western blot [38]

Neutrophils GPER Protein/mRNA human Western blot/RT-PCR [28]

Neutrophil like HL-60 ERα; ERβ; GPER Protein human cell line Western blot/Immunocytochemistry [39]

Primary synovial
macrophages ERα; ERβ Protein/mRNA human Immunocytochemistry/RT-PCR [40]

T cell ERα; ERβ RNA female, male RT-PCR [41]

T cell CD4+ ERα (high); ERβ (low) mRNA premenopausal female,
postmenopausal female, male RT-PCR [22]

T cell CD4+ ERα RNA mice RT-PCR [27]

T cell CD8+ ERα (low); ERβ (low) mRNA premenopausal female,
postmenopausal female, male RT-PCR [22]

T cell ERα (46 kDa); ERβ (56 kDa) Protein human Flow cytometry [21]

Uterine natural killers cells
CD56+ ERβ1; ERβcx/β2 mRNA mice RT-PCR [42]

Uterine natural killers cells
CD56+ ERRβ Protein human Immunocytochemistry [30]
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In this review, we have attempted to answer the question: how do XEs modulate the
expression of the NF-κB pathway in immune cells? Through a comprehensive analysis
of the available literature data, we assessed the direct effects of XEs on NF-κB, as well as
the indirect NF-κB regulation (via the MAPK, PI3K/Akt, and JAK/STAT pathways). We
have considered the relationship between NF-κB and estrogen signaling in immune cells
exposed to XEs, as well as we discussed the role of the above interactions for development
of embryos immune system and their further functioning.

2. Xenoestrogens—Environmental Estrogens

In 1991, during the Wingspread Conference in Wisconsin, USA, the public heard
for the first time about endocrine disrupting chemicals (EDCs), which are compounds
affecting the functioning (in particular, the endocrine system) of living organisms [44].
Depending on the adopted classification criteria, the list of EDCs includes hundreds or
even thousands of substances. In addition, new potential EDCs are being identified every
day. EDCs exhibit a high degree of heterogeneity in terms of structure and physicochemical
properties. For practical reasons, the classification of these compounds into coherent and
less numerous groups seems to be crucial for understanding their mechanisms of action.
Due to their strong similarity to estrogens, a subgroup called XEs was separated from
the large group of EDCs [45,46]. XEs include bisphenols, parabens, dioxins, phenols,
and phthalates, which are found in plastic ingredients, internal coats of aluminum cans,
detergents, plant-protecting products, and preservatives used for cosmetics, food, and
personal care products [4–12,47].

XEs display a complex mechanism of action in cells, but a common point in the
action of these compounds is their interaction with nuclear ERs. ERs are localized in the
cell cytoplasm in an inactive form, associated with heat shock proteins (e.g., HSP70 and
HSP90). The natural ligands for these receptors are the steroid hormones, namely estrone,
estriol, and estradiol. These ligands enter the cell, bind with ERs, and dissociate them
from HSPs. Subsequently, the dissociated ERs undergo conformational transformations
that allow their dimerization. The newly formed ER homo- or heterodimers, which are
made of ERα and/or ERβ, can (I) acquire transcriptional activity on their own or (II)
by interacting with other transcriptional factors (e.g., NF-κB, SP1, AP-1, and C/EBPβ)
(Figure 2). In the nucleus, the activated ERs may bind the estrogen response elements
(EREs) present on the promoter of the target gene or regulate the expression of genes
without the involvement of EREs [48–50]. ERs may also be activated by the activation
of transcription factors, which leads to ligand-independent phosphorylation of ERs [49].
Estrogen signaling involves the activation of a fast (seconds or minutes) nongenomic
pathway, known as membrane-initiated steroid signaling. Furthermore, stimulation of
G protein-bound membrane receptors (GPER, previously known as GPR30) results in
immediate changes in the intracellular Ca2+ concentration, generation of cAMP and nitric
oxide (NO), and activation of phospholipase C and signaling pathways [51–54].

Research over the last 20 years has confirmed that XEs can adversely affect living
organisms, including humans. The effects resulting from exposure to these substances are
not just limited to the functioning of the endocrine system, as was previously suspected,
but also induce hormonal imbalance and promote the development of obesity. Moreover,
XEs are capable of affecting the reproductive system and reducing the ability to conceive
healthy offspring [55–57]. An alarming discovery is the fact that the effects associated
with exposure to XEs may manifest in subsequent generations [58,59]. In recent years, XEs
exposure has been linked with impaired memory and learning processes, as well as with
Attention-Deficit Hyperactivity Disorder in children [60–62].

