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ABSTRACT
Leucoaraiosis (LA), also referred to as white matter
hyperintensities (WMHs), are usually seen as patchy or
confluent hyperintense areas on T2-weighted or
fluid-attenuated inversion recovery MRI in the elderly.
It is often asymptomatic in its early stages, yet its
persistent evolution to more advanced stages may lead
to substantial neurological dysfunction including
dementia, stroke and death. Despite its clinical
significance, the pathogenic mechanisms underlying
LA development are uncertain. In patients with LA, the
pathophysiological changes in white matter (WM) are
suggested to be continuous from WMHs to its
neighbourhood ‘normal-appearing white matter
(NAWM)’ on conventional MRI sequences. Multimodal
imaging studies revealed that the so-called ‘NAWM’

was actually abnormal with regard to underlying
haemodynamic and microstructural changes. On the
basis of positron emission tomography CT, xenon-CT,
perfusion MRI, etc, the cerebral blood flow of NAWM
was found to be significantly reduced in patients with
LA, compared with healthy controls. Meanwhile, the
integrity of microstructures and blood–brain barrier in
NAWM was also demonstrated to be impaired with
diffusion tensor imaging and dynamic contrast-
enhanced MRI studies, respectively. In addition,the
integrity of NAWM correlated much stronger with
cognitive performance than did WMHs load. It is
reasonable to assume that the subtle injury of NAWM
would be more reversible than WMHs themselves.
Therefore, multimodal imaging modalities could be
appropriately applied to future interventional studies
targeting at early pathophysiological changes of
NAWM. In this paper, we summarise current
knowledge about NAWM of LA mainly acquired from
multimodal imaging studies in vivo, and attempt to
give options for future work.

INTRODUCTION
Leucoaraiosis (LA), also referred to as white
matter hyperintensities (WMHs), are usually
seen as punctate, patchy or confluent hyper-
intense areas on T2-weighted or
fluid-attenuated inversion recovery (FLAIR)
MRI scans in the elderly population. The
prevalence of LA is >80% between 60 and
70 years, and approaching 100% between 80

and 90 years.1 LA is often asymptomatic in
its early stages, yet its evolution to more
advanced stages may lead to substantial
neurological dysfunction including demen-
tia, depression, gait disturbance, stroke and
death.2 3 Despite its clinical significance, the
pathogenic mechanisms underlying LA have
not been fully elucidated.
The alterations of white matter (WM)

architecture in LA are suggested to be con-
tinuous from WMHs to its neighbourhood
‘normal-appearing white matter (NAWM)’
on conventional MRI sequences.4 Clinically,
the disruption of NAWM integrity reflected
by diffusion tensor imaging (DTI) para-
meters correlated stronger with psychomotor
dysfunction than did WMHs load.5

Accumulating evidences advocate the idea
that WMHs may represent merely a ‘tip of
the iceberg’ of the true extent of patho-
physiological changes underlying global WM.
In virtue of imaging technological innov-
ation, multimodal imaging modalities have
been applied to explore the haemodynamic
and microstructural changes of NAWM
during the past decades. Undoubtedly, these
efforts could deepen our understanding
about the intrinsic biological mechanisms
underlying the dynamic evolution process of
WMHs, which is prerequisite for adopting
effective measures to prevent or retard pro-
gression of LA in its infant stages. In this
review, we thus summarise current knowl-
edge about NAWM of LA mainly acquired
from multimodal imaging studies, and
attempt to give options for future work.

Haemodynamic disturbance in NAWM and its
relationship with progression of LA
Chronic hypoperfusion secondary to arterio-
sclerosis of small perforating arteries has long
been proposed as the pathogenesis of LA.
Supporting this assumption, haemodynamic
studies have shown that perfusion reserve,
cerebrovascular reactivity and dynamic auto-
regulation function were compromised in
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patients with LA.6 7 Direct evidence of reduced perfusion
in WM of LA has been acquired from studies using posi-
tron emission tomography (PET), single-photon emission
CT (SPECT) and xenon-CT. However, it is uncertain
whether hypoperfusion is a primary pathogenic mechan-
ism or simply a secondary response to downregulation of
cerebral blood flow (CBF) for reduced metabolic
demand in patients with LA. Researchers assumed that
hypoperfusion might already exist in NAWM preceding
its evolution to visible WMHs on T2-weighted or FLAIR
images; in case of WMHs, expansion was primarily due to
chronic ischaemia.
In 2002, O’Sullivan et al8 first demonstrated that CBF

of periventricular NAWM in patients with ischaemic LA
was significantly reduced, compared with age-matched
controls, using quantitative perfusion MRI. When the
analysis was confined to patients with hypertension,
both CBF of periventricular and centrum semiovale
NAWM were obviously reduced. In addition, they
found that CBF was lower in periventricular NAWM
than that in centrum semiovale NAWM both in patients
and controls, which was consistent with the phenom-
enon that WMHs tends to emerge earlier in
periventricular WM than in centrum semiovale.
Subsequent studies further demonstrated that the
degree of CBF reduction in NAWM was associated with
the severity of LA.9