Furthermore, the list of XE-induced effects includes the disorders that modulate
the maturation and functioning of immune cells [43]. XEs have been shown to impair
antimicrobial and antiviral responses, and also affect the immunocompetent cells that fight
against tumorous cells, thereby indirectly contributing to the progression of neoplastic
processes [63–65]. Some researchers associate exposure to XEs with the increasing incidence
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of autoimmune diseases such as thyroid disorders and type I diabetes [66–68]. In addition,
XEs disrupt the balance between Th1 and Th2 cells, modulate the activity of Th17 cells, and
inhibit innate immunity, which indicates its involvement in the development of asthma
and allergies [69,70].
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Figure 2. Schematic overview of the ligand-dependent activation of ERs and its interaction with
NF-κB pathway in immune cells. HSPs dissociate ERs and allow E2 to bind with them. Free ERs
undergo conformational transformations that allow their dimerization. In the nucleus, ERs may bind
EREs to interact with other transcription factors. Additionally, ERs suppress NF-κB pathway: ERs
may directly bind NF-κB subunits or block NF-κB-binding sites on genes promoter. Abbreviations:
E2—estradiol; ERα/β—estrogen receptor α/β; EREs—estrogen response elements; HSP—heap
shock protein; NF-κB—nuclear factor κB [48–50].

The abovementioned disorders result from complex reactions that are mainly related
to the malfunction of immune cells. All the intracellular processes are controlled by a
network of messenger proteins which are grouped into signaling pathways. Due to their
complexity and possible interactions, these signaling pathways create an intracellular
signaling network. Among the intracellular pathways in immune cells, NF-κB is especially
considered important as it regulates over 200 genes, including those responsible for the
production of cytokines, generation of reactive oxygen and nitrogen species, as well as
degranulation and maturation of cells. Moreover, the expression of this transcription
factor is regulated by both endogenous (e.g., estrogen hormones) and exogenous (e.g., XEs)
factors.

Estrogen-induced interactions between ERs and NF-κB pathway proteins in immune
cells lead to several biological reactions, most of which are immunosuppressive. Increased
expression of ERαwas found to reduce IL-6 production by blocking the NF-κB-binding site
on the promoter of the IL-6 gene [71–73]. In addition, it was shown that ERβ overexpression
inhibits the classical pathway of NF-κB activation, leading to a reduction in LPS-induced
production of TNF-α, IL-1β, MCP-1, and IL-6 [74]. Moreover, ERs can directly bind c-Rel
and p65 NF-κB, and thus inhibit the activation of the NF-κB transcription factor [49,71,72].

3. NF-κB Signaling Pathway in Immune Cells

The central element of the NF-κB pathway is the homo- or heterodimers composed of
two of the following subunits: p65 (also known as RelA), RelB, c-Rel, p50, or p52. Among
these, p65/p50 dimer is the most dominant. Before activation, the dimers remain inactive
in the cytoplasm of immune cells, for example, bound with IκB inhibitors (Figure 3) [75–81].
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A characteristic feature of NF-κB subunits is the presence of the RHD domain at the N-
terminus, which is involved in subunit dimerization and interacts with the IκB inhibitor.
Due to the presence of the PEST domain (a region rich in proline, glutamine, serine, and
threonine) at the C-terminus of the IκB inhibitor, the transcription factor NF-κB bound with
the inhibitor is anchored in the cytoplasm in an inactive form [76,79].
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Figure 3. Schematic overview of the canonical (classical) and non-canonical (alternative) NF-κB signaling pathways.
Activation of the canonical cascade of NF-κB requires signal transmission via membrane receptors and activation of IKK
complex containing NEMO. IKK phosphorylates IκB inhibitor, which is binding NF-κB dimers: p65 and p50. K48-linked
polyubiquitination leads to proteasomal degradation of the phosho-IκB, whereas K63-linked polyubiquitin is responsible for
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stabilizing the membrane receptor signalosome, enable recruitment of downstream adaptors or complexes, and activating
kinases. Released NF-κB dimers are translocated into the cell nucleus and regulate transcription of genes. Non-canonical
NF-κB pathway is dependent on activation NIK and IKKα complex. The NF-κB dimers remain inactive until IKKα
complex phosphorylates p100. Phosphorylation and K48-linked polyubiquitination of p100 cause its proteasome processing
which leads to forming p52 subunit. RelB and p52 NF-κB dimers are translocated into the cell nucleus and act as a
transcription factor. Abbreviations: BAFF—B-cell activating factor; CD40L—cluster of differentiation 40 ligand; IKK—IκB
kinase; IL—interleukin; K48/K63—lysine 48/63; LPS—lipopolysaccharide; LTβ receptor—lymphotoxin β-receptor; NF-κB—
nuclear factor κB; NIK—NF-κB-inducing kinase; P—phosphorylation; RANK—receptor activator of nuclear factor kappa-B;
RANKL—receptor activator of nuclear factor kappa-B ligand; TAKTGF-β-activating kinase; TLR receptor—Toll-like receptor;
TNFα/β—tumor necrosis factor α/β; Ub—ubiquitination [75–81].

The classical IκB inhibitors (IκBα, IκBβ, and IκBε) bind to the p65 or c-Rel subunit,
while the nonclassical ones (IκBζ and Bcl-3) may bind to any of the NF-κB subunits [76,79].
Of these, IκBα is the most common NF-κB inhibitor. The inhibitory function may be
performed by IκB-like proteins, which are formed during the proteolysis of the p50 and
p52 precursors, known as p105 and p100, respectively [75,79].

NF-κB-dependent genes are transcriptionally controlled by the activation of classical
or alternative signal transduction pathways. Despite the differences between them, the two
pathways of NF-κB activation may cross each other and should therefore be considered as
different axes of the same signaling system.

The classical (canonical) pathway of NF-κB is activated through the enzymatic activity
of a protein, composed of IκB kinase (IKK)-α or IKKβ, which binds to the regulatory
subunit IKKγ (NEMO). IKK-induced IκB phosphorylation initiates the detachment of
inhibitor from dimers, followed by which the inhibitor is ubiquitinated and degraded in the
proteasome while the released NF-κB dimers translocate to the cell nucleus. The presence
of the RHD domain in NF-κB allows it to acquire the transcriptional activity [76,77,79].
The activation of the NF-κB classical pathway depends on, for example, the stimulation of
cytokine receptors, TNF superfamily receptors, pattern recognition receptors, and B cell
and T cell receptors [78].

The heterodimers of p52 and RelB are activated through an alternative (noncanonical)
pathway, the most important element of which is NF-κB-inducing kinase (NIK). NIK phos-
phorylates IKKα and triggers the phosphorylation of the p100 precursor. The proteolytic
modification of p100 leads to the degradation of the C-terminal IκB-like structures, resulting
in the formation of p52, which is translocated to the nucleus along with RelB [75,77,79,80].

NF-κB pathways have broad-range competencies in humans including controlling
the survival of immune cells, generating inflammatory mediators, and ensuring proper
functioning of immune organs. NF-κB is crucial for hematopoiesis and the development of
primary and secondary lymphoid tissues, and is activated in thymocytes during positive
and negative selection [81–83]. RelB plays a key role in the development of the thymus
as well as the maturation and functioning of dendritic cells, and its deficiency in humans
results in dysmaturity of T and B cells, lack of CD27+ memory B cells, reduced T cell
output from the thymus, abnormal clonal expansion of T cell subtypes, and severe T and B
cell immunodeficiency [82,84–88]. NF-κB regulates the early development of B cells and
survival of naive B cells. Both RelA and c-Rel are involved in the maturation of B cells and
control their movement in germinal centers [89–91].

The activity of NF-κB is monitored using several techniques which allow evaluating
signal transduction at multiple stages of the pathway cascade. Among them, the following
are recommended for use in immune cells: Western blot with specific antibodies for moni-
toring posttranscriptional modification (phosphorylation, acetylation, and ubiquitination)
of IκB and NF-κB dimers, and gel-based detection for monitoring changes in protein mobil-
ity or changes caused by loss of signal from proteins that were degraded in proteasome.
The binding of DNA to the target genes of NF-κB may be tested by electrophoretic mobility
shift assay (EMSA), chromatin immunoprecipitation methods, or using the reporter genes
as indicators of NF-κB activity at the transcriptional level. Moreover, some techniques



Cells 2021, 10, 1799 9 of 20

enable visualizing the translocation of dimers and their distribution between the cytoplasm
and nucleus of cells. It is also recommended to measure the expression of dimers in cyto-
plasmic and nuclear fractions by Western blot, or using image-based methods in which the
translocation of dimers is monitored by antibody staining or fluorescent proteins [92–101].