Recently, a prospective study revealed that a low base-
line CBF of NAWM was an independent predictor of
subsequent development of WMHs in patients with
minor stroke/transient ischaemic attack (TIA) after
18-month observation, and the odds of having new
WMHs was reduced by 0.61 for each increase of 1 mL/
100 g/min with baseline CBF of NAWM.10 Similarly,
another contemporary study found that NAWM trans-
formed into new WMH at follow-up had a significantly
lower baseline CBF than that of the remaining NAWM.11

Furthermore, mean CBF in NAWM surrounding the
index WMHs was lower than that in the total NAWM,
extending ∼12 mm from the edge of WMHs. This is con-
sistent with the pattern of LA progression, mainly
expanding from the edge of index WMHs other than
those emerging in more distal NAWM. Nevertheless, a
large sample study, which enrolled 575 patients with
manifest arterial diseases, failed to establish the associ-
ation between global baseline CBF and progression of
WMHs after 3.9 years follow-up.12 The main distinction
is that this study quantified mean CBF of the
whole brain other than CBF of NAWM as used in other
two studies. Actually, a recent study confirmed that the
association of WMHs severity with intracranial athero-
sclerotic stenosis (ICAS) was stronger than that with
extracranial atherosclerotic stenosis (ECAS).13 The
hemodynamic insufficiency in periventricular border
zone would occur more easily in ICAS than ECAS.
Taking these findings together, it is thus conceivable to
infer that progression of WMHs may be mainly driven by
regional rather than global hypoperfusion.

Disruption of microstructures in NAWM
Substantial evidences have linked LA with cognitive dys-
function in the elderly, particularly in domains of infor-
mation processing speed and executive function.2

However, the association between the burden of LA and
severity of cognitive impairment was weak. One explan-
ation is that the underlying subtle microstructural
changes in NAWM may also contribute to cognitive
impairment, which was supported by the findings from
diffusion weighted imaging (DWI) and DTI studies.5

DWI findings in NAWM
DWI could reflect the freedom of water molecules move-
ment, which is restricted by myelin, axon and other cell
structures. Any disruption to these structures may lead
to elevated apparent diffusion coefficient (ADC). The
ADC values of the whole brain or WMHs were found to
be positively correlated with LA extension.14 Combining
DWI with MR spectroscopy (MRS), Firbank et al15 found
that ADC as well as the metabolite ratios of
N-acetylaspartate/creatine and N-acetylaspartate/
choline of NAWM was significantly correlated with total
WMHs volume. MRS could quantify the levels of N-acety-
laspartate (NAA), which would be decreased due to the
damage of neurons and their associated axons. On the
basis of ADC histogram analysis, the peak height of the
ADC histogram of normal-appearing brain tissue
(NABT) was independently associated with multiple cog-
nitive domains of patients with LA after adjusting for
WMHs volume and brain atrophy.16 A prospective study
also demonstrated that baseline ADC metrics of NABT
outperformed the same metrics of WMHs lesions in pre-
dicting deterioration of cognitive and functional out-
comes after 3-year follow-up.17