4. NF-κB as The Target of Xenoestrogens in Immune Cells
4.1. Classical Modulation

Both endo- and exogenous substances may affect intracellular processes by binding to
membrane or transmembrane receptors. One of the fundamental tasks of immune cells is
to recognize and eliminate pathogenic factors, which are receptor-dependent processes.
In many cases, these processes are sensitive to bacterial LPS—Toll-like receptors (TLRs).
However, research conducted by Pal et al. [102] in rat macrophages exposed to nonylphenol
(NP) and LPS did not confirm or deny the involvement of TLR4 in downregulating the
expression of NF-κB pathway proteins. Despite the lack of changes in TLR4 expression,
NP-exposed cells showed decreased LPS-induced translocation of NF-κB p65 to the nu-
cleus. This effect on intracellular pathways, with the simultaneous lack of involvement of
membrane receptors, may possibly result from XEs delving into cells by passive transport.
The lipophilicity of these substances is related to their structural similarity to steroid hor-
mones [103]. Thus, XEs may “bypass” the first step of transduction (membrane receptors)
and directly interact with the intracellular receptors or pathway proteins inside the cells.

A classical way to modulate the expression of NF-κB is the phosphorylation of IκB
inhibitor by IKK. To our knowledge, the influence of XEs on IKK activity in immune cells
has not been studied yet. However, the effect of these compounds on IκB expression
was already assessed. In their study on murine RAW264.7 cells incubated with bisphe-
nol A (BPA; 10–50 µM), Huang et al. [104] observed intensified degradation of IκB and
increased expression of p65 NF-κB in the cell nucleus. Similarly, in RAW264.7 cells exposed
to glycidyl-methacrylate (BisGMA), which is an analog of BPA widely used in dentistry,
IκB degradation was observed and its intensity was directly proportional to the time of
exposure (5–120 min) and concentration of BisGMA (0.1–3 µM) [5]. However, other re-
searchers [105] did not observe any impact of dichlorodiphenyltrichloroethane (DDT), BPA,
and 2,3,7,8-tetrachlorodibenzodioxin (TCDD) (1 µM) on IκBα in Jurkat T cells. Moreover,
they showed that TCDD and DDT exerted a suppressive effect on NF-κB expression and
IL-2 production. Taken together, these results suggest that modulation of IκB may be
cell-specific. In RAW264.7 cells, XEs induced the detachment of IκB inhibitor from NF-κB
dimers, while in Jurkat T cells, IκBα remained unchanged. As mentioned above, the
influence of the time of exposure and concentration and type of XEs on IκB expression
cannot be excluded.

In the literature, we can find studies evaluating the expression of NF-κB subunits
by Western blot. However, without obtaining information about its posttranscriptional
modification, such as by investigating the ratio of expression of the nonphosphorylated
and phosphorylated subunits, it is difficult to draw a conclusion about the activation of
NF-κB [94]. Most of the available studies have focused on p65 and p50 as common subunits
in the canonical pathway. Although it is confirmed that p52, RelB, and c-Rel dimers play a
role in the development and maturation of immune cells and organs, their involvement in
XE-induced signaling, to our knowledge, has not been investigated.

A study on mice exposed to 200 and 400 mg/kg of atrazine showed increased ex-
pression of p65 NF-κB in splenocytes in comparison to cells isolated from animals that
were not fed with XEs. Modulation of NF-κB expression by atrazine resulted in enhanced
release of reactive oxygen species (ROS) in a dose-dependent manner [106]. In an in vitro
study, conducted in our laboratory, Ratajczak-Wrona et al. [107] observed an increase in
iNOS-dependent production of NO with a simultaneous increase in the expression of p65
NF-κB in BPA-exposed neutrophils (3–12 µM). The analysis of p65 NF-κB expression in
the cytoplasmic and nuclear fractions of neutrophils revealed the differences between the
results observed in donors of different sexes. It cannot be ruled out that variations in the
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level of NF-κB expression in male and female cells may be related to differences in the
baseline estrogen concentrations that exacerbate/weaken the BPA-induced effect.

Another technique used experimentally for the evaluation of NF-κB activation is
flow cytometry. This method has been used to assess the influence of bisphenols on
the development, maturation, and functions of human monocyte-derived dendritic cells.
It was shown that expression of the phosphorylated p65 subunit was not changed in
cells exposed to bisphenol AF, but increased after simultaneous incubation of cells with
LPS and bisphenol AF. This finding suggests that only in activated cells, bisphenol AF
may modulate signal transduction via p65 NF-κB [108]. Similar results were noted in
RAW264.7 macrophages incubated with LPS and BPA (10 and 50 µM), in which NF-κB-
dependent luciferase gene expression was observed to be increased in comparison with
nonexposed cells. At the same time, BPA suppressed LPS-induced NF-κB activation (which
was still higher compared to the control cells) in a dose-dependent manner [109], whereas
a dose-dependent increase of NF-κB-dependent luciferase gene expression was observed
in RAW264.7 macrophages exposed to other XEs, namely DDT (0.2, 0.5, or 1 µM) without
prior activation of cells by LPS. The activation of NF-κB pathway in response to DDT
was confirmed by EMSA. Moreover, the NF-κB activation was associated with intensified
production of IL-1β, IL-6, TNFα, and NO [110].

Contradictory results were obtained by Frost et al. [111], who performed Western
blot, confocal microscopy, EMSA, and analysis of NF-κB-dependent reporter gene activity.
Confocal microscopy analysis showed that translocation of p65 NF-κB subunits was inhib-
ited in the cells exposed to XEs. Moreover, Western blot analysis confirmed the decreased
expression of p65 NF-κB (but not p50 NF-κB) in the nuclear fraction of IC-21 macrophages
exposed to propanil. Frost et al. [111] demonstrated that exposure of macrophages to
propanil reduced the ability of p65/p50 heterodimers and p50/p50 homodimers to bind
DNA, the transcriptional activity of NF-κB, and the promoter activity of TNF-α in the
regions containing NF-κB-binding sites. Thus, in this complex study, the authors observed
that NF-κB activity was suppressed at various stages of the pathway cascade in IC-21
macrophages exposed to propanil.

Literature data indicate that NF-κB is not always the main target of XEs in peripheral
blood immune cells (natural killer cells, peripheral blood mononuclear cells (PBMCs), and
granulocytes). For instance, Brown and Whalen [112] assessed the expression of ERK1/2,
p38 MAPK, NF-κB, and caspase 1 in cells incubated with tributyltin (5, 10, and 25 nM) and
observed that the modulation of IL-1β expression was mainly caused by MAPK (ERK1/2
and p38), whereas NF-κB played only a complementary role.

4.2. NF-κB in Signaling Network

The signaling proteins in cells are grouped as so-called signaling pathways. The final
effect of the signaling cascade is the modulation of gene expression, which enhances or
inhibits the regulated processes (e.g., protein synthesis, cell maturation, apoptosis). To
ensure the proper functioning of cells, a given effect can be achieved by activating various
signaling pathways. The pathway proteins may interact with each other at different levels
of the signaling cascade, and by blocking any of the steps in signal transduction, the
obstacle can be “bypassed.” In this respect, the NF-κB signaling pathway is no exception.
The activity of the NF-κB transcription factor may be affected by proteins from other
intracellular pathways, or NF-κB may induce changes in the expression of proteins from
other pathways and transcription factors.

Lee and Lim [113] demonstrated that MAPK and PKC interplayed with NF-κB in
XE-exposed cells. They observed that the expression of p65 or p50 subunits was increased
in the HMC-1 cells exposed to BPA (50 µM). Moreover, in BPA-exposed cells, p38 MAPK
expression and PKC translocation were showed. However, the expression of p65 or p50
decreased markedly in the cells simultaneously incubated with BPA and a p38 MAPK
inhibitor (SKF86002) or with BPA and PKC inhibitor (staurosporine). Therefore, the authors
suggested that BPA-induced activation of NF-κB in HMC-1 cells depends on prior signal
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transduction via p38 MAPK and PKC. Similar relationships were observed in RBL-2H3
cells exposed to di(2-ethylhexyl)phthalate (DEHP; 100 µM) or BPA (50 µM)—activation of
p65 and p50 NF-κB was influenced by the modulation of the signaling cascade at higher
levels (PKC and ERK1/2 MAPK) [114,115].

BPA (10–50 µM) induced IκB-dependent activation and translocation of p65 NF-κB
into the nucleus of RAW264.7 macrophages as well as increased the expression of other
pathways proteins such as ERK1/2, p38 MAPK, JNK, JAK1, JAK2, STAT1, and STAT3.
These proteins are important elements in the upstream regulation of NF-κB in immune cells.
The presented results suggest that, at least partially, BPA-induced modulation of NF-κB
expression depends on the activation of MAPK and JAK/STAT signaling cascade [104].
A similar trend was observed in BPA-exposed THP-1 macrophages. Incubation of these
macrophages with ERK1/2 pathway inhibitor (U0126) decreased the expression of IκB
and NF-κB as well as inhibited the promoter activity of NF-κB. Based on the obtained
results, the researchers confirmed that MAPK represents a higher level of BPA-induced
regulation of NF-κB [116]. Another intracellular regulator of NF-κB in immune cells is the
PI3K/Akt pathway. Kuan et al. [5] observed increased phosphorylation of Akt in BisGMA-
exposed macrophages and suggested that NF-κB expression depends on the activation of
the PI3K/Akt pathway.