DTI findings in NAWM
DTI can non-invasively provide quantitative information
about disruption of microscopic architecture underlying
WM of LA. DTI measures the diffusion in at least six
non-collinear directions, providing a three-dimensional
representation of water motion. The most commonly
used parameters are fractional anisotropy (FA) and
mean diffusivity (MD). FA reflects the directionality of
diffusion, while MD is a measure of diffusion averaged
in all spatial directions. DTI has been extensively used to
characterise the subtle pathological changes underlying
NAWM, which may be invisible on conventional MRI
sequences. In 1999, Derek et al found that FA of peri-
ventricular WM was significantly decreased in ischaemic
LA compared with normal controls, while its MD was
increased.18 However, this small study lacked the spatial
resolution to establish whether these changes were con-
fined to WMHs or involved with NAWM. Subsequent
studies further demonstrated increased MD and
decreased FA in NAWM of patients with LA compared
with healthy controls,19 and the changes of FA and MD
were quantitatively associated with the severity of
WMHs.20
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Maillard et al21 found that FA in different regions of
NAWM was inversely correlated with the number and
proximity of WMHs in its vicinity, suggesting a ‘penum-
bra’ surrounding index WMHs (as illustrated in
figure 1). The WM integrity of the penumbra may be
more subtly disrupted and expected to be more vulner-
able than other NAWM. Consistent with this assumption,
prospective studies showed that 80% of new WMHs had
been emerging as direct extensions of pre-existing
lesions other than isolated new lesions,22 and lower base-
line FA in NAWM independently predicted greater risk
of transition to WMHs.23 However, Maillard et al4

recently demonstrated that the losses of WM integrity
over time in the ‘WMHs penumbra’ were similar in mag-
nitude to other NAWM as well as WMHs themselves.
This finding suggested that different regions of WM lie
along a continuum of injury in patients with LA, and
the ‘WMHs penumbra’ appeared to have no distinctive
temporal course of deterioration. Whether the concep-
tion of the ‘WMHs penumbra’ is of clinical significance
has to be tested in future interventional studies.

Disruption of the blood–brain barrier (BBB) in NAWM
BBB failure and endothelial dysfunction are also pro-
posed to be important pathophysiological mechanisms
for WMHs development. Increased permeability of BBB
may give rise to leakage of serum components into and
through the walls of cerebral small vessels leading to
lipohyalinosis, perivascular oedema, demyelination, loss
of neurons and gliosis.24

In the early dates, the permeability of BBB was mainly
assessed on the basis of the cerebrospinal fluid (CSF)/
serum ratio for albumin, which was expected to be ele-
vated in proportion to the severity of endothelium
damage of cerebral small vessels. Obviously, this method is
not suitable for screening or dynamic monitoring of BBB
permeability in general populations for its invasive and
non-localisation properties. Dynamic contrast-enhanced
MRI (DCE-MRI) is a new method being applied to assess
subtle BBB disruption in humans, and with considerable

reliability. On the basis of DCE-MRI, signal changes con-
sistent with increased BBB permeability were detected in
NAWM and WMHs in patients with LA compared with
healthy controls.25 26 Recently, a study among patients with
Binswanger disease demonstrated that abnormal WM per-
meability (WMP) was more frequently detected in NAWM
than in WMHs, with the highest frequency in a 4 mm
width ring surrounding the WMHs, which coincided with
the aforementioned finding that the surrounding NAWM
was vulnerable, leading to progression of WMHs.27

Histopathological and postmortem imaging findings in
NAWM
Autopsy studies confirmed that the underlying patho-
logical changes of LA extended into the NAWM. Among
six AD patients with LA, neuropathological examination
revealed much more extensive changes in WM than did
parallel postmortem MRI, with a mean of 54% larger
abnormal areas.28 The pathological lesions not identi-
fied on T2-weighted MRI represented minor changes
with a lower intensity of myelin staining. A histopatho-
logical study also demonstrated that afferent microvascu-
lar density was significantly lower both in deep WMHs
lesions and NAWM of patients with LA than in those of
healthy subjects.29 These differences were most promin-
ent in patients who died before 60, indicating that
global microvascular rarefaction in LA is not completely
age-dependent. Interpretation of these results should be
done cautiously, as they usually represent a late-stage
condition of tissue damage rather than the initial patho-
logical alterations of LA.

Current evaluation of LA progression and its limitations
Progression of LA has been linked to cognitive worsen-
ing,30 increased risk of depression3 and mortality.31 The
reported prevalence and speed of LA progression differ
greatly in various cohorts due to the different duration
of observation and definition of progression. In the
Austrian Stroke Prevention Study (ASPS) with healthy
volunteers aged 50–75 years, participants with early con-
fluent and confluent WMHs at baseline underwent
median increases of 2·7 (IQR 0.5–5.9) cm3 and 9·3(7.1–
21.0) cm3, respectively, in lesion volume over 6 years.32

In contrast, the change in WMHs volume was negligible
in their counterparts without WMHs or with punctate
lesions at baseline. The hospital-based multicentre,
multinational Leukoaraiosis and Disability (LADIS)
study showed that ∼74% of participants experienced
assessable WMHs progression after 3-year follow-up,
especially in the frontal and parietal lobes.33