4.3. Crosstalk between NF-κB and Estrogen Signaling

As with estrogens, XEs also elicit a variety of immune cell reactions, some of which
have been linked with their direct effects on ERα and ERβ. It has been experimentally
confirmed that ERs are involved in the XE-induced modulation of processes including gen-
eration of NO and ROS, production of cytokines, as well as degranulation and maturation
of cells [116–119]. Ratajczak-Wrona et al. [119] and Di Pietro et al. [120] showed that, in
human neutrophils and PBMCs, BPA regulated the expression of ERα and ERβ in different
ways depending on the sex.

ERs may directly modulate the transcription of regulated genes or interact with the
NF-κB pathway proteins. For instance, Yoshitake et al. [117] suggested that the inhibition
of NO generation in cells following exposure to BPA, NP, and octylphenol was due, at
least in part, to the direct effect of these XEs on ERs. On the other hand, it was shown that
increased expression of ER dimers reduced the expression of p65 NF-κB in macrophages.
Teixeira et al. [121] comprehensively analyzed the influence of BPA, DEHP, and di-n-butyl
phthalate (DBP) on ERα- and ERβ-dependent mRNA expression of IκBα, p50 NF-κB, and
p65 NF-κB in M1 and M2 macrophages and found that the regulation of intracellular signal
transduction in terms of ERs and NF-κB varied depending on the compound tested and the
subpopulation of macrophages. Based on the results, the authors indicated that the regula-
tion of IκBα was dependent (at least in part) on ERα in BPA-exposed M1 macrophages as
well as in DBP-exposed M2 cells. Moreover, they found that the reduction in the expression
of p65 NF-κB in DEHP-stimulated M1 macrophages was influenced by ERβ, while in M2
cells the process was ERα-dependent.

5. Xenoestrogen-Induced Signaling in Developing Immune System

Numerous researchers have underlined that exposure to XEs during the early embry-
onic period may be crucial for the proper development and further functioning of the im-
mune system. Based on their study on mice offspring, Midoro-Horiuti et al. [122] reported
that prenatal exposure to BPA may induce asthma. Among the mouse embryonic thymo-
cytes tested, actively differentiating embryonic thymocytes were especially vulnerable to
XEs exposure (high expression of T cell receptor and CD5) and died via apoptosis [123].
In a study conducted on a fish model, exposure to XEs led to a concentration-dependent
increase in iNOS-dependent production of NO and generation of ROS, as well as to the
modulation of cytokine expression [124,125].

Similar to the cells of the mature immune system, NF-κB has been recognized as
one of the targets of XEs in immune cells, even in embryos. Exposure of Labeo rohita
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larvae in early life stages to BPA increased IκB expression, which explains that XE-induced
immunosuppression may result from the suppression of the NF-κB signaling pathway [126].
In fish embryos exposed to BPA, bisphenol S, or bisphenol F, NF-κB was found to be
involved in the regulation of IL-1β, IL-6, TNFα, and IFNγ, and with the use of an NF-κB
pathway inhibitor, the stimulatory effects on immune-related genes were attenuated [125].
In one of the most recent studies, Liu et al. [127] reported that long noncoding RNA
(lncRNA) and their predicted targets (mRNA) should also be considered as the targets
of XEs. The authors showed the immunotoxic effects of BPA and its analogs against the
primary macrophages of the red common carp (Cyprinus carpio), which were related to
changes in the expression of lncRNA and mRNA as well as deregulation of immune-related
signaling pathways, including NF-κB, JAK/STAT, B cell receptor, and TLR. However, to
our knowledge, no analysis of lncRNA, which may be another factor associated with the
mechanism of action of XEs during the development of organisms, has been carried out.

Since we know that the leukocytes of fish express both ERα and ERβ [128], these
organisms could be an interesting model for investigating the hypothesis about the crosstalk
of ERs and NF-κB in XE-exposed embryos. Moreover, in fish macrophages, ERα but not
ERβ signaling was indicated as a regulator of immune effects [129,130]. BPA and its analogs
regulate the expression of IL-1β, IL-6, TNFα, and IFNγ via ERα in fish embryos [125]. In
contrast to negative crosstalk between NF-κB and ERs observed in mammalian immune
cells, the interaction between these two pathways in fish macrophages is positive which,
according to researchers’ suggestion, is promoter-specific [130].

Due to ethical issues, scientific literature lacks studies about the impact of XEs and
their mechanism of action on human embryos. However, researchers have used indirect
methods for testing the effects of XEs on the immune system during gestation and their
consequences on further functioning. Based on their cohort studies with human partici-
pants, Spanier et al. [131] suggested that the critical window of exposure to BPA is early
in gestation. They showed the association between high prenatal exposure (at 16 but not
26 weeks of pregnancy) to XEs and the occurrence of wheeze in the child at 6 months of age.
In another research, the concentrations of IL-33, IgE, and thymic stromal lymphopoietin
in umbilical cord blood and the maternal levels of phthalates, BPA, and perfluoroalkyl
were measured. In a Canadian population of pregnant women and their newborns, an
association was observed between the concentration of factors, which are integral in the
etiology of childhood allergy, and exposure to XEs [132]. However, Donohue et al. [133] did
not show any relationship between BPA concentration in maternal urine samples collected
during the third trimester of pregnancy and wheeze or asthma in the child. Similarly, Kre-
mentsov et al. [134] did not support gestational BPA exposure as a significant contributor
to the increased risk of autoimmune diseases (multiple sclerosis); however, researchers
observed the modulation of cytokine production by autoreactive T cells in a mouse model.
Although the results of another cohort study indicated that prenatal BPA exposure plays a
part in the TLR-related innate immune response of neonatal infants, exposure to XEs was
not associated with increased risk of infection during early infancy [135].

So far, the mechanism of the abovementioned immune disorders in humans has not
been investigated, but based on the results of animal studies, we assume that deregulation
of intracellular pathways, such as NF-κB, may be one of the potential elements of their
genesis.

6. Limitations and Perspectives

Intracellular signal transduction in the immune cells of people exposed to XEs is
poorly understood. Among many compounds identified as XEs, only a few have been
assessed for their effects on immune cells. Researchers mainly focus on the overall effects of
XEs on an organism, but rarely investigate the role of signaling pathways in cells exposed
to these compounds. Regarding their effects on the classical pathway of NF-κB activation,
it is still unknown whether XEs affect IKK and p52, RelB, and c-Rel NF-κB subunits. To our
knowledge, the available literature has no research on the alternative pathway of NF-κB
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activation in XE-exposed immune cells. Because alternative activating cascade plays a key
role in the development and maturation of immune cells, research on this pathway may be
extremely valuable in the analysis of possible adverse health effects.

A proper methodological approach is crucial for assessing XE-induced intracellular
signal transduction. Signaling cascade should be evaluated at various levels, using IκB
degradation, posttranslational modifications, dimer translocation, and gene regulation as
indicators of the activation of NF-κB pathway. In further studies, the principal features
of XEs should be considered as additional variables. Data about the role of the sex of the
tested subjects, concentration of XEs, and time of XEs exposure in signaling in XE-exposed
immune cells are unavailable or limited as these factors have not been thoroughly assessed
so far, and so the impact of XEs on the process of intracellular signaling involving NF-κB
remains unclear. Moreover, there is a need to experimentally verify the low-dose effects
and nonmonotonic dose–response effects of XEs on NF-κB [136].

Future research should focus on the molecular mechanism of action of environmental
substances in cells, with an aim of understanding the role of XEs in diseases involving
abnormal signal transduction. In a study, Bonds and Midoro-Horiuti [137] indicated XEs
exposure as one of the factors contributing to the development of autoimmune diseases,
asthma, and allergies. Recently, Paciência et al. [138] showed an association between
asthma and EDCs exposure in schoolchildren from Portugal. On the other side, Casas
and Gascon [70], concluded that the evidence for exposure to phthalates and phenols
during the prenatal period and occurrence the respiratory outcomes and allergies are still
insufficient. Interestingly, in a few studies, sexual dimorphism in asthma and allergies out-
comes were observed. Prenatal exposure to 2,5-dichlorophenol and BPA increased odds of
occurrence of asthma among boys [139]. Increased urinary concentration of methylparaben
and propylparaben were observed in boys with asthma, but not girls [140]. In a prospective
longitudinal study of prenatal and early life, triclosan and paraben exposure were linked
with allergic sensitization but only in boys [141]. The possible mechanism of sex-dependent
XEs action warrants further exploration with the use extensive research approach: an-
alyzing only one or two hormone receptors will not reveal the interactions responsible
for immune-related differences between sex. Future studies examining XE-induced sexu-
ally dimorphic effects may be also concentrated on epigenetic reprogramming [142,143].
Moreover, a thorough understanding of the XE-induced mechanism responsible for sex-
dependent differences in functioning of immune system is necessary for implementation
above findings into the potential clinical use.