Hitherto, progression of LA was generally assessed on
the basis of changes of WMHs volume or severity grade.
Long-term follow-up (usually ≥3-year) was needed to
observe such an appreciable change because the evolu-
tion process of LA is pretty slow. Up to 43% of partici-
pants were reportedly lost to follow-up after 3-year
observation.34 Those who completed the follow-up
examinations were usually younger and had less vascular

Figure 1 (A) Axial T2-weighted fluid-attenuated inversion

recovery image; (B) coloured version of image (A): white

matter hyperintensities (WMHs; red areas); penumbra

surrounding index WMHs in normal-appearing white matter

(NAWM; blue areas); other regions of NAWM (green areas).
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risk factors than did the whole study population, leading
to an underestimation of LA progression risk. When
observed thus, it is particularly not feasible to evaluate
the effect of certain therapeutic interventions aiming at
retardation of LA progression.

Clinical implications of multimodal imaging studies in
NAWM
Promisingly, multimodal imaging modalities targeting
NAWM could help us to detect and monitor subtle patho-
physiological changes in early stages of LA formation.
Small studies have shown that CBF could be increased by
the use of sympathomimetic midodrine35 or angiotensin
receptor blockers,36 as well as fitness exercises.37

However, whether these possible interventions could be
applied to prevent LA progression needs further investi-
gation in clinical trials. In the future, the use of non-inva-
sive arterial spin-labelling (ASL) could help to find out
whether progression of LA will be accelerated when cere-
bral perfusion declines to a certain threshold, since it
could monitor the dynamic changes of CBF in WM.
Preliminary studies have shown that the changes of FA

and MD in NAWM were detectable over a 1 year
follow-up.38 In contrast, over this period, there was no
change in conventional MRI parameters, including
brain volume, WMHs lesion load and lacunar infarct
number, as well as changes of cognitive metrics.
Recently, another study conducted among
community-dwelling people of similar age suggested that
MD may provide the best sensitivity in discrimination
between WMHs and NAWM even with a mild WMHs
load, among other parameters of FA, magnetisation
transfer ratio (MTR) and longitudinal relaxation time
(T1). The reduction of MTR indicates changes in the
underlying composition of tissue, especially the abnor-
malities of myelin. Moreover, substantial evidence
demonstrated that the integrity of microstructure in
NAWM, represented by DTI parameters, correlated
much closer with cognitive performance than did the
load of WMHs, lacunar infarcts or brain volume in
patients with LA.5 Thus, use of DTI parameters as
outcome variables would be expected to more efficiently
evaluate the efficacy of therapeutic interventions
designed for delaying LA progression than the simple
measurement of WMHs volume or cognitive deterior-
ation in clinical trials. To be mentioned here, there is
another emerging technique, known as ‘diffusion kurto-
sis imaging (DKI)’, which might be even more sensitive
than DTI to detect subtle microstructural changes in
NAWM of LA in the near future, as indicated in relevant
studies of patients with multiple sclerosis (MS).39

A dynamic monitor of BBB permeability may also be
used to evaluate the efficacy of medications aiming at
endothelium or BBB protection. For example, vitamin B
supplementation was found to effectively delay WMHs
progression for patients with recent stroke and severe
cerebral small vessel disease.40 Currently, the proposed
mechanism is that vitamin B may protect the

endothelium by reducing concentrations of homocyst-
eine. Future studies using DCE-MRI may help to
confirm it by measurement of BBB permeability.

CONCLUSIONS
The clinical significance of LA has obtained increasing
attention with the arrival of an ageing society. LA devel-
ops in an insidious way, while progressing persistently.
The so-called ‘NAWM’ has revealed early pathophysio-
logical abnormalities. The pathogenic role of chronic
ischaemia in the development of LA was further corrobo-
rated with the findings that hypoperfusion exists in
NAWM prior to its transition to WMHs. Multimodal
imaging modalities could thus be appropriately applied
to detect and monitor subtle microstructural and haemo-
dynamic changes in NAWM, in terms of future interven-
tional studies. Moreover, it is reasonable to assume that
the pathophysiological changes in NAWM would be more
reversible than WMHs itself, since NAWM occupies the
main body of global WM and any damage to the integrity
of the WM network may exert a negative impact on brain
function. Therefore, preventive and therapeutic strat-
egies targeting early changes in NAWM would be
expected to be more promising and rewarding.
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