As XEs are known to disrupt the functioning of the immune system, the following
questions remain to be answered: (I) At what level does the intracellular pathway mod-
ulation occur? (II) Is it possible to develop a therapy that involves selective blocking
or stimulation of signaling proteins? However, modulation of NF-κB may be extremely
challenging due to the ubiquitous presence of the NF-κB pathway proteins in nearly all
cells in humans and the direct and indirect regulation of the expression of numerous genes.

7. Conclusions

Our analysis of literature data is the first attempt to determine the effects of XEs
on the regulation of NF-κB-dependent intracellular signaling network in immune cells
(Figure 4) [5,102,104,105,107–115,117,121]. Based on the presented results, we conclude
that XEs modulate the classical pathway of NF-κB activation by affecting the degradation
of IκB inhibitors, phosphorylation and translocation of dimers, and their transcriptional
activity. Modulation of the activity of NF-κB may also result from regulation via p38 MAPK,
ERK1/2, PKC, JNK, JAK1, JAK2, STAT1, STAT3, and Akt pathways. Moreover, similar
to estrogens, some of the XEs may inhibit proinflammatory reactions by ER-dependent
blocking of NF-κB activity.
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ERα/β—estrogen receptor α/β; IKK—IκB kinase; JAK/STAT—Janus kinases/signal transducer and activator of transcrip-
tion protein family pathway; JNK MAPK—c-Jun N-terminal kinases pathway; NF-κB—nuclear factor κB; P—phosphory-
lation; p38 MAPK—p38 mitogen-activated protein kinases pathway; PI3K/Akt—phosphatidylinositol 3-kinase/protein ki-
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Figure 4. Model of xenoestrogens-induced modulation of NF-κB signaling in immune cells. Xenoestrogens may, directly
and indirectly, impact on elements of the NF-κB pathway. Direct effect includes impact on IκB phosphorylation and
degradation, NF-κB expression and translocation from cytoplasm to nucleus, as well as a change in transcriptional
activity. Xenoestrogens activate numerous intracellular pathway, e.g., ERK1/2 MAPK, JNK MAPK, p38 MAPK, JAK/STAT,
PI3K/Akt, PKC as well as ERs signaling, which inhibit NF-κB activation, decrease expression of IκB and NF-κB dimers, and
NF-κB promoter activities. Abbreviations: ERK1/2 MAPK—1/2 extracellular signal-regulated kinases pathway; ERα/β—
estrogen receptor α/β; IKK—IκB kinase; JAK/STAT—Janus kinases/signal transducer and activator of transcription protein
family pathway; JNK MAPK—c-Jun N-terminal kinases pathway; NF-κB—nuclear factor κB; P—phosphorylation; p38
MAPK—p38 mitogen-activated protein kinases pathway; PI3K/Akt—phosphatidylinositol 3-kinase/protein kinase B
pathway; PKC—protein kinase C; Ub—ubiquitination; ↑—increase; ↓—decrease; ↑↓—increase or decrease; ?—not tested;
(+)—activation [5,102,104,105,107–115,117,121].

Most of the available data suggest that the NF-κB signaling cascade is activated by
XEs, but some discrepancies are also noted. The contrary results may be due to differences
in the mode of action of particular compounds classified as XEs. Although XEs have many
similarities, they seem to be nonidentical in structure, effects, and way of action. Moreover,
the activation of NF-κB may vary depending on the prior priming of cells (e.g., by LPS)
and the tested population (subpopulation) of immune cells.

Researchers suggest that exposure to XEs during the early stage of gestation may affect
the proper development of the immune system and its further functioning. Modulation of
signal transduction network, in particular the NF-κB pathway, contributes to the develop-
ment of asthma, allergies, and some autoimmune diseases, in which XE exposure has been
indicated as one of the predisposing factors. Therefore, it can be concluded that modulation
of the NF-κB pathway may have significant therapeutic potential in the treatment of the
abovementioned diseases.
